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Abstract

Brain structural abnormalities of schizophrenia subjects are often considered as the main neurobiological basis of this brain
disease. Therefore, with the rapid development of artificial intelligence and medical imaging technologies, machine learning
and structural magnetic resonance imaging have often been applied to computer-aided diagnosis of brain diseases such as
schizophrenia, Alzheimer, glioma segmentation, etc. In this paper, statistical analysis of schizophrenic and normal subjects is
initially made. Additionally, a slicing and weighted average method is proposed for gray matter images of the structural magnetic
resonance imaging stored as three-dimensional volume data. Grey-level co-occurrence matrix texture features from the previ-
ously processed gray matter images of structural magnetic resonance imaging are then extracted and normalized. Finally, an
eXtreme Gradient Boosting classifier is used for schizophrenia classification. Experiments employed 100 schizophrenic subjects
and 100 normal controls. Results show the proposed method improves the respective classification accuracy of healthy controls
and schizophrenic subjects by 8% and 10.6% of the area under the receiver operating characteristic. This suggests that the
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textural features of gray matter changes may be of diagnostic value in schizophrenia.
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1. Introduction

Schizophrenia (SCZ) is a chronic mental disorder often characterized
by abnormal social behavior and a diverse range of symptoms. Tra-
ditional medical diagnosis of SCZ is mostly based on the Diagnostic
and Statistical Manual of Mental Disorders (DSM-1V), International
Classification of Diseases (ICD-10), and the diagnostic criteria for
classification of mental disorders [1, 2]. With the rapid development
of technologies such as state-of-the-art brain imaging, especially
magnetic resonance imaging (MRI) [3, 4], mass data can be used
to assist the diagnosis of SCZ [5-7]. At the same time, neuroimag-
ing studies have demonstrated their clinical value by using machine
learning and image processing methods to individually distinguish
SCZ subjects from normal controls (NC).

Several meta-analyses on structural magnetic resonance imaging
(sMRI) have been conducted to identify brain regions that exhibit
pathological changes that could potentially act as disease markers for
SCZ. These findings include abnormalities in the brain gray matter,
temporal and parietal lobes, etc [8—11]. Much research has been
based on the above findings. Wang et al [12] performed feature
extraction in the region of interest (ROI) after analyzing brain gray
matter images SCZ subjects. Subsequently, a support vector machine
(SVM) was used to distinguish and classify SCZ subjects and HCs.
In a machine learning for signal processing competition (MLSP) [13],
Solin & Sirkkd [14] received first place for automatically diagnosing
subjects with SCZ based on multimodal features derived from their

J. Integr. Neurosci. | Vol. 17 | Issue 4 | November 2018

(©2018 The authors. Published by IMR press. All rights reserved.

brain MRI scans. Sui et al [15] combined functional MRI (fMRI)
and sMRI features, and improved the classification accuracy between
SCZ subjects and NCs. Lu et al [16] employed a voxel-based mor-
phometry (VBM) method, ROI analysis on gray matter images of
SCZ, and the classification of SCZ and NC was completed by a SVM
classifier.

Besides the sMRI based SCZ classification, there has been grow-
ing interest in the use of machine learning classifiers for analyzing
functional magnetic resonance imaging (fMRI) data. A discrimina-
tive model of multivariate pattern classification, based on fMRI and
an anatomical template is presented in [17]. In [18] SCZ charac-
terization is improved by a multiple kernel learning (MKL) based
methodology which uses both magnitude and phase fMRI data. It
also detects brain regions that convey most of the discriminative
information between subjects and controls. A hybrid machine learn-
ing method to classify SCZ subjects and HCs is proposed in [19]
which uses fMRI and single nucleotide polymorphism (SNP) data.
Experimental results show that combining genetic and fMRI data is
an effective way to reassess biological classification of individuals
with SCZ.

It can be seen that the feature extraction and classification be-
tween SCZ and NC based on MRI scans are well completed with the
help of computer-aided diagnosis techniques. The objective of this
work is to distinguish SCZ diseases from controls focused on the
gray matter of SMRI images. Here, gray matter images were sliced
and then weighted and averaged images were obtained. The grey-
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level co-occurrence matrix (GLCM) texture features were extracted
and normalized. Finally, a classic machine learning classifier such as
extreme Gradient Boosting (XGBoost, KNN), SVM, LR, and a GB
classifier were applied to the data obtained from the classification
experiment. The motivation was to develop a machine classifica-
tion process for evaluation of the performance of different classi-
fiers for this problem, in terms of a statistical performance measure.
Fully-automatic determination of whether subjects are sick can then
provide necessary biological reference indicators for doctors.

2. Method
2.1. Image preprocessing

Brain MRI data is typically stored in a three-dimensional format. In
this study, gray matter SMRI images (96 x 113 x 94 voxels) were
analyzed. If features are extracted from each voxel a dimensional
disaster will occur as model performance will be greatly reduced by
the extraction of a large number of irrelevant or redundant features.
Therefore, here a preprocessing method that includes the slicing and
calculation of weighted sums of average gray images is proposed.
The detailed steps include:

(1) Slicing original image: For each subject, the size of the gray
matter image was 96 x 113 x 94 voxels. And the volume image was
sliced in the Z-axis to give 94 slices.

(2) Selecting and converting to gray image: By removing 10
slices (the first and last five slices in the image stack) which did
not include feature information, and converting the remaining slices
into gray images, sequentially numbered slices were obtained and
denoted as a; (i =0,1,2,...,83). A part of the sliced and grayed
image slices from the first subject numbered NC001 are shown in
Fig. 1.
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Fig. 1. Examples of sliced gray matter images (from (a) to (h) respectively
the 13th, 20th, 34th, 48th, 62nd, 69th, 76th, 83rd slices)

(3) Weighting and averaging the gray image: Different weights
are given according to the information contained in each slice. Here,
the ordered slices are divided into three groups, and the weighted
average gray image (Imgl, Img2, and Img3) is calculated for each
group. The calculations are:
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The sMRI data from each subject gives three image sets (Img1, Img?2,
and Img3) after preprocessing to give 600 preprocessed images from
200 subjects, which provides a data set suited for subsequent feature
extraction.

2.2. Feature extraction

Image feature extraction is a fundamental and critical step in med-
ical image processing. The purpose is to obtain the characteristics
or attributes of samples as numerical values, symbols, and feature
vectors. The resulting feature extraction directly affects classification
accuracy. Because texture information in the image is not sensitive to
noise, light, and color, it is this feature that is chosen for the analysis.

2.2.1. Texture features based on the gray-level co-occurrence matrix

The gray-level co-occurrence matrix (GLCM) is a statistical matrix
that describes the grayscale of adjacent pixels (or within a certain
distance) [17, 18]. Assume the gray level of a digital image is N,
p (g, w) represents the possibility (or frequency) of the appearance
of grayscale w under the condition that the starting grayscale is g,
where it is assumed that w is along the direction 6 of ¢ and the
space distance is d. 0 denotes the angle between the position whose
grayscale is ¢ and the position whose grayscale is w. A GLCM
contains statistical information which reflects the gray direction,
interval, and amplitude variation of an image. It is calculated as:
(1) Mean:

Mean = X = plg,w) xq, )
0

M=
i

q

The mean reflects the regularity of texture. The smaller the mean,
the more disorganized the texture.
(2) Variance:

N N
Variance = Z Z p(g,w) x (Ci—f)27 ®
g=0w=0

Variance measures deviation of the pixel value from the mean. The
larger the variance, the greater the change of gray scale.
(3) Entropy:

N N
Entropy = — Z Z p(g,w) xInp(q,w), (6)
g=0w=0

Entropy gives a measure of the information contained in an image.
The greater the entropy, the more complex the texture.
(4) Contrast:

N N
Contrast = Z Z p(g,w) x ((I*W)zy O]
g=0w=0

Contrast reflects the total amount of local gray scale changes in an
image. The greater the contrast of an image, the clearer the visual
effect of an image.

(5) Correlation:

N N 2
—M X —M X
Correlation = Z Z (4 ean) ‘(/W : ean) x p(q,w)
ariance

, (8

q=0w=0
Correlation is a measure of the linear relationship of the gray scale.
The longer the extension of the gray value in a certain direction, the
greater the correlation.
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(6) Homogeneity: where f (x) is the fitting function of y.
NN (3) Initialize model variables:
. 1
Homogeneity = Zb Z‘Op(q,w X m, 9 N
o fo(x) = argmin } " L (yi,c) (13)
i=1

Homogeneity is a measure the uniformity of the local gray level of
an image. The more homogeneous the local gray scale, the greater
the homogeneity value.

(7) Energy:

Energy = Z Zp q,w)”, (10)

g=0w=

Energy is the measurement of uniformity of gray distribution in the
image.

A texture vector representing an image can be obtained by use
of the foregoing seven textural features.

2.2.2. Normalization

Feature vectors must be normalized so that no particular feature

dominates all the others. Feature vectors are normalized to zero

mean and unit variance. The normalization is performed as:
r_Xi—H

X; = o, )

an

where U and oy are respectively the mean and standard deviation of
all the features x;.

In summary, for each of the three weighted and averaged gray
images (Imgl, Img2, Img3), the above seven statistics are calculated
and normalized. Thus, each subject can be represented by a vector
containing 21 features.

2.3. Classifier

Machine learning can often train a model by use of the given data and
can perform tasks such as classification, recognition, and segmenta-
tion. Machine learning algorithms can extract knowledge from data
and make predictions using data. Here, k-nearest neighbor (KNN),
SVM, logistic regression (LR), gradient boosting (GB), and an im-
proved eXtreme gradient boosting (XGBoost) classifier are adopted
as the methods by which to compare for medical image processing
techniques.

The boosting method [19, 20], which combines the additive
model (linear combination of basis functions) and the forward step-
wise algorithm, is a widely used and effective statistical method for
optimizing learning. A boosting method based on a decision tree is
called a boosting tree. The GB model is established in the gradient
descent direction of loss function which is derived from the above
model of boosting method.

A GB classifier is used to train and classify the feature vector of
the sample, and the complete set of algorithmic steps is:

(1) Determine the training and testing sets. 80% of the 200 sam-
ples were used as training sets, i.e. T = (x1,y1),(x2,¥2),--- (x5, yn),
xi € X CR")y; € {0,+1}. The remaining samples were used as a
testing set. Let x; denote the feature vector of each sample, y; denotes
its class label. When the sample is either SCZ or NC, y; is 0 or +1,
respectively.

(2) Confirm the loss function:

L(y.f(x) = —f @), (12)

where c is the constant that minimizes the loss function and repre-
sents a tree with only one root node.

(4) For each model do the following:

(a) For the ith (i = 1,2,...,N) sample, calculate the negative
gradient of the loss function in the current model:

14
a7 (x) ’ (9

} Jx)=fin-1(x)

where m is the model number, m = 1,2,...,M. M denotes the maxi-
mum value of m. J is the maximum value of j, and j is the number
of leaf node area.

(b) Fit a regression tree for r,,; and obtain the leaf node area Ry,
(j=1,2,...,J) of the mth tree.

(c) The number of leaf nodes j (j =1,2,..
from:

.,J) is calculated

ij:argrngn Z L(yi7fm71()€i)+c)-, (15)

XiERpj

In this step, linear search is used to estimate the value of the leaf
node region and to minimize the loss function.
(d) Update regression tree:

fm( ) Sm— 1 +Zcm1 xeRm;) (16)
j=1
where if x € Rypj, [ = 1,0r I =0.
(5) Obtain the final regression tree model:
fx) ZZ%X“W a7

m=1 j=

The XGBoost classifier is based on the GB model. The main im-
provement is that the loss function is constructed as a Taylor ex-
pansion and a regular term is added (L1-norm or L2-norm) in the
objective function:

Obj' = ZL visi

i=1

Dy () +Q(f) +a (18)

where ): L(yi,5:" "V + f, (x;)) denotes the loss function, Q (f;) is

the regularlzatlon term, and a is a constant.

The complexity of the XGBoost model is controllable and over-
fitting can effectively be avoided by addition of the regular term.
Additionally, this model also has the advantage of parallel processing
and fast and high flexibility. Therefore, it is highly suited to MRI
data.

2.4. Algorithm flow of the proposed method

As described above, the process of classifying SCZ MRI images is
given in Table 1.
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Table 1. Algorithm for the proposed method

1) Input the sSMRI image;

2) Use formula (1) — (3) to preprocess the image, and to obtain the Imgl,
Img2, Img3 of each subject;

3) For the image obtained in step 2), use formula (4) — (11) to extract
texture features 7', T = (X11,X12, s X1n,Y1)s (X21,X225 -y X20,¥2)5 -+
(XN1,XN25- -, XNn, YN ), Xni € X C R, y; € {0,41};

4) Randomly divide the feature vectors into training and test sets, and put
into KNN, SVM, LR, GB, XGBoost classifier for testing;

5) Tune parameters, and obtain the optimizing classification results.

Table 2. Description of the four classification results

Actual Group Predicted Group
Normal Abnormal
Normal TP FP
Abnormal FN TN

2.5. Evaluation Criteria

For binary classification, a sample is divided into positive or negative
classes. Specifically, four cases will occur and are given in Table 2:

True positive (TP) denotes the classification result is positive
in the case of clinical normality. False negative (FN) denotes the
classification result is negative in the case of clinical normality. False
positive (FP) denotes the classification result is positive in the case
of clinical abnormality, and true negative (TN) denotes that the
classification result is negative in the case of clinical abnormality.

The true positive rate (TPR) indicates the proportion of positive
samples predicted by the classifier to all positive samples, and can
be described by:

TP
TPR = ———— x 100%. 19
(TP+EN) 7 19
Similarly, the false positive rate (FPR) is calculated from:
FPR= x 100%. (20)

(FP+TN)

The FPR represents the proportion of negative samples that the
classifier mistakes for positive classes. The ROC is obtained by
plotting FPR (X-axis) against TPR (Y-axis). Accuracy (ACC) and
area under ROC (AUC) are usually used to measure the performance
of the classifiers [10], where ACC is defined as:

(TP+TN)

ACC =
(TP+TN+FP+FN)

x 100%. (21)

3. Experimental Results and Analysis

To verify the effectiveness and robustness of the proposed method,
comparative evaluations are performed on different state-of-the-art
classifiers such as KNN, SVM, LR, GB, and XGBoost. Evaluations
were performed on a PC with an Intel Core i5, CPU@2.40 Ghz,
speed 800 MHz, and 32 Gb RAM. The compiling environments were
Matlab 2013a and Python 2.7. The detailed procedure is given in

Fig. 2.
3.1. Database

MRI data was collected by the Biomedical Image Computing and
Analytics Center, Department of Radiology, and Department of Psy-

Analyze the sSMRI
database

Image
preprocessing

Select and convert
J to gray image

Feature extraction

and normalization

Weighted ]
and average

Divide the training
set and test set

Classification
result

Fig. 2. Procedural flow chart of the evaluation method

chiatry, University of Pennsylvania (USA). 132 NC and 137 SCZ
subjects were recruited. All subjects met DSM-IV criteria and were
diagnosed as schizophrenic by psychiatrists. All SsMRI image scans
were acquired using a GE 3-T Signa scanner (GE Medical Systems,
Milwaukee WI, USA) with the following protocol: slice thickness
=1 mm, TE = 3.2 ms, TR = 8.2 ms, flip angle = 12°, acquisition
matrix = 256 x 256, FOV = 25.6 cm. All subjects remained quiet,
without moving, eyes closed, no sleeping, and minimal cognitive
activity during fMRI scanning. Subjects had no history of other
neurological diseases or serious drug diseases. Written informed
consent was obtained from all subjects before fMRI scanning. To
obtain a balanced number of controls and subjects, and also simplify
the study, 100 NC and 100 SCZ were randomly chosen.

The acquired MRI images were preprocessed using the statis-
tical parametric mapping software package SPM (Wellcome Trust
Centre for Neuroimaging, Institute of Neurology, London, UK,
http://www.fil.ion.ucl.ac.uk/spm) which included the following steps:
(1) skull stripping, (2) bias correction, (3) tissue segmentation into
gray matter, white matter, cerebrospinal fluid, and lateral ventri-
cles, (4) spatial registration to a Montreal Neurological Institute
(MN]) template, (5) generation of the regional analysis of volumes
examined in normalized space (RAVENS) [21, 22] maps of gray
matter, white matter, and cerebrospinal fluid by the publicly avail-
able DRAMMS deformable registration package [23], and (6) the
RAVENS maps were then smoothed using a six millimeter full width
at half maximum Gaussian filter.

3.2. Statistical Analysis

The statistical information of 200 age and gender matched subjects is
analyzed. No statistically significant is assumed for p < 0.05. Please
see analytical results in Table 3.

3.3. Experimental Settings and Results

Two different training and testing sets were analyzed in this study.
80% of the 200 samples are used as training sets, and the remaining
samples are used as a test set. The extracted texture features are
put into each classifier in which XGBoost, GB, SVM algorithms
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Table 3. Characteristics of study participants

Variable  Sample size Gender Age (years)
(male/female) Mean/SD (range)
SCzZ 100 62/38 35.50/37.08(13-60)
NC 100 49/51 34.73/34.86(17-65)
Value — 0.064¢ 0.53°

SD = standard deviation “Pearson Chi-square test >Two-sample t-test

are related to more parameters. Parameter choice directly affected
classification accuracy. Therefore, parameter tuning is particularly
important. Grid search and cross validation methods were used by
the classifiers for parameter tuning in which parameter K = 5 in KNN.
A radial basis function (RBF) is selected as the kernel function in
SVM. In XGBoost, the overall parameters were divided into three
categories by the authors: general parameters that guide the overall
functioning, booster parameters that guide the individual booster
(tree/regression) at each step, and learning task parameters that guide
the optimization performed. Parameters of GB were divided into two
categories: tree-specific parameters that affect each individual tree in
the model and boosting parameters that affect the boosting operation
in the model. The main parameters of these classifiers are given in
Table 4.

Table 4. Classifier parameters

Parameters

C: {1073,1072,107',1,10,100,1000}; gamma:
{0.001, 0.0001};
Tree min_samples_split:  9; min_samples_leaf: 1;
max_depth: 9; max_features: 8;
learning_rate: 0.01; n_estimators: 90; subsample:
0.8;
col_sample_bytree: 0.8; min_child-weight: 1;
max_depth: 5; learning_rate: 0.01;
sub_sample: 0.9; gamma: 0;
General  booster: gbtree;
Learning Task objective: binary-logistic; seed: 1.

Classifiers

SVM
GB
Boosting

Booster
XGBoost

The best classification results obtained by each classifier are
given in Table 5. ROC curves of the GB and XGBoost classifier are
given in Fig. 3.

Table 5. Experimental result comparison

Classifier ACC(%) AUC(%)
KNN 60 60.10
RBF-SVM 54 52.08
LR 52 52.24
GB 64 65.20
XGBoost 72 75.80

It can be seen from Table 4 that on the same data set the XG-
Boost classifier gives the highest accuracy (up to 72%) and the LR
classifier returns the lowest accuracy (52%). GB and KNN classifiers
are inferior to XGBoost and classification accuracy is 64% and 60%,
respectively. The RBF-SVM classifier is a poor classifier for this
SCZ data set. It indicates that XGBoost, which has a better general-
ization ability and avoids over-fitting effectively, is better than the

Receiver Operating Characteristic

True Positive Rate

T — AUC =0.652

0.0 0.2 0.4 0.6 0.3 1.0
False Positive Rate

@

Receiver Operating Characteristic

True Positive Rate

e — AUC=0.758

0.0 0.2 04 0.6 0.8 1.0
False Positive Rate

(b)
Fig. 3. ROC curve for (a) GB algorithm, and (b) XGBoost algorithm

other classifiers. XGBoost also has an advantage when dealing with
irregular data.

It can be seen from Fig. 3 that, compared with the GB algorithm,
a higher AUC value is obtained by using the XGBoost classifier,
which shows the XGBoost classifier exhibits faster and more efficient
processing. Additionally, if better experimental results are required,
a more detailed analysis of the features and parameter tuning of the
models must be undertaken.

4. Conclusion

In this paper, to better discriminate SCZ subjects from HCs, image
processing and machine learning based on sSMRI are employed to
assist diagnosis and analysis of SCZ. Firstly, the gray matter image
is preprocessed by being sliced, weighted, and averaged. GLCM
texture features are then extracted and normalized. Finally, different
machine learning methods are used to train and establish a binary
classification model. The different results show that the XGBoost
approach has superior performance when compared to KNN, SVM,
LR, and GB classifiers. Further work should include two aspects.
One is extracting more significant features from the data. The other,
the building of more effective models, which may further improve
role of computer-aided diagnosis of SCZ.
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