
OPEN ACCESS J. Integr. Neurosci.

Research article

Computational model for detection of abnormal brain
connections in children with autism
Elham Askari1, Seyed Kamaledin Setarehdan2,*, Ali Sheikhani3, Mohammad Reza Mohammadi4, Mohammad Teshnehlab5

1Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
3Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
5Department of Control Engineering, K.N. Toosi University of Technology, Tehran, Iran

*Correspondence: ksetareh@ut.ac.ir (Seyed Kamaledin Setarehdan)

https://doi.org/10.31083/JIN-180075

Abstract
In neuropsychological disorders significant abnormalities in brain connectivity are observed in some regions. A novel model
demonstrates connectivity between different brain regions in children with autism. Wavelet decomposition is used to extract
features such as relative energy and entropy from electroencephalograph signals. These features are used as input to a 3D-
cellular neural network model that indicates brain connectivity. Results show significant differences and abnormalities in the left
hemisphere, (p < 0.05) at electrodes AF3, F3, P7, T7, and O1 in the alpha band, AF3, F7, T7, and O1 in the beta band, and T7
and P7 in the gamma band for children with autism when compared with non-autistic controls. Abnormalities in the connectivity
of frontal and parietal lobes and the relations of neighboring regions for all three bands (particularly the gamma band) were
detected for autistic children. Evaluation demonstrated the alpha frequency band had the best level of distinction (96.6%) based
on the values obtained from a cellular neural network that employed support vector machine methods.
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1. Introduction

The brain is the most important and complex human organ. Behavior,
feelings, perceptions, and normal social interactions are possible
through a healthy brain [1]. Some studies conducted on individual
brain organization, suggest certain patterns and connections in differ-
ent regions of the brain in various human conditions and also show
abnormalities in brain organization and connectivity of individuals
with neuropsychological diseases [2]. Johansen-Berg et al. [3] as-
serted that by looking at the physical connections between regions,
known as structural connectivity, or by looking at similarities of the
temporal characteristics of brain activity in different regions, referred
to as functional connectivity, brain connectivity can be examined.
According to these studies there is evidence for both types of connec-
tivity and that these measures provide means by which such regions
communicate with each other. Moreover, it has been reported that
during active processes such as perception and cognitive processing,
brain regions demonstrate temporal correlations of activation pat-
terns. Buckner et al. [4] mentioned that brain regions demonstrate
temporal correlations of activation patterns during rest as well.

Task related functional connectivity provides evidence of which
networks of brain regions are recruited to process and integrate infor-
mation and to respond adequately to task demands [5]. In two other
studies Assaf et al. [5] and Weng et al. [6] reported that resting-state
functional connectivity was investigated without external stimulation.
To do so, people were typically trained to close their eyes and think
about nothing for about 5–10 min [6, 7]. It was demonstrated that

functional connectivity between the precuneus and medial prefrontal
cortex, both default mode network core areas, and other default mode
sub-networks areas decreased.

Autism is one disease that directly affects human brain func-
tion and connectivity [8]. The term “autism” was introduced by
Kanner [9]. Autism is a neurological disorder with psychological
symptoms, usually appears in the first three years of life, and is asso-
ciated with disturbances in social relations and personal perception.
Statistics show the annual prevalence of the disease is 6 per 1000
people [10].

Electroencephalography (EEG) is an electrophysiological mon-
itoring method used to evaluate several types of brain disorder. In
subjects with autism it reports abnormal brain activities and sug-
gests there is an underlying structural disorder [11]. EEG can be
used for diagnostic purposes and conclusions can be drawn from
the shape and power of the signal in a particular frequency band.
EEG and magnetoencephalography are also used to localize neural
activity [12]. EEG provides reliable information about some of the
activities and interactions of the brain [13]. Information and features
can be extracted through accurate recording and computer analysis
of these signals. Furthermore, some brain and mental disorders can
be diagnosed through studying such processes.

Many investigators have studied the EEGs and analyzed the sig-
nals of autistic subjects [14–16]. Sheikhani et al. [15] conducted a
study of EEG signals based on Lempel–Ziv frequency methods (LZ)
and the short-time Fourier transform (STFT). After evaluating results,
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non-autistic and autistic subjects could be distinguished with 81%
accuracy. In another study, independent component analysis was also
employed and the possibility of extracting independent sources of
EEG signals and correlations between different brain autistic regions
was investigated [17]. It was determined that the correlation in the
left hemisphere (including F3, C3, and P3 channels) for autistic sub-
jects is lower than in these regions for non-autistic subjects [15–17].
Since the left hemisphere is responsible for speech-related activities,
the lack of engagement in this region in autistics may be one of the
reasons for the problems of these people [15]. According to studies
conducted by Von Stein [18] and Sheikhani [10], the average of the
gamma frequency band in some components of the left hemisphere
for autistic subjects is higher than found for non-autistic subjects and
is lower for the theta band. With regard to the fast Fourier transform
and componential correlation analysis, some differences have been
observed in the left hemisphere of autistics. After statistical analy-
sis, an attempt was made to draw brain organization and a binding
map [17]. In another study, Sheikhani [10] used EEG spectrogram
analysis for autistic and control non-autistic subjects. It was claimed
that the best differentiation between them was obtained from the
alpha band during a relaxed eye-open condition [10]. Orekhova [19]
studied high-frequencies of the power spectrum of autistic groups
across the age range of 3–8 years and showed that high gamma-
band activity was determined by the spatial distance of recording
electrodes from sources that generated muscle artifacts. Dumas et
al. [20] examined the whole brain and a hypothesis that there is
functional dissociation of µ and α responses to the observation of
human actions in autistic spectrum disorder according to band widths.
Source reconstructions showed this impact was related to a joint
µ-suppression deficit over the occipito-parietal regions and that it
was also related to increase over the frontal regions [20].

Just et al. [21] and Vissers et al. [5, 21] discussed the abnormal-
ities in brain connectivity of children with autism. In the absence
of a connection theory, the lack of which was mentioned by Just,
functional magnetic resonance imaging was employed to investigate
both the inter-cellular connections of anterior and posterior cortex
and the problem of reduced interaction between the anterior regions
and parietal lobe in people with autism [21]. Just noted that many of
the previous models were neural network or connectionist models
that carefully examined the possibility that autism is characterized
by abnormalities at the level of individual connectionist units and
weights in a neural network. For instance, Cohen showed that poor
generalization in autism is caused by inadequate numbers of hid-
den units [22]. McClelland et al. [23], Gustafsson et al. [24], and
OLaughlin and Thagard [25], proposed it was a consequence, re-
spectively, of excessive conjunction coding and excessive inhibition,
under-aroused depression in the amygdala, hypervigilant learning in
temporal and prefrontal cortices, and the failure of adaptive timing in
hippocampal and cerebellar regions. Brock et al. [26] ascribed weak
central coherence to an impairment of temporal binding between
local networks, whereas temporal binding within local networks was
supposed to be intact or possibly even enhanced.

Niederhoefer et al. [27, 28] reviewed different approaches to the
analysis of EEG signals based on cellular neural networks. They
studied several methods of EEG analysis based on multi-layer con-
volutional neural networks (CNN) for seizure and discussed approxi-
mation of the correlation dimension, prediction of EEG-signals, and
an EEG pattern detection algorithm. Subsequently, they investigated
prediction algorithms and the calculation of synchronization mea-

sures for EEG by multi-layer CNN in epilepsy disorder [29]. Muller
et al. [30] proposeda new architecture for the hardware emulation
of discrete-time cellular neural networks (DT-CNN) suited to EEG
signal processing in epilepsy. Results of the proposed CNN architec-
ture showed the importance of high computational accuracy for EEG
signal processing prediction that was not possible with analogue
VLSI circuits.

Very few models have been based on specific experimental
data [21]. Balkenius [31] attempted to present a model for compen-
sating attention-switching deficits during cognition. Grossberg and
Seidman [32] proposed a complex connectionist model for autism.
The model employs an imbalance of parameters among three com-
ponent subsystems. Only one previous computational model has
provided a general account of autism [21]. Noriega [33, 34] used a
self-organizing map neural network to show perceptual abnormal-
ities in the autistic brain. It was claimed that weak central coher-
ence causes disruption to key regions of the brain and imbalance in
excitatory-inhibitory networks. Papageorgiou et al. [35] proposed
a model to identify autism based on a fuzzy cognitive map (FCM)
that was trained by a nonlinear Hebbian learning algorithm (NHL).
Results demonstrated that the proposed FCM ensemble algorithm
was better than the NHL based approach alone with respect to the
accuracy of FCM learning.

Previous studies have confirmed the differences between EEG
signals and the region connections of autistic and non-autistic groups.
In the aforementioned methods for separating two groups, statistical
methods were used to distinguish them by EEG signals, without
presenting a unique model of the brain function. Furthermore, those
methods, weren’t able to extract intra-region connections from EEG
signals. However, by employing the 3D-cellular neural network
(two-layer CNN) model presented here and including the proper
EEG features, based on an intelligent system, it is possible to show
the connectivity of the various brain regions and also distinguish
autistic and non-autistic subjects. This model considers the volume
conduction of the human brain. In the model all regions connect with
their adjacent and non-adjacent regions and it identifies the intra- and
inter-region connectivity.

2. Materials and methods
This method includes three basic phases: signal recording, signal
analysis, and brain modeling.

2.1. Subjects

Recorded signals were collected from 100 autistic children (50 males
and 50 females) aged between 5 and 12 years and 100 non-autistic
children (50 males and 50 females) with the same age range. The
average age of the subjects with autism and the non-autistic controls
was 9.7 ± 2.3 (mean ± standard deviation) and 9.3 ± 1.9, respec-
tively. A t-test on age showed no significant difference between the
two groups (p = 0.532). Diagnosis was performed by two expert
child and adolescent psychiatrists based on the DSM-IV-TR (Diag-
nostic and statistical manual of mental disorder [36]). All subjects
with autistic spectrum disorder were medication-free for at least two
weeks prior to EEG recording. The non-autistic group was selected
from healthy school children with no history of neurological disor-
der or prescribed medicine. The subjects participated in this study
with both parental and self consent. All subjects had a full-scale
intelligence quotient greater than 85 [37].
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2.2. EEG recording

Signal recording was conducted when subjects were awake with
open eyes and calmly seated on a chair. Signals were recorded from
each subject for 18 minutes. The recording was conducted at the
research center of psychology and psychiatry, Roozbeh Hospital
(Tehran, Iran.) over 11 months. To accommodate the requirements of
autistic subjects that might have prevented signal recording, signals
were recorded with a wireless Emotiv Epoch headset device. Use
of this device did not produce stress in autistic subjects and this
headset was more convenient than other devices because of the
short preparation time. The Emotiv Epoch headset is an EEG signal
recording device designed to record signals in special conditions
such as those found here. The headset has a Bluetooth module for
wireless communication. EEG signals were recorded at 14 scalp
points according to the international 10–20 system, AF3, AF4, F7,
F8, F3, F4, FC6, FC5, T8, T7, P8, P7, O1, O2, and 2 reference
electrodes [38, 39]. Fig. 1 a and 1b shows the Emotiv Epoch headset
device and electrode placement of electrodes on the scalp.

The Emotiv software was used to record EEG signals and convert
them to a MATLAB format [39]. The sampling rate was 128 Hz. A
50-Hz Notch filter was employed to remove the main component of
city electricity power and impedance measurements were real-time
contact quality using a patented system. Until circles turned green
electrodes impedances were decreased using a saline solution. This
this indicated that the impedance level required by the software had
been achieved.

A Following recording, the artifact free parts of signals (after
removal of visual, motion, and EMG artifacts) were selected by a
skilled operator under the supervision of a neurologist. The total
number of samples recorded during each session, according to the
128 Hz sampling rate, was 18 × 60 × 128 = 138240 samples. In the
best conditions this record was obtained in just 50 artifact free five
second duration epochs. Ultimately, there were only 50 × 5 ×128
= 32000 samples. Furthermore, during recording no stimuli were
used to evoke ERP signals, such as for example, a light flash. In
other words, recordings were obtained under relaxed conditions in a
calm state and with eyes open, in the absence of any stimulus. All
electrode information was obtained as a 14 channel array and this
information was read by a MATLAB (Version R2013a) converter pro-
gram. To prepare the signals, both artifact and city electricity power
interference removal was performed. A bandpass finite duration
impulse response Hamming window with a cut-off frequency range
of 0.5–100 Hz was also used with the MATLAB software [40, 41].

Fig. 1. (a) Emotiv Epoch headset device, (b) Scalp electrode placement.

2.3. Feature extraction

Extracting suitable features from the EEG signals is important. Cor-
rect features enable better performance to be achieved by the brain
model. Investigations and analyses revealed that the selection of
features such as defined by wavelet transform, energy, and entropy
from each segment of EEG signal was efficient, provided useful data
for the proposed model, and led to good results.

2.3.1. Wavelet transform

The wavelet transform method is more flexible than time-frequency
information for windows with different lengths. It is useful for
analysis of patterns of irregular data. For EEG signals, the discrete
wavelet transform (DWT) was used to analyze the signals of various
frequency bands with different resolutions by signal decomposition
into coarse, C j,k, and detailed, d j,k, information. Coefficients were
calculated from the following two equations [38, 39]:

C j,k =
∫

R
f (t)2− j/2

φ (2− jt− k)dt, (1)

d j,k =
∫

R
f (t)2− j/2

ψ (2− jt− k)dt, (2)

where φ(t) is the basic scaling and ψ(t) is the mother wavelet. k is
the translation parameter and j is the scale index. Inverse discrete
wavelet transforms were calculated as:

f (t)=∑
K

C j,k2− j/2
φ

(
2− jt− k

)
dt+∑

K
d j,k2− j/2

ψ

(
2− jt− k

)
dt.

(3)

EEG signals were decomposed into five ranges. Electroen-
cephalography recognition requires feature extraction from the ac-
quired signal within the specific frequency ranges of delta, theta,
alpha, beta, and gamma [42]. Table 1 shows the bands, which are
decomposed into different sub-bands. Next, the energy and entropy
from each frequency band was computed.

Table 1. Decomposition of EEG signals into frequency bands

Frequency range Frequency bands Frequency bandwidth
(Hz)

0–4 Delta 4
4–8 Theta 4

8–16 Alpha 8
16–32 Beta 16
32–64 Gamma 32

64–128 Noise 64

2.3.2. Energy

The relative energy for each decomposition level for the selected
epochs of each electrode were calculated. The relative energy quan-
tifies signal strength as it gives the area under the curve as the power
within any temporal interval. In signal processing, the energy of a
finite EEG signal is given by (4) [38, 39, 43]:

E (l) =
N

∑
i=1

d2
i ×T/N (4)

where N is the number of DWT coefficients di at scale l and T is the
sampling interval. The relative energy Er is calculated as:
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Er (l) = E (l)/
S

∑
i=1

E (i) (5)

where S is the number of wavelet scales.

2.3.3. Entropy

Entropy is a numerical measure of the randomness of a signal. The
non-linear characterization of this quantity to measure the complex-
ity of a signal requires the definition of different nonstationary EEG
signals. Different types of entropy such as Shannon entropy, log-
energy entropy, and Renyi entropy have been proposed for analysis
of time-series data. They can discriminate EEG signals into different
clinically relevant cases. If the outcome of a probabilistic process
is known, the potential reduction of uncertainty can be measured
by Shanon entropy. For EEG signals, Shanon entropy measures the
average information in the probability distribution of the samples.
The Renyi entropy calculates a continuous measure of mutual infor-
mation. This entropy, in addition to its use in signal analysis, can
also be used in ecology and for quantum information calculations.
The log-energy entropy quantizes the nonlinear dynamics of EEG
signals and defines electrophysiological characters of neurological
disease [44]. In this study the entropy at each decomposition level
was calculated using [45, 46]:

E =−
N

∑
j=1

d2
i, j log

(
d2

i, j

)
, (6)

where i is 1 to l and l shows the wavelet decomposition level. j =
1 to N is the number of coefficients of detail at each decomposition
level.

2.4. Proposed model

Making a system smart is the important task for artificial intelligence.
Therefore, here the inter- and intra-regional connectivity of the brain
is presented by use of artificial intelligence. The main aim is to auto-
matically model and present inter- and intra-regional brain connec-
tivity. Previous methods have used only statistical analysis to present
inter-region connections and those methods were not able to obtain
intra-regional connectivity from EEG signals. However, the present
model, based on cellular neural networks, can show the connectiv-
ity of various brain regions and also distinguish autistic from non-
autistic subjects. The model also accounts for the volume conduction
of the human brain. All regions in the model connect with their
adjacent and non-adjacent regions and show the connectivity within
each region using the features of CNN and electroencephalography.

As mentioned, many regions and cells in the brain connect and
react to each other; therefore by considering this aspect, each region
(cell) in the model should be affected by and reciprocally affect their
adjacent and nonadjacent regions (cells). CNN states and outputs
are calculated by the effects of their neighbor’s activity. Each cell
directly interacts with the cells within its radius of neighborhood,
r = 1, and indirectly interacts on the non-neighborhood cells. For
this distinguishing property, CNN is used in the brain modeling
reported here. The 3D-CNN (two layer CNN) is used to model
brain connectivity patterns because, like brain cells, in CNNs the
cells connect to and interact with each other. Additionally, using
this model to show connective abnormalities of neurophysiological
disease is highly efficient and important for the methodologies of
biomedical diagnosis.

2.4.1. Cellular neural network

CNNs are information processing systems and act similarly to neural
networks. A CNN, like a neural network is a large-scale nonlin-
ear analog circuit that processes input signals from moment to mo-
ment [47]. Its dynamic system names locally connecting cells [44].
Features such as continuous-time, parallel processing, immediate
signal processing, and local interconnectivity have made the system
useful in many scientific fields. These capabilities suited the CNN
for numerous applications in the field of pattern recognition [47, 48].
The basic unit of cellular neural networks is called a cell. This unit
includes either linear or non-linear elements. Arrays of cells can be
configured into different structures. All cells have an input, output,
and state. States and outputs are calculated by the effects of neighbor-
ing outputs. The connections between cells are referred to as weights,
and by using these network dynamics can be greatly increased [48].
As a result of the widespread application area of CNNs and their
ability to show the dynamics and operation of complex systems, here
a CNN has been used to illustrate the function of a brain region.

2.4.2. The model structure

To make a model of the brain, because the activity within each
region may affect other regions, it is important to know the values
of the region’s connections. Therefore, first the values of a regions
connections are calculated using CNN by the structure proposed in
Fig. 2. Then, to show the brain intra-region connectivity the structure
proposed in Fig. 4 is used.

The Emotiv Epoch has 14 electrodes to record EEG signals;
therefore, 14 brain regions are considered. Each region is shown
by a cell and here, 14 cells used. Each cell connects to the other
13 cells (each output of the given cell influences all the other cells)
so fourteen factorial (14!) connections will be calculated. These
connections are inter-regional connections. The ith row and jth
column of cells is shown as C(i, j). Lines depicted in Fig. 2 give the
links between the cells, which express the interaction of the cells
with each other [40, 49].

Each cell is connected to the other 13 cells. Fig. 2a shows the
structure of the model that was made by CNN to calculate the inter-
region connectivity and Fig. 2b shows the relations of the two elec-
trodes (regions), to the other electrodes (regions). Because drawing
all 14! connections in Fig. 2b, was impossible, as an example, only
two electrode connections to the other electrodes were drawn, in this
figure the relations of AF3 (black arrows) and AF4 (orange arrows)
to other cells are given. The arrows between the regions are bidirec-
tional, that is, the regions are reciprocally connected (for example
O1 affects O2 and vice versa).

All cells have inputs, outputs, and states. The outputs are calcu-
lated by the effect of their neighbor’s outputs. Outputs cause cells to
communicate with other cells. The states and outputs yi j are defined
as [40, 49]:

dxi j (t)/dt =−xi j (t)+ ∑
(k,l)∈N(i, j)

A(i, j;k, l) · ykl (t)

+ ∑
(k,l)∈N(i, j)

B(i, j;k, l) ·ukl (t)+ z(i, j;k, l) , (7)

yi j = f
(
xi j (t)

)
= (1/2)

(∣∣xi j (t)+1
∣∣− ∣∣xi j (t)−1

∣∣) (8)

where f is a nonlinear function. Note that it is possible to use other
suitable functions for f [40, 49].
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Fig. 2. Model employed for calculation of the inter-regional connection
values: (a) structure of the proposed CNN model containing 14 cells, (b)
Example of the inter-region connectivity for electrodes AF3 and AF4.

After calculating the values of the connections between regions,
in the second step, a 3D 4×4 CNN is used to show the intra-region
connections within each region. Using the CNNs in each brain region
by considering the connections of the regions (connections obtained
by the model in Fig. 2 generates a model that putatively works like
a brain. Here, the 3D 4×4 CNN has been used as an example to
represent the intra-region connections of each region. Each suitable
structure of the CNN can be used (for example 3× 3, 5× 5 and
. . . CNNs). In fact, using large CNNs with many dimensions gives
greater similarity to the brains regions, but to reduce computational
complexity, the present study used 4×4 CNNs. Fig. 3 shows the
structure of the 3D-CNN used to model a region. The ith row, jth
column and kth dimension of cells is shown as C(i, j, k). For example,
C3, 2, 2 shows the cell in row three, column two, and dimension
two. Lines depicted in Fig. 3 show the links between the cells, which
express the interaction of the cells with each other [40, 49].

Fig. 3. (a) Two layers of a 3D-CNN, (b) Display of connections between
cells in a 3D-CNN.

The values associated with the links of the cells, show the value
of the intra-region connections in each region. Each cell has an
input, output, and state. Cells communicate with other cells via their
outputs. The state of cell is the weighted sum of its inputs. The state
of the cell (i, j,k) is given by [40, 49]:

dxi jk (t)/dt =−xi jk (t)+ ∑
( f ,l,k)∈N(i, j,k)

A(i, j,k; f , l,k) · y f lk (t)

+ ∑
( f ,l,k)∈N(i, j,k)

B(i, j,k; f , l,k) ·u f lk (t)

+ z(i, j,k; f , l,k) , (9)

where u, x, and y are the input, state, and output of the cell i, j, and k,
respectively; f and l are the indices belonging to the neighboring cell
N(i, j,k) of the cell (i, j,k). All the variables are continuous. The set
of matrices and the threshold A,B,z, which contains the weights of
the neural nonlinear network, defines the operation performed by the
network. The output yi jk is defined as [40, 49]:

yi jk = f
(
xi jk (t)

)
= (1/2)

(∣∣xi jk (t)+1
∣∣− ∣∣xi jk (t)−1

∣∣) . (10)

The model proposed shows the inter- and intra-regional connec-
tions of an individuals’ brain regions by CNN. According to the
main regions of the brain and the electrodes, which recorded the
signals from each region, a unique structure was designed. This
structure contained as main regions, the frontal, parietal, temporal,
and occipital lobes of the left and right brain hemispheres. Fig. 4
shows the complete model structure.

As is seen, each square represents a region of the brain that is
simulated by a 3D 4×4 CNN. All cells in a CNN are connected
with their neighbors. Each region has a relationship with its adjacent
and non-adjacent regions. For instance, the relationships of the AF4
region (black arrows) and the AF3 region (orange arrows), to the
other regions have been shown in Fig. 4 (for all regions, arrows
should be drawn because they all connect with each other). Arrows
between regions are bidirectional, that is, the regions interact with
each other (for example O1 affects O2, and vice versa).

Fig. 4. Structure for intra-region connectivity in the presented model.

As mentioned, the value of connections between non-adjacent
regions have been calculated by the model and are given in Fig. 2.
After employing extracted features as inputs, intra-regional connec-
tions of the brain as illustrated by the proposed model in Fig. 4. This
model is extended such that it is possible to use it to compute and
consider relations between inter- and intra-regional connections.
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Table 2. Average energy and entropy values of the alpha band EEG for non-autistic and ASD subjects

Electrodes Energy* Entropy+

ASD subjects
(mean ± SD)

Non-autistic
subjects (mean ±

SD)

P value ASD subjects
(mean ± SD)

Non-autistic
subjects (mean ±

SD)

P value

AF3 0.8001 ± 0.13 0.9998 ± 0.11 0.13 0.7502 ± 0.17 0.7198 ± 0.12 0.41
AF4 0.8549 ± 0.21 0.8952 ± 0.11 0.87 0.8411 ± 0.15 0.8001 ± 0.21 0.11
F3*+ 0.7489 ± 0.05 0.9521 ± 0.03 0.00 0.5829 ± 0.11 0.7422 ± 0.18 0.00

F4 0.9522 ± 0.24 0.8542 ± 0.14 0.58 0.6103 ± 0.13 0.6996 ± 0.21 0.21
F7+ 0.7952 ± 0.36 0.8501 ± 0.23 0.48 0.6021 ± 0.19 0.8023 ± 0.15 0.00
F8 0.8174 ± 0.38 0.8949 ± 0.14 0.91 0.751 ± 0.23 0.7891 ± 0.14 0.53

FC6 0.9685 ± 0.13 0.9105 ± 0.21 0.82 0.8523 ± 0.21 0.8505 ± 0.15 0.49
FC5+ 0.9600 ± 0.26 0.9258 ± 0.15 0.71 0.8512 ± 0.13 0.9051 ± 0.11 0.05
T7* 0.9745 ± 0.09 0.7935 ± 0.09 0.05 0.8530 ± 0.09 0.7935 ± 0.09 0.05
T8 0.8925 ± 0.31 0.8859 ± 0.24 0.92 0.7041 ± 0.12 0.7680 ± 0.15 0.71

P7*+ 0.9003 ± 0.04 0.8257 ± 0.02 0.02 0.8102 ± 0.13 0.931 ± 0.01 0.05
P8 0.7859 ± 0.12 0.8296 ± 0.14 0.70 0.9021 ± 0.18 0.9905 ± 0.12 0.27

O1*+ 0.6103 ± 0.11 0.8196 ± 0.15 0.01 0.6103 ± 0.13 0.8196 ± 0.15 0.01
O2 0.7372 ± 0.12 0.8009 ± 0.18 0.79 0.5413 ± 0.14 0.6126 ± 0.11 0.09

2.5. Statistical analysis

To demonstrate differences, the data obtained and results of the pro-
posed model should be analyzed by statistical testing. Here, the
comparisons used included two-tailed tests (t-test) with a 95% confi-
dence interval. Probability values (p) less than 0.05 were considered
as statistically significant [17, 50].

3. Results and discussion
This study was conducted using MATLAB R2013a. First, recorded
signals were pre-processed and signal noise minimized. Then all
mentioned features were extracted from non-autistic and autistic
signals which were then applied as inputs to the given network model.
To visualize and compare patterns within each group, input values
obtained for each group were separately applied to the model. For
CNNs, the values of states and outputs (connections) are important,
therefore in this study these values were reported for the applied
input patterns and differences.

Prior to using the model, energy and entropy values of the signals
for two groups are presented. Because significant differences were
observed in alpha band, the mean and standard deviation (mean
± SD) of those values, for the two subject groups, in alpha band
are summarized in Table 2. Significant differences for energy and
entropy are marked with ∗ and +, respectively in Table 2.

It was observed that, there were significant differences in energy
values obtained from four electrodes (F3, T7, P7, and O1), whereas,
the entropy values were significant for somewhat different electrodes
(F3, F7, FC5, and O1). Based on these analyses, separating the two
groups was difficult and indicated that connectivity pattern differ-
ences were impossible; therefore, the differences are reported by
the proposed model. In fact, the main purpose of this paper is to
automatically present the inter- and intra-region connections of the
brain by the unique model.

The model will be used to show the connections between the
various regions of the brain. All input cells, based on the input
feature vectors and effects of their neighbors output values, calculate
their own output and state values. The connectivity between cells are
the same as the cell outputs. In Table 3 the connection values of the

three bands: alpha, beta, and gamma, are presented using the model
in Fig. 2. As mentioned, 14! connections should be calculated. As
such a Table is too long, only some values are reported. The values
obtained indicate the inter-region connectivity values and are used in
the continuation experiment for intra-region connections. Significant
differences in the table are marked with an asterisk (*) for the alpha
(α), beta (β ), and gamma (γ) bands.

Calculation of CNN values to find the connectivity between
electrode pairs in the brain illustrated that more abnormalities are
related to the connectivity of the temporal lobes than with other
lobes in the gamma band. Lower values between the temporal lobes
and other lobes can be interpreted as a reflection of a genuinely
decreased correlation of cortical activities. It was observed there were
abnormalities and higher valued connections in distant electrodes
in autistic subjects for all three bands, especially the gamma band.
Additionally, abnormalities in the connection values of neighboring
electrodes were also observed. Results confirm this hypothesis.
Although the autistic brain is healthy, there are abnormalities in the
organization and connectivity of its regions [8, 15, 16].

The intra-regions connections are accounted for by the states of
and connections between the cells. The state values show the condi-
tion of each cell based on the input value and influence of its neigh-
boring output values. It should be noted that each region contains 32
cells (Ci, j,k). Hence, 32 states are present for each electrode (region).
16 cells and states for dimension one and 16 cells and states for di-
mension two. S represents the state and C1,1,1, C1,2,1, C1,3,1, C1,4,1,
C2,1,1, C2,2,1, C2,3,1, C2,4,1, C3,1,1, C3,2,1, C3,3,1, C3,4,1, C4,1,1,
C4,2,1, C4,3,1, C4,4,1, C1,1,2, C1,2,2, C1,3,2, C1,4,2, C2,1,2, C2,2,2,
C2,3,2, C2,4,2, C3,1,2, C3,2,2, C3,3,2, C3,4,2, C4,1,2, C4,2,2, C4,3,2 and
C4,4,2, produce S1,1, S2,1, S3,1, S4,1, S5,1,2, S6,1,2, S7,1,2, S8,1, S9,1,
S10,1, S11,1, S12,1, S13,1, S14,1, S15,1, S16,1, S1,2, S2,2, S3,2, S4,2,
S5,2, S6,2, S7,2, S8,2, S9,2, S10,2, S11,2, S12,2, S13,2, S14,2, S15,2 and
S16,2, respectively.

There are 14 electrodes, therefore 14 Tables should be written.
Table 4 gives the average state values obtained in the alpha band
from electrode F3 for 100 non-autistic and ASD subjects. Based on
the analysis, significant differences are marked with an asterisk (*)
in Table 4.
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Table 3. Average connection values obtained for EEG in α , β and γ bands, for 100non-autistic subjects and ASD subjects based on the model
in Fig. 2 for electrode pairs

Electrodes Energy* Entropy+

ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value

F7–F8 0.521 ± 0.15 0.592 ± 0.16 0.37 0.631 ± 0.25 0.682 ± 0.10 0.29 0.721 ± 0.11 0.758 ± 0.01 0.21
F7–T8×+∗ 0.308 ± 0.11 0.338 ± 0.09 0.05 0.385 ± 0.13 0.391 ± 0.09 0.05 0.408 ± 0.01 0.658 ± 0.06 0.00
F7–F3 0.411 ± 0.27 0.444 ± 0.19 0.48 0.490 ± 0.12 0.501 ± 0.16 0.31 0.511 ± 0.21 0.594 ± 0.24 0.78
F7–O1×+∗ 0.307 ± 0.09 0.381 ± 0.07 0.01 0.385 ± 0.08 0.409 ± 0.03 0.03 0.415 ± 0.05 0.682 ± 0.012 0.00
F7–O2+∗ 0.375 ± 0.18 0.382 ± 0.11 0.25 0.495 ± 0.07 0.562 ± 0.12 0.02 0.465 ± 0.08 0.612 ± 0.02 0.00
T8–FC5∗ 0.485 ± 0.15 0.501 ± 0.27 0.38 0.511 ± 0.17 0.525 ± 0.18 0.27 0.517 ± 0.02 0.631 ± 0.04 0.01
F8–O1∗ 0.315 ± 0.11 0.342 ± 0.21 0.19 0.421 ± 0.17 0.423 ± 0.19 0.41 0.315 ± 0.00 0.521 ± 0.09 0.00
F8–P7∗ 0.201 ± 0.22 0.253 ± 0.15 0.21 0.341 ± 0.12 0.401 ± 0.00 0.32 0.281 ± 0.02 0.478 ± 0.00 0.00
F8–O2×∗ 0.482 ± 0.08 0.553 ± 0.05 0.05 0.677 ± 0.13 0.692 ± 0.11 0.24 0.552 ± 0.03 0.752 ± 0.01 0.00
F8–O1∗ 0.351 ± 0.21 0.368 ± 0.31 0.52 0.398 ± 0.32 0.407 ± 0.18 0.18 0.472 ± 0.02 0.500 ± 0.03 0.05
F3–T7×+∗ 0.452 ± 0.13 0.505 ± 0.07 0.05 0.537 ± 0.19 0.598 ± 0.09 0.04 0.492 ± 0.03 0.675 ± 0.01 0.00
AF3–AF4 0.467 ± 0.19 0.481 ± 0.25 0.42 0.499 ± 0.17 0.508 ± 0.19 0.24 0.581 ± 0.21 0.601 ± 0.13 0.15
P7–P8 0.402 ± 0.09 0.421 ± 0.22 0.21 0.452 ± 0.29 0.780 ± 0.13 0.19 0.492 ± 0.13 0.500 ± 0.02 0.10
P8–O2 0.489 ± 0.12 0.504 ± 0.21 0.29 0.511 ± 0.28 0.543 ± 0.22 0.36 0.519 ± 0.18 0.594 ± 0.11 0.37

Table 4. Average state values obtained for electrode F3 for 100
Non-autistic and ASD subjects in the α band

States ASD
subjects

(mean ± SD)
Non-autistic

subjects (mean ±
SD)

Statistical
analysis
(p value)

S1, 1 0.135 ± 0.004 0.728 ± 0.025 0.00
S2, 1∗ 0.034 ± 0.012 0.652 ± 0.007 0.00
S3, 1∗ 0.754 ± 0.051 0.847 ± 0.013 0.05
S4, 1∗ 0.7213 ± 0.001 0.8206 ± 0.086 0.00
S5, 1∗ 0.036 ± 0.023 0.7879 ± 0.007 0.00
S6, 1∗ 0.064 ± 0.049 0.7857 ± 0.002 0.00
S7, 1∗ 0.851 ± 0.010 0.6274 ± 0.028 0.00
S8, 1∗ 0.8233 ± 0.096 0.9340 ± 0.090 0.01
S9, 1∗ 0.01 ± 0.002 0.899 ± 0.003 0.00
S10, 1∗ 0.086 ± 0.011 0.8153 ± 0.021 0.00
S11, 1∗ 0.872 ± 0.006 0.9542 ± 0.027 0.05
S12, 1 0.8651 ± 0.050 0.815 ± 0.010 0.10
S13, 1∗ 0.026 ± 0.009 0.712 ± 0.004 0.00
S14, 1∗ 0.321 ± 0.034 0.7142 ± 0.049 0.00
S15, 1∗ 0.6317 ± 0.021 0.7121 ± 0.043 0.00
S16, 1∗ 0.6129 ± 0.023 0.7108 ± 0.015 0.00
S1, 2∗ 0.234 ± 0.014 0.728 ± 0.025 0.00
S2, 2∗ 0.041 ± 0.003 0.642 ± 0.010 0.00
S3, 2∗ 0.739 ± 0.051 0.856 ± 0.012 0.05
S4, 2∗ 0.621 ± 0.003 0.8316 ± 0.006 0.00
S5, 2∗ 0.046 ± 0.023 0.8870 ± 0.015 0.00
S6, 2∗ 0.068 ± 0.059 0.7857 ± 0.002 0.00
S7, 2∗ 0.951 ± 0.013 0.6814 ± 0.028 0.00
S8, 2∗ 0.7523 ± 0.086 0.9040 ± 0.081 0.01
S9, 2∗ 0.0152 ± 0.021 0.898 ± 0.005 0.00
S10, 2∗ 0.0812 ± 0.001 0.8853 ± 0.021 0.00
S11, 2∗ 0.851 ± 0.010 0.9042 ± 0.024 0.05
S12, 2 0.8532 ± 0.050 0.835 ± 0.012 0.10
S13, 2∗ 0.028 ± 0.006 0.692 ± 0.010 0.00
S14, 2∗ 0.425 ± 0.0246 0.6940 ± 0.047 0.00
S15, 2∗ 0.6517 ± 0.021 0.7321 ± 0.032 0.00
S16, 2∗ 0.5999 ± 0.033 0.7517 ± 0.013 0.00

Table 5. Average state values obtained for electrode F4 for 100
Non-autistic and ASD subjects in α band

States ASD
subjects

(mean ± SD)
Non-autistic

subjects (mean ±
SD)

Statistical
analysis
(p value)

S1, 1 0.931 ± 0.004 0.9385 ± 0.007 0.700
S2, 1 0.9042 ± 0.004 0.9065 ± 0.002 0.900
S3, 1 0.927 ± 0.080 0.812 ± 0.086 0.175
S4, 1 0.7175 ± 0.232 0.7340 ± 0.256 0.700
S5, 1 0.5832 ± 0.229 0.5852 ± 0.171 0.893
S6, 1 0.4501 ± 0.060 0.5627 ± 0.065 0.168
S7, 1 0.4615 ± 0.123 0.4367 ± 0.111 0.129
S8, 1 0.9352 ± 0.052 0.9475 ± 0.004 0.220
S9, 1 0.9427 ± 0.015 0.9552 ± 0.020 0.685
S10, 1 0.9380 ± 0.021 0.9645 ± 0.018 0.503
S11, 1 0.9692 ± 0.016 0.9917 ± 0.028 0.124
S12, 1 0.8637 ± 0.014 0.8877 ± 0.099 0.129
S13, 1* 0.9340 ± 0.012 0.713 ± 0.121 0.003
S14, 1 0.952 ± 0.042 0.955 ± 0.044 0.985
S15, 1 0.9585 ± 0.041 0.9465 ± 0.034 0.542
S16, 1 0.822 ± 0.192 0.802 ± 0.173 0.614
S1, 2 0.946 ± 0.012 0.9781 ± 0.021 0.690
S2, 2 0.9851 ± 0.012 0.9171 ± 0.007 0.900
S3, 2 0.951 ± 0.079 0.849 ± 0.047 0.751
S4, 2 0.8001 ± 0.341 0.7591 ± 0.301 0.700
S5, 2 0.6002 ± 0.301 0.5592 ± 0.261 0.798
S6, 2 0.5521 ± 0.100 0.5701 ± 0.059 0.171
S7, 2* 0.2930 ± 0.102 0.5420 ± 0.091 0.001
S8, 2 0.9131 ± 0.042 0.9245 ± 0.012 0.581
S9, 2 0.9801 ± 0.018 0.9121 ± 0.019 0.710
S10, 2 0.9210 ± 0.012 0.9352 ± 0.009 0.611
S11, 2 0.9312 ± 0.014 0.9885 ± 0.015 0.201
S12, 2 0.8995 ± 0.101 0.8531 ± 0.015 0.200
S13, 2* 0.8992 ± 0.101 0.658 ± 0.111 0.004
S14, 2 0.941 ± 0.031 0.972 ± 0.024 0.945
S15, 2 0.9320 ± 0.045 0.9585 ± 0.071 0.795
S16, 2 0.822 ± 0.192 0.801 ± 0.175 0.614
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Table 6. States that have significantly different values (p < 0.05) for 14 channels between non-autistic and ASD subjects in α , β , and γ bands

Region α band β band γ band

AF3 All 32 states S5, 1, S6, 1, S7, 1, S8, 1, S10, 1, S11, 1, S12,
1, S14, 1, S15, 1, S1, 2, S4, 2, S5, 2, S6, 2, S7,
2, S8, 2, S10, 2, S11, 2, S12, 2, S14, 2, S15, 2

S5, 1, S6, 1, S7, 1, S8, 1, S10, 1, S11, 1, S12,
1, S14, 1, S15, 1, S1, 2, S6, 2, S7, 2, S8, 2,
S10, 2, S11, 2, S12, 2, S14, 2, S15, 2

AF4 S1, 1, S4, 1, S5, 1, S6, 1, S7, 1, S8, 1, S10,
1, S11, 1, S12, 1, S14, 1, S15, 1, S1, 2, S4, 2,
S5, 2, S6, 2, S7, 2, S8, 2, S10, 2, S11, 2, S12,
2, S14, 2, S15, 2

S14, 1, S15, 1, S1, 2, S6, 2, S7, 2, S8, 2, S10,
2, S11, 2, S12, 2, S14, 2, S15, 2, S16, 2

S1, 1, S4, 1, S5, 1, S6, 1, S11, 2, S12, 2

F3 S1, 1, S2, 1, S3, 1, S4, 1, S5, 1, S6, 1, S7, 1,
S9, 1, S10, 1, S11, 1, S13, 1, S14, 1, S15, 1,
S16, 1, S1, 2, S2, 2, S3, 2, S4, 2, S5, 2, S6,
2, S7, 2, S9, 2, S10, 2, S11, 2, S13, 2, S14, 2,
S15, 2, S16, 2

S2, 1, S3, 1, S4, 1, S5, 1, S6, 1, S7, 1, S9, 1,
S10, 1, S11, 1, S13, 1, S14, 1, S15, 1, S16, 1,
S1, 2, S2

S15, 1, S16, 1, S1, 2, S2, 2, S3, 2, S4, 2, S5,
2, S6, 2, S7, 2, S9, 2, S10, 2, S11, 2, S13, 2,
S14, 2, S15, 2, S16, 2

F4 S7, 1, S13, 1, S7, 2, S13, 2 No states S3, 2
F7 S1, 1, S5, 1, S6, 1, S7, 1, S10, 1, S11, 1, S15,

1, S1, 2, S5, 2, S6, 2, S7, 2, S10, 2, S11, 2,
S15, 2

S6, 2, S7, 2 S14, 1, S15, 1, S16, 1, S1, 2, S2, 2, S3, 2, S4,
2, S5, 2, S6, 2, S7, 2

F8 S11, 1, S12, 1, S11, 2, S12, 2 No states No states
FC6 S12, 1, S5, 1, S12, 2, S5, 2 S7, 2, S9, 2 S15, 1
FC5 S1, 1, S2, 1, S3, 1, S12, 1, S14, 1, S1, 2, S2,

2, S3, 2, S12, 2, S14, 2
S14, 1, S15, 1, S1, 2, S6, 2, S7, 2, S8, 2, S10,
2, S11, 2

S10, 1, S11, 1, S13, 1, S14, 1, S14, 2, S15, 2,
S16, 2

T7 S1, 1, S2, 1, S6, 1, S7, 1, S8, 1, S9, 1, S11, 1,
S12, 1, S13, 1, S1, 2, S2, 2, S6, 2, S7, 2, S8,
2, S9, 2, S11, 2, S12, 2, S13, 2

S10, 1, S11, 1, S13, 1, S14, 1, S15, 1, S16, 1,
S1, 2, S2, 2, S3, 2, S4, 2, S5, 2, S6, 2, S7, 2,
S9, 2, S10, 2, S11, 2, S13, 2

S11, 1, S13, 1, S14, 1, S15, 1, S16, 1, S1, 2,
S2, 2, S3, 2, S5, 2, S6, 2, S7, 2, S9, 2, S10, 2,
S11, 2

T8 No states No states No states
P7 All 32 states S1, 1, S2, 1, S3, 1, S4, 1, S5, 1, S8, 1, S9, 1,

S10, 1, S11, 1, S2, 2, S3, 2, S4, 2, S5, 2, S8,
2, S9, 2, S10, 2, S11, 2, S13, 2, S14, 2, S16, 2

S1, 2, S2, 2, S3, 2, S4, 2, S5, 2, S6, 2, S7,
2, S9, 2, S10, 2, S11, 2, S13, 2, S14, 2, S15,
S14, 2, S16, 2

P8 S11, 1, S15, 1, S16, 1, S11, 2, S15, 2, S16, 2 No states No states
O1 S1, 1, S2, 1, S3, 1, S4, 1, S5, 1, S8, 1, S9, 1,

S10, 1, S11, 1, S13, 1, S14, 1, S16, 1, S1, 2,
S2, 2, S3, 2, S4, 2, S5, 2, S8, 2, S9, 2, S10, 2,
S11, 2, S13, 2, S14, 2, S16, 2

S5, 1, S6, 1, S7, 1, S8, 1, S10, 1, S11, 1, S12,
1, S14, 1, S15, 1, S1, 2, S6, 2, S7, 2, S8, 2,
S10, 2, S11, 2, S12, 2, S14, 2, S15, 2

S2, 1, S3, 1, S4, 1, S5, 1, S6, 1, S7, 1, S9, 1,
S10, 1, S11, 1, S13, 1, S14, 1, S16, 1, S1, 2,
S2, 2, S3, 2, S4, 2, S5, 2, S6, 2, S7, 2, S9, 2,
S10, 2, S11, 2, S13, 2, S14, 2, S15, 2

O2 S4, 1, S7, 1, S4, 2, S7, 2 S13, 1 S11, 1

Table 7. Average values obtained for connection weights for 100 autistic and non-autistic subjects in 14 region for α , β , and γ bands

Electrodes Energy* Entropy+

ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value ASD subjects
(mean ± SD)

Non-autistic
subjects

(mean ± SD)

P value

AF3×+∗ 0.499 ± 0.03 0.978 ± 0.02 0.00 0.408 ± 0.09 0.828 ± 0.11 0.00 0.521 ± 0.09 0.988 ± 0.12 0.00
AF4× 0.541 ± 0.033 0.925 ± 0.040 0.00 0.822 ± 0.13 0.878 ± 0.19 0.24 0.901 ± 0.09 0.910 ± 0.07 0.15
F3× 0.740 ± 0.03 0.952 ± 0.04 0.00 0.759 ± 0.18 0.9672 ± 0.09 0.00 0.851 ± 0.13 0.952 ± 0.04 0.00
F4 0.752 ± 0.19 0.693 ± 0.16 0.48 0.789 ± 0.08 0.709 ± 0.14 0.31 0.801 ± 0.09 0.733 ± 0.21 0.28
F7×+ 0.497 ± 0.004 0.608 ± 0.121 0.052 0.499 ± 0.07 0.572 ± 0.13 0.03 0.625 ± 0.18 0.642 ± 0.10 0.31
F8 0.583 ± 0.13 0.704 ± 0.16 0.12 0.661 ± 0.11 0.714 ± 0.19 0.15 0.683 ± 0.17 0.744 ± 0.12 0.13
FC6 0.799 ± 0.02 0.804 ± 0.06 0.34 0.805 ± 0.09 0.814 ± 0.16 0.21 0.899 ± 0.12 0.902 ± 0.09 0.11
FC5 0.865 ± 0.13 0.895 ± 0.05 0.17 0.897 ± 0.14 0.905 ± 0.17 0.24 0.906 ± 0.13 0.966 ± 0.05 0.29
T7×+∗ 0.605 ± 0.08 0.773 ± 0.03 0.01 0.637 ± 0.07 0.692 ± 0.07 0.03 0.652 ± 0.03 0.752 ± 0.11 0.01
T8 0.647 ± 0.18 0.630 ± 0.34 0.69 0.697 ± 0.11 0.699 ± 0.31 0.49 0.700 ± 0.21 0.705 ± 0.32 0.37
P7×+∗ 0.563 ± 0.036 0.836 ± 0.044 0.00 0.589 ± 0.12 0.904 ± 0.21 0.02 0.571 ± 0.09 0.943 ± 0.12 0.01
P8 0.904 ± 0.03 0.927 ± 0.03 0.17 0.913 ± 0.10 0.920 ± 0.12 0.11 0.934 ± 0.06 0.937 ± 0.03 0.17
O1× 0.805 ± 0.02 0.829 ± 0.05 0.13 0.817 ± 0.14 0.829 ± 0.10 0.05 0.819 ± 0.02 0.889 ± 0.01 0.04
O2 0.538 ± 0.02 0.549 ± 0.03 0.58 0.551 ± 0.28 0.543 ± 0.22 0.36 0.579 ± 0.22 0.594 ± 0.11 0.12

Table 5 gives the average values obtained in the α band from
electrode F4 for 100 non-autistic and ASD subjects. As seen in this
Table, only three states show any significant difference between any
two groups.

The state values obtained from autistic subjects when compared
with non-autistic subjects in Tables 4 and 5, indicate differences
exist between non-autistic and autistic subjects in the anterior-frontal
region (F3); however, in the F4 region, no significant differences
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Table 8. Average values of intra-regional connectivity in each brain lobe for 100 autistic and non-autistic subjects in the alpha band Right
hemisphere Left hemisphere

Right hemisphere Left hemisphere

The lobes ASD subjects
(mean ± SD)

Non-autistic
subjects (mean ±

SD)

Statistical analysis
(mean ± SD)

ASD subjects
(mean ± SD)

Non-autistic
subjects (mean ±

SD)

Statistical analysis

Frontal 0.647 ± 0.171 0.853 ± 0.149 0.028 0.666 ± 0.189 0.780 ± 0.099 0.054
Temporal 0.676 ± 0.080 0.769 ± 0.031 0.011 0.657 ± 0.198 0.630 ± 0.998 0.731
Parietal 0.563 ± 0.036 0.941 ± 0.044 0.00 0.956 ± 0.029 0.977 ± 0.031 0.177

Occipital 0.881 ± 0.023 0.888 ± 0.051 0.105 0.538 ± 0.024 0.538 ± 0.022 0.991

were observed. It is concluded that there are significant differences
in the activity of brain regions in subjects with autism compared to
non-autistic subjects.

Table 6 shows the states that have significant differences for the
14 regions studied. In this Table only the states that have significant
differences (p < 0.05) in α , β , and γ bands, between non-autistic
and ASD subjects have been given.

The state values obtained and reported in Table 6, indicated that
for all three bands there were significant differences in the value of
the states of the autistic brain in parts of the left hemisphere and
anterior-frontal regions. In the alpha band, more differences were
observed in the states of the left hemisphere of the autistic brain.

Table 7 reports the average connection values for each region
for 100 non-autistic and autistic subjects in three bands α , β , and
γ . Significant differences in values between two groups are marked
with ×, +, and ∗, in Table 7.

According to the values obtained, significant differences were
observed in the in alpha band of regions related to the AF3, AF4,
F3, P7, T7, F7, and O1 electrodes of subjects with autism when
compared to non-autistic subjects. Additionally, in AF3, F7, T7, and
P7 significant differences were observed in the beta band and for P7
and T7 in the gamma band. Results showed that most abnormalities
in subjects with autism are related to the left hemisphere of the brain,
especially the frontal and temporal lobes. The results obtained are
in agreement with reports by Rashidi and Sheikhani [5, 17, 51]. On
the basis of Tables 6 and 7, it can be concluded that abnormalities
are observed in the left hemisphere of autistic subjects. To support
this hypothesis, the intra-regional connectivity of the lobes in the left
and right hemispheres for autistic and non-autistic subjects in the
alpha band are presented in Table 8. This Table shows the average
connectivity values of the intraregional connections in each lobe.

Table 8 shows significant differences in the left hemisphere of
subjects with autism compared to non-autistic subjects. However, no
significant differences was observed in the right hemisphere.

In this study, two types of significant differences were found
between the two groups. The first was the difference in activity of
the regions in the frontal and left hemisphere of the brain and the
differences are shown by state. The second was the connectivity
differences of the inter- and intra-regions calculated for cell outputs.
The results obtained match those reported by Behnam, Sheikhani,
Vissers and Barttfeld [5, 50–52].

The main purpose of the present model is to show brain region
connectivity. This model was able to distinguish two groups using
the 3D-CNN values obtained, which demonstrates the practicality of
the model. The model proposed showed differences for electrodes
F3, AF3, AF4, F7, P7, O1 and T7 in the alpha band, at electrodes

AF3, F7, T7, P7 in the beta band, and for electrodes P7 and T7 in
the gamma band in the frontal lobe and left hemisphere of autistic
subjects when compared to normal subjects. The model based on
the state values and the weights obtained from the CNNs distinguish
these two groups via a support vector machine (SVM). SVM is a
classifier that can separate different types of EEG signal [44]. It is a
non-linear binary classifier, which maps the input features (here the
state and weight values) onto a higher dimensional hyper-plane. The
best hyper-plane was used to separate the data points of one class
from the other to classify the signals. In this paper, the performance
of the SVM classifier was measured using a third order polynomial
kernel function with 0.8592 and 0.8972, sensitivity and specificity,
respectively. Here, tenfold cross-validation was used to improve
accuracy. Evaluation of the analysis demonstrated that the alpha
frequency band had the best distinction capacity (96.6%) and shows
the precision of the model proposed.

4. Conclusion
This paper has presented a model to show the brain connectivity of
children with autism using features of electroencephalography and
3D-cellular neural networks. The cellular neural network was found
to be a suitable tool to model the connections and differences between
autistic and non-autistic patterns in the different regions. Results
illustrated that more abnormalities are related to the left hemisphere,
(p < 0.05) at electrode locations AF3, F3, P7, T7, and O1, in the
alpha band, and AF3, F7, T7, and O1 in the beta band, and T7 and P7
in the gamma band for children with autism when compared with a
non-autistic group. Evaluation of the connection values obtained for
different brain regions indicated that there are more abnormalities
in the connectivity of frontal and parietal lobes and the relations of
the neighboring regions in all three bands, especially in the gamma
band, for autistic children. The model also distinguished autistic and
non-autistic subjects with an accuracy rate of 96.6% in the alpha
band from the state and weight values obtained using SVM. Results
confirmed the hypothesis that, although the autistic brain is healthy
there are abnormalities in the organization and connectivity of its
regions. Some limitations of this study merit consideration. First,
children with autism could not be sat for a long time. Moreover, for
the EEG they could not avoid taking their medication for a long time.
Future work could be to distinguish ASD girls and boys using this
model. Also, brain inter- and intra-region connections of ASD girls
and boys in different EEG bands could be compared and discussed.
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