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In the electroencephalogram recorded data are often con-
founded with artifacts, especially in the case of eye blinks.
Different methods for artifact detection and removal are
discussed in the literature, including automatic detection
and removal. Here, an automatic method of eye blink
detection and correction is proposed where sparse cod-
ing is used for an electroencephalogram dataset. In this
method, a hybrid dictionary based on a ridgelet transfor-
mation is used to capture prominent features by analyzing
independent components extracted from a different num-
ber of electroencephalogram channels. In this study, the
proposed method has been tested and validated with five
different datasets for artifact detection and correction. Re-
sults show that the proposed technique is promising as it
successfully extracted the exact locations of eye blinking
artifacts. The accuracy of the method (automatic detec-
tion) is 89.6% which represents a better estimate than that
obtained by an extreme machine learning classifier.
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1. Introduction
The electroencephalogram (EEG) is a standardmodality for the

study of neural activity by direct measurement from the scalp. In
1929, Hans Berger used EEG in humans for the first time. EEG
offers portability, low cost, and ease of availability, and relatively
high temporal resolution. For these reasons, EEG is popular in
different brain applications such as the brain-computer interface
(BCI) (Nezamfar et al., 2011; Robinson et al., 2011), decoding
(Crouzet et al., 2015; Zafar et al., 2017) and seizure detection (Ce-
cotti and Graser, 2011; Zhou, 2014). However, EEG data is con-
founded with various artifacts that may lead to serious misinter-
pretations, particularly in clinical studies. An artifact is typically
unwanted noisy data that must be removed before further process-
ing.

In most cases this noise has a large amplitude that affects data
such that no meaningful statistical analysis can occur before arti-

fact removal. Hence, artifact elimination or correction is an essen-
tial pre-processing step for EEG analysis. For example, eye blink
activity is a common type of artifact that involves high voltage
levels. These typical voltage changes propagate from the eyeball
through the head. Another type of artifact that can obscure an EEG
signal is due to muscular or myogenic activity produced by con-
traction or expansion of head muscles. During its recording and
transmission, there are many points where EEG data can be con-
taminated. These "artifacts" are mostly biologically generated and
produced outside of the brain. Artifacts in EEG recordings gener-
ally result from eye blinks, eye movements, breathing, heartbeat,
muscular activity, and line noise.

The eye blink artifact is very common in EEG data records and
has a higher amplitude when compared to the usual signal associ-
ated with a given task. For example, EEG signals typically range
between 0.5-30 Hz, whereas an eye blink artifact can be as large as
200 Hz. Eye artifacts are normally measured via electrooculogram
(EOG), where pairs of electrodes are placed above and around the
eyes. It is not easy to evaluate EOG because the measurements are
contaminated with the EEG signals which are of interest. Thus,
it is not possible to subtract the EOG signal even when an ex-
act model of it exists (Jung et al., 2000). Eye movement artifacts
are generated by reorientation of the retinocorneal dipole (Overton
and Shagass, 1969). This artifact has an even stronger effect on the
EEG than the eye blink artifact.

EEG data can also be corrupted by strong signals from the
power supply. This artifact is usually filtered by using a notch
filter. Muscle artifacts are typically produced by activity face and
neck muscles. Signals related to this artifact exhibit a wide range
of frequencies and can be distributed between different electrodes.
Heartbeat or pulse artifacts originate from electrodes placed near
or on a blood vessel where the change in voltage occurs during
the recording because of contraction and expansion of the vessel.
This type of artifact appears as a smooth wave or sharp spike and
is determined by the raw EEG dataset (Cardoso, 1999).

Several methods have been proposed to correct the distortion
produced by artifacts; however, each method has its advantages
and disadvantages. New and improved techniques can decrease

http://doi.org/10.31083/j.jin.2019.03.164


artifacts, particularly those that are externally generated. Com-
mon techniques used to remove artifacts in EEG data are prin-
cipal component analysis (PCA) (Subasi and Gursoy, 2010), in-
dependent component analysis (ICA) (Subasi and Gursoy, 2010)
and canonical correlation analysis (Safieddine et al., 2012). Delay
methods can also be used to address non-instantaneous mixing of
brain and artifact signal sources (Dhiman et al., 2010). Alterna-
tively, there are deterministic approaches which include wavelet
transform (WT) and empirical mode decomposition (Safieddine
et al., 2012).

ICA is particularly useful for removing eye blink and muscle
artifacts from EEG records (see Comon, 1994; Jutten and Herault,
1991). Eye blinks and movement can be removed by subtracting
their respective independent components (ICs). Artifact detection
and removal are two of the standard applications of ICA for EEG
(Jung et al., 1998; Vigário, 1997). In this procedure, components
responsible for the artifacts are set to zero while the remaining ICs
are projected back onto the scalp. ICA is so prevalent because it
is available in freely available EEGLAB software (Delorme and
Makeig, 2004). ICA-based clustering algorithms can also be used
to remove artifacts from raw EEG data (Zou et al., 2012). ICA
and PCA approaches have also been used to remove artifacts from
magnetoencephalography data (Barbati et al., 2004; Jun and Pearl-
mutter, 2005). PCA has been proposed by Berg and Scherg (1991)
to remove eye blink artifacts, but is unable to completely separate
the artifacts from brain signals, particularly when amplitude dif-
ferences are small (Lagerlund et al., 1997).

To increase classification accuracy using content recognition,
sparse coding (SC) was applied to local image feature represen-
tations. SC represents data having a strong activation of a small
set of neurons. The basic function of SC is normally learned from
natural images. In SC, for a single stimulus there are different
subsets of available combinations, and there is less chance of in-
terference when it is simultaneously presented because the repre-
sentation grows exponentially with the signal to noise ratio. SC
modeling has been successfully used in image and video-based
classification problems but has never been used for artifact detec-
tion. The method can solve classical problems based on image
noise reduction, super-resolution processing, and restoration. It
also performs well in several pattern recognition problems based
on signal and image processing applications. Image categorization
has also been achieved by using sparse coding for image patches
(Zhang et al., 2015), so it provides an effective feature selection
tool. Sparse coding offers the following practical advantages: (a)
large storage capacity for coded signals (b) associative memory
capacity; means capacity of associated similar patterns (c) ease
of calculation, (d) easily structure natural signals, (e) minimize
energy utilization as a general economic principle incorporated by
biologic evolution, and (f) meets requirements to conclude electro-
physiological experiments. Electrophysiological experiments are
those experiments which are designed to extract the relevant infor-
mation from the brain. Sparse coding helps in electrophysiological
experiments by proving the required results. As a specific image
processing application, SC, therefore, offers many benefits.

More recently, the use of hybrid methods has most rec-
ommended, especially concerning blind source separation-based
methods such as ICA (Jung et al., 2000; Safieddine et al., 2012).

ICA and PCA are considered the most robust methods for decom-
position of data into the underlying and the noisy components. The
development of automatic criteria for identification of components
representing artifacts has increased their utility for real-time au-
tomatic applications. In this context, the development of hybrid
methods involving adaptive noise cancellation (adaptive filtering
methods) may provide better solutions.

Here, the primary objective is to automatically detect and re-
move artifacts from noisy raw EEG data and by providing a robust
solution with the help of classification algorithms such as a sup-
port vector machine, random forest or extreme machine learning
techniques for depression assessment. Currently, the hospital col-
lected healthy and depressed persons dataset is being employed for
automatic artifact removal and classification of healthy and major
depressive disorder (MDD) patients.

In this study, a hybrid method is proposed for the automatic de-
tection and removal of only the eye blink artifact. To the author’s
knowledge, this is the first reported use of the proposed method
to automatically detect this EEG artifact. The proposed approach
is based on computing the similarity between sparse coefficients
vectors using a Euclidian distance technique and saved the index
or location of minimum value between sparse coefficients for the
detection of the artifact. The proposed algorithm produced a better
detection rate in terms of classification performance than currently
existing artifact removal techniques. Based on the given dataset,
various combinations have been used to test the proposed artifact
detection method and validate the results by use of a classification
technique for depression assessment. The various combinations
are N1MDD1, N2MDD2, N3MDD3 and are discussed in result
section. Eyeblink is one of the important artifacts that affect the
data and detection of eye blink artifacts is not easy. Artifact re-
moval is generally the most important step in the preprocessing of
an EEG dataset. In this particular case, a more robust and accu-
rate solution for the assessment of depression using healthy and
major depressive disorder (MDD) patients was required. The pro-
posed method automatically removes artifacts without any manual
human intervention. It also employs classification techniques to
validate the results for healthy and MDD patients. The techniques
used for validation are support vector machine (SVM), random for-
est classifier (RF) and extreme learning machine (ELM) which are
comprehensively discussed in result section.

2. Methodology
2.1 Dataset

This study involved two different subject groups (± standard
deviation): 1) Thirty-two subjects with major depressive disor-
der (MDD mean age, 40 = ± 12 years) and 2) Thirty-two age-
matched healthy control subjects (mean age 38 ± 15 years). Sub-
jects were recruited from a clinic at the Hospital Universiti Sains
Malaysia (HUSM), Malaysia. The MDD subjects were diagnosed
using the Diagnostic and Statistical Manual (DSM-IV) (Barbati et
al., 2004) which outlines the symptoms of depression. The diag-
nosis was made by an experienced psychiatrist from the HUSM
clinic. Moreover, MDD subjects with psychotic symptoms, preg-
nant patients, alcoholics, smokers, and people with epilepsy were
excluded. Subjects were asked to abstain from drugs and coffee
for the duration of data recording. MDD severity was assessed
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Figure 1. Sparse coding based method proposed for automatic artifact detection and classification of healthy and MDD EEG datasets. ICA is
applied to input EEG data which is sent along with the reference image for artifact detection. The proposed technique is applied which detects
the artifacts, and finally classification is done to check the validity of the proposed method.

based on two different clinical questionnaires: Beck’s Depression
Inventory-II (Davis et al., 1994; Mallat and Zhang, 1993) and the
hospital anxiety and depression scale (Chen et al., 2001). Healthy
controls were screened for physical and mental illness and were
assessed to be disease-free.

The experimental design was approved by the HUSM ethics
committee. Subjects signed consent forms and were fully aware
of the experimental design. During recordings, EEG data acqui-
sition involved vigilance-controlled monitoring: i.e., five minutes
of both eyes closed and eyes open EEG data recording using a 19-
channel EEG cap with linked-ear reference. The electrode place-
ments followed the international 10–20 electrode placement stan-
dard, and the cap covered the scalp including the temporal, frontal,
occipital, parietal, and central regions. The cap was attached to an
amplifier (Brain Master Systems). A 50 Hz notch filter was used
with a 0.5–70 Hz filter before the preprocessing. A sampling rate
of 256 Hz was used to discretize data which were re-referenced
to the infinity reference before analysis (Melgani and Bruzzone,
2004).

Thirty-two (32) subjects have participated in this study includ-
ing twenty (20) subjects were male, and twelve (12) were female
in the MDD group, and twenty-five (25) subjects were male, and
seven (7) were female in healthy control group.

2.2 Method
The proposed eye-blink detection method involved a combi-

nation of ICA and sparse representation based on the proposed
dictionaries. EEG data were subjected to the ICA using different
ICA components, and the results were validated using topo map
images. A reference topographic image eye-of blink activity was
referred to as a reference input image. This image represented a
standard eye-blink artifact in EEG data. Next, the proposed sparse
coding technique was implemented by comparing a reference in-
put image and the vector similarity between different numbers of
components with the reference image. The proposed dictionar-
ies stored the distinct features taken from the reference input data
feature vector to compare with the ICA component feature vector.
The comparison between two feature vectors was based on a com-
puted similarity index value obtained from the reference input and

target images. A lower coefficient value indicates greater similar-
ity between two feature vectors and the minimum similarity index
value could be used for identification of the location of an artifact.

Following this comparison using the proposed sparse represen-
tation method, an index value referred to as the artifact location
was stored. After artifact detection and removal, different machine
learning algorithms are used to classify the healthy andMDDEEG
datasets for assessment of the severity of depression.

Three different datasets were employed to validate the proposed
method. The steps employed to detect and classify an artifact is
given in Fig. 1.

In the proposed method, the sparse coding is first time imple-
mented for this application. That is why the detail of the procedure
is separately mentioned in theAppendix. The detail of sparse rep-
resentation, sparse vector similarity measure, proposed hybrid dic-
tionary, performance metrics and classification algorithms which
includes support vector machine, random forest algorithm, and ex-
treme learning machine is explained at the end of the paper in the
Appendix.

3. Results
In this study, different EEG datasets were used to remove arti-

facts based on a sparse representation technique that employed 20
ICA components for their measurement and detection. Sparse rep-
resentation is a powerful technique for extracting prominent fea-
tures of a pattern from the ICA component. It uses a minimum dis-
tance technique to measure the similarity between reference data
and the artefactual component. The results of 20 ICA components
are given in Fig. 2. In this Fig., the detection of the artifact compo-
nent is indicated with a circle. Results were similar to the artifacts
detected in other datasets. Three datasets were based on healthy
subjects, and three datasets were based on MDD patients. The lo-
cation of the ICA components detected for the healthy and MDD
datasets are given in Figs. 2-4 and 5-7, respectively.

The artifact detected from the first channel in the healthy state
(N1) is shown in Fig. 2. The artifact detected at position 9 (channel
9) in the healthy state (N2) is shown in Fig. 3. In a healthy state
(N3), the position of artifacts at 3 locations is shown in Fig. 4.
Artifact location detection was also achieved using the proposed
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Figure 2. Visualization validation of artifact detection by the pro-
posed model for healthy patient subject 1 (N1). The artifact detection
is done on the first channel. The above result uses a minimum dis-
tance technique to measure the similarity between reference data and
the artefactual component. The detection of the artifact component
is indicated with a circle.

Figure 3. Visualization validation of artifact detection by the pro-
posed model for healthy subject 2 (N2). The artifact detection is
done on the 9th channel. The above result uses a minimum distance
technique to measure the similarity between reference data and the
artefactual component. The detection of the artifact component is
indicated with a circle.

technique for the MDD dataset. Here, an artifact occurs at loca-
tion 17 as shown in Fig. 5. The location of the artifact detected at
location 4 in the MDD2 dataset is shown in Fig. 6. The artifact
detected at location 4 in the MDD3 dataset is shown in Fig. 7. The
topographic map visualizes activation in healthy and MDD sub-
jects. The more activated colormap shows the artifact existing at
a particular location in each MDD case. The heat map plots of
some patients determined by the proposed model were validated
by manual artifact detection. For most MDD cases this detection
matched automatic detection as shown in Figs. 5, 6, 7.

Three classifiers were used to evaluate the detection rate of the
proposed algorithm based on the different number of dictionaries
used. The most well-known classifiers were SVM, RF, and ELM.
The details of each classifier were discussed above. The different
performance metrics were evaluated based on ground truth, and
artifact location estimates using 50 iterations were based on dif-
ferent combinations of datasets. The dataset of six patients (three
healthy and threeMDD) was used for the validation/testing of arti-
fact location detection which classified these artifacts based on the

Figure 4. Visualization validation of artifact detection by the pro-
posed model for healthy subject 3 (N3). The artifact detection is done
at 3rd channel. The above result uses a minimum distance technique
to measure the similarity between reference data and the artefactual
component. The detection of the artifact component is indicated with
a circle.

Figure 5. Visualization validation of artifact detection by the pro-
posed model for MDD Subject 1. The artifact detection is done at
17th channel. The above result uses a minimum distance technique
to measure the similarity between reference data and the artefactual
component. The detection of the artifact component is indicated with
a circle.

proposed classifiers. These combinations were chosen using one
healthy subject, and one MDD1 patient dataset in a combination
referred to as "N1MDD1". Similarly, a combination can be made
using other healthy and MDD datasets, referred to as "N2MDD2"
and "N3MDD3". Classifiers were applied in these combinations
to measure performance metrics of accuracy, precision, and re-
call using various dictionaries. The adaptive dictionary (KSVD)
adaptive dictionary-based performance metrics for SVM, RF and
ELM are shown in Fig. 8 (A, B, C). Performance metrics based
on the discrete-time Tchebichef transform (DTT) dictionary are
shown in Fig. 8 (D, E, F) using the SVM, RF and ELM classifica-
tion algorithms. Similarly, for the DRT dictionary, performance
metrics are given in Fig. 8 (G, H, I). These metrics were computed
by taking the average value between healthy and MDD subjects.
The highest accuracy produced by the proposed dictionary was
for the N3MDD3 combination. The comparison between dictio-
naries is given in Fig. 9. The discrete ridgelet transform (DRT)
was more accurate when employing L3MDD3 data when com-
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Figure 6. Visualization validation of artifact detection by the pro-
posed model for MDD Subject 2. The artifact detection is done at
4th channel. The above result uses a minimum distance technique
to measure the similarity between reference data and the artefactual
component. The detection of the artifact component is indicated with
a circle.

Figure 7. Visualization validation of artifact detection by the pro-
posed model for MDD Subject 3. The above result uses a minimum
distance technique to measure the similarity between reference data
and the artefactual component. The artifact detection is done at 4th

channel. The detection of the artifact component is indicated with a
circle.

pared with other dictionaries and captured more prominent fea-
tures during matching of reference and target data. The DTT dic-
tionary also detected artifacts and comparatively produced higher
accuracy when compared with the KSVD dictionary as shown in
Fig. 9. For validation, a combination of healthy andMDD subjects
was chosen for classification of a two-class sample. The healthy
samples from first-class are denoted as one and the samples from
MDD. The other class is denoted as zero. For validation/testing,
we have passed the sample from healthy and MDD patients to the
trained classifiers and compute the average accuracy, precision,
and recall between two samples (healthy and MDD). These per-
formance metrics (accuracy, precision, and recall) are taken as av-
erage between healthy and MDD patients’ data samples. The best
accuracy, precision, recall score based on various proposed dictio-
naries are shown in Fig. 9.

In machine learning and statistics, the ROC (receiver operating
characteristic) curve has been used to check the performance of bi-
nary or multiclass classification problems graphically by provid-
ing the various discrimination threshold. It is used to test the eval-
uation based on various curves generated based on distinct num-

ber of threshold. The ROC used the true positive rate and false-
positive rate for plotting different curves based on various cut-off
points' parameters. The sensitivity used in machine learning to
check the classifier capability and find detection rate and it is also
called the true-positive rate. The probability of false alarm can be
computed based on the false-positive rate, and it is also known as
specificity of the system. In ROC curve, each point shows the spe-
cific sensitivity/specificity pair value and these values show the
discrimination between classes based on parameter optimization
for every decision threshold. The area under the ROC determines
the distinction between groups of classes for a parameter. The
classification threshold produced various curves for the sensitivi-
ties and specificities, and these values cannot maximize together
at a certain point in the ROC plane for every parameter.

The ROC curves determined the number of true positives and
false positives based on precision and recall values. The num-
ber of 50 iterations were used to determine the ROC using pre-
cision and recall metrics and is shown in Fig. 10. Each ROC
shows that our proposed method based on the N3MMD3 dataset
produced better results compared to other datasets by optimizing
the single parameter using KSVD dictionary as shown in Fig. 10
(A, B, C). Similar each ROC produced based on the DTT dictio-
nary provided comparatively better performance using N2MMD3
dataset. Moreover, each ROC shows that the SVM classifier pro-
duced better performance as compared to RF and ELM. It is con-
cluded that the ROC performance is better with the adaptive dic-
tionary (KSVD) and produced better performance by optimizing
the single-precision parameters. The KSVD dictionary-based pro-
posed model produced truer positive using healthy3 and MDD3
dataset and is shown in Fig. 10 (A). There is a slight difference
between true positive and false-positive rates for the three chosen
patient datasets. However, these ROCs curves indicate that the
proposed model achieves optimal performance for the healthy and
MDD datasets. This proposed model showed consistent results
for all healthy and MDD cases, which indicates that the proposed
model could be used for real-time artifact detection and further
assessment and classification of depression.

3.1 Comparison with existing automatic artifact removal
methods

Most EEG applications process information automatically in
real-time. However, manual identification of the artifact com-
ponent is time-consuming and may not provide an efficient so-
lution for multi-channel EEG data sequences. However, a pri-
ori information based on statistical characteristics is required for
artifact detection by many signal processing techniques. The
methods based on ICA/PCA techniques somehow provided semi-
automated artifactual identification system that required some
training parameters, however few automated artifact detection
techniques require training samples for supervised classification.
That is why in this study, few techniques based on ICA/PCA have
been compared with our proposed method in Table 1. Automatic
detection methods based on ICA require a further stage to make
the system fully automated. The computational complexity of the
proposedmethod is only slightly greater, based on real-time imple-
mentation takes five minutes compared with an ICA based method
which takes three minutes for the detection of an equivalent arti-
fact.
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Figure 8. The first row represents accuracy, precision, and recall using KSVD dictionary (A, B, C) based on SVM, RF, and ELM. The second row
represents accuracy, precision, and recall using DTT dictionary (D, E, F) based on SVM, RF, and ELM. The third row represents the accuracy,
precision, and recall using DRT dictionary based on SVM, RF, and ELM (G, H, I).

Figure 9. The comparison of the accuracy between different dictio-
naries based on healthy and MDD dataset using ELM classifier. These
performance metrics (accuracy, precision, and recall) are taken as
average between healthy and MDD patients’ data samples. The best
accuracy, precision, recall score based on various proposed dictio-
naries is shown.

4. Discussion
Eyeblink artifacts are the main source of contamination in EEG

signals, so they should be removed before further analysis. The
purpose of the current study was to design a framework that could
automatically detect and correct eye blink artifacts by replacing
them with more accurate values. Different methods of detection
such as wavelet analysis (Pesin, 2007), ICA (Flexer et al., 2005),
semi-automatic (Flexer et al., 2005) and fully automatic methods
(O’Regan et al., 2013; Zou et al., 2012) have been described in
the literature. However, in this study a sparse coding technique
was used for the first time for the automatic detection of eye blink
artifacts.

Sparse representation is a powerful technique used to automat-
ically extract prominent features in a compressed form based on
a proposed dictionary technique. These dictionaries capture fea-
tures using basis functions and provides feasible and stable fea-
tures. The dictionaries compress these features in feature space
by extracting unique information from the data. Sparse spaces are
linearly independent and provided discriminative information for
purposes of classification and detection. The sparse technique de-
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Figure 10. ROC curves for KSVD using SVM, RF, and ELM machine learning algorithms (A, B, C). ROC curves for DTT using SVM, RF and
ELM machine learning algorithms (D, E, F). ROC curves for DRT using SVM, RF and ELM machine learning algorithms (G, H, I). The number of
50 iterations were used to determine the ROC using precision and recall metrics. Each ROC shows that N3MMD3 dataset produced better
results compared to others.

composes a signal into linear combinations of dictionary atoms
and stores the discriminative values of that signal in sparse space.
This is why this technique captured only the unique and prominent
features of the input signal in sparse feature space. Such features
are uniquely represented in sparse space, are linearly independent
of other class data and are also more stable and effective for auto-
matic artifact detection and classification.

To validate the performance of the proposed method, different
existing techniques are applied to the test datasets. The compar-
ison between existing techniques and the proposed method was
assessed in terms of accuracy, specificity, and sensitivity. Results
are summarized in Table 1. This table shows that the proposed al-
gorithm was more accurate in the automatic detection of artifacts.
The use of the proposed DRT dictionary and the associated an-
alytic method provided comparatively better accuracy, precision
and recall of values as compared with existing automatic artifact
detection methods. When employed with a pre-existing KSVD
based dictionary the approach described here produced a better

detection rate in terms of accuracy, precision and recall as com-
pared to existing methods; however, detection results were com-
paratively less accurate when compared with the proposed method
when it employed the DRT dictionary.

In the study, 20 ICA was used during analysis to measure,
whereas, accuracy was assessed using three different classifiers,
i.e. SVM, RF, and ELM. Moreover, three different dictionaries
were used to capture themost prominent features during thematch-
ing with reference data and DTTwas found to be better when com-
pared with DRT and KSVD.

To validate the proposed method, it was compared with differ-
ent existing methods in terms of accuracy and features, and these
methods included wavelet analysis and semi- and fully automatic
approaches. For variability and reliability of the study, data of two
different states were used during the analysis, i.e. three healthy
and three MDD subjects. One of the advantages of the proposed
method over wavelet analysis and semi-automatic approaches is
that it detects artifacts automatically. In comparison to other au-
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Table 1. Comparison of automatic artifact detection methods (Proposed and extant methods)

Methods Accuracy (%) Precision (%) Recall (%)

Irene Winkler (Winkler et al., 2014) 81.9 79.45 80.93

K-means with Similarity (Qi et al., 2009) 86.56 85.95 85.77

Yuan Zou (Zou et al., 2016) 88.35 86.35 87.35

Auto-mutual information (Nicolaou and Nasuto, 2007) 84.9 84.78 85.68

Proposed Method with DRT 89.63 89.1 88.89

Proposed Method with KSVD 88.56 87.91 88.45

tomatic detection techniques, a fixed dictionary approach was em-
ployed. It was based on sparse representation and detected and
corrected eye blink artifacts automatically. The method produced
superior results in terms of accuracy, specificity, and sensitivity.
According to the author’s knowledge, this is the first report of this
type of application, and it produced better detection and correction
accuracy (> 89% ).

5. Conclusion
Here, sparse representation with fixed dictionaries was used to

detect and correct artifacts from an EEG dataset. The dataset was
composed of two distinct groups, i.e., healthy controls and MDD
subjects. Results showed that the proposed algorithm provided au-
tomatic and accurate detection of eye blink artifacts as compared
with existing techniques. The proposed technique involved captur-
ing prominent features of a data set based on pre-specified dictio-
naries and comparing the obtained patterns with reference images
to measure the similarities between the reference and ICA-based
components. This method demonstrated a robust response against
artifacts in which detection is easy, feasible, precise and automatic
compared with existing artifact removal methods, although due to
the dictionary record the computational time may be greater than
for existing techniques.
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Appendix
A.1 Sparse representation

A sparse coding or sparse representation is widely used in neu-
roscience, machine learning, and numerous other signal and im-
age processing applications (Zhang et al., 2015). The purpose of
sparse modeling is to find a method that represents signals as a
linear combination of a few typical patterns called "atoms", which
are extracted from a dictionary. For a given image or signal y ∈ Rn

and a dictionary matrixD∈ Rn×k that containsK atoms as column
vectors d j ∈ Rn, j = 1, . . . ,K, the sparsest vector is defined in such
a way that x ∈ Rn and that y ∼= Dx. The problem is solved by using

the optimization problem as shown in Eqn. 1:

min∥x∥0subject tomin∥y−Dx∥2 ≤∈ (1)

where ∈ is the reconstruction error of the signal y using the dictio-
nary D and the sparse code x . Alternatively, based on low sparse-
ness, this optimization problem has been solved by:

min∥y−Dx∥2subject tomin∥x∥0 ≤ ρ (2)

where ρ is a specified sparsity level. The vector x ∈ Rk com-
prises the representation coefficients of the signal y with respect
to the dictionary D. Compared with other methods, such as PCA,
sparse coding computes the vector with the smallest number of
nonzero coefficients. The sparse coefficients formulation usually
uses the l0-norm (pseudo-norm), which counts the nonzero entries
of a vector. This formulation is an NP-hard problem (Mallat and
Zhang, 1993), but can be solved using optimization greedy algo-
rithms. These algorithms are called matching pursuit (MP) (Mal-
lat and Zhang, 1993) or orthogonal matching pursuit (OMP) algo-
rithms (Davis et al., 1994). The basis pursuit (BP) is the second
class of algorithm based on relaxation where the l0-norm is re-
placed by a l1-norm. This converts the optimization problem into
a convex problem that can be solved efficiently. Such methods
are referred to as basis pursuit (BP) (Chen et al., 2001). The key
point is that all these techniques are used to efficiently obtain the
sparsest coefficients using the dictionary elements. The challeng-
ing step is construction of the dictionary. After this, dictionary
choice is another key step that provides an optimal solution for
the sparse coefficients. A predetermined dictionary enables a fast
and efficient solution for the sparse representations used in image
classification. The extant dictionaries are either a discrete cosine
transform (DCT) or a discrete wavelet transform (DWT). The un-
derlying functions originating from the discrete ridgelet transform
(DRT) and the discrete-time Tchebichef transform (DTT) are used
to construct the proposed dictionaries. Thus, it is more efficient to
learn the dictionary from a given set of training data (Mallat and
Zhang, 1993).

The MP algorithm has been used in over-complete dictionar-
ies to construct the best matching atoms for each iteration based
on the signal residual approach and produce the best matching
atoms for sparse representation until all atoms reach a defined stop-
ping criterion. The OMP algorithm is efficient when compared to
the MP algorithm for sparse signal representation in classification
problems. It produces sparse coefficients efficiently by using an
orthogonal projection for each direction between dictionary ele-
ments, uses fewer iterative steps and achieves better performance
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Table 2. Comparison of automatic artifact detection methods (Proposed and extant methods)

Algorithm. Implementation steps for the OMP algorithm.

Task: Approximation of sparse coefficients:

α1 = argminα1 · ∥ α1 ∥0 s.tB1 = Dα1

Input: Input sample B1, Dictionary matrix D, coefficients vector for sparse representation α1

Initialization: t = 1, r0 = B1, D0 = empty, index set Λ0 = ϑ . where ϑ is empty set, τ is a constant value that is very small. d j is the dictionary

elements concatenated column-wise to construct the dictionary.

While ∥ ϒt ∥> τ do

Step 1: Calculate the matching elements using the maximum separation between residue and dictionary elements and construct the bigger

inner product between these vectors, i.e., the and () by manipulating λt = argmax j/∈Λt−1 · |< ϒt−1,d j >|.
Step 2: Update the index set for every iteration

∧
t =

∧
t−1

∪
λt and reconstruct the dataset Dt =| Dt−1,dλt |.

Step 3: Calculate the sparse coefficients based on the least square algorithm α̌1 = argmin· ∥ B1 −Dt α̌1 ∥2
2

Step 4: Update the representation residual using ϒt = B1 −Dt α̌1

Step 5: t = t +1
End

Output: D

when compared to the MP algorithm. The number of iterations
used by the OMP algorithm is given in Table 2. The OMP greedy
approach used a l0-norm minimization approach to approximate
the sparse coefficient. An algorithm that employs the OPM opti-
mization technique is given in Table 2; the OMP algorithm is ef-
ficient and fast. OMP is a basic and simple method that has been
used to solve convex optimization problems and non-homogenous
and non-linear problems. BP is another optimization technique;
however, it generated greater computationally complexity when
compared to OMP.

The OMP used dictionary atoms to compute the sparse coef-
ficients for sparse representations. The similarity between sparse
coefficients has been estimated using the sparse representation ap-
proach shown in Table 2.

A.2 The sparse vector similarity measure

The similarity between two images (left and right images in
stereo imaging) could be measured based on minimum distance
approaches such as cosine similarity or dot product vector method.
The disparity range is a displacement value between left and right
stereo images. The sparse coefficients y extracted from the left
image using the proposed sparse modeling technique measure
similarity with sparse coefficients y

′
i extracted from right image

based on sparse modeling within a certain disparity range d =

[dmin,dmax]. The disparity value or range in our experiment was
(0, 12). The angle θ between the vectors y and y

′
i can be computed

for each i. The scalar product between vectors is zero if these vec-
tors are perpendicular to each other otherwise a non-zero value is
generated by the product of these vectors. The dot product between
vectors is computed by Eqn. 3:⟨

y,y′i
⟩
= |y|

∣∣y′i∣∣cosθ , ∀i (3)

Fi = cosθ =
⟨y,y′i⟩
|y| |y′i|

(4)

where |y|=
√
⟨y,y⟩ , ⟨y,y′i⟩= ∑ j (yi,y j) and

A(d) = max(Fi) (5)

The angle θ between the vectors y and y
′
i is chosen such that

the two vectors are not perpendicular. This method provides a sim-
ilarity between two sparse vectors. Fi is the cosine similarity value
computed using two vectors and A(d) gives the maximum value
obtained from the cosine similarity value Fi.

Figure 11. Proposed sparse representation algorithm using dictio-
nary and the minimum distance technique for automatic artifact de-
tection. Sparse coding computes the vector with the smallest number
of nonzero coefficients. The primary goal is to obtain the sparse
coefficients using the dictionary elements, which is followed by the
similarity measured based on the minimum distance approach.

A.3 Proposed hybrid dictionary (DRT)

Many tasks in image processing applications depend on the
type of dictionary used for sparse representation. Among oth-
ers, these include de-noising, super-resolution, and fusion. Hence,
the selection of an over-complete dictionary plays a fundamentally
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Table 3. Algorithm for construction of a hybrid dictionary (DRT) for sparse coding location matching

Algorithm. Dictionary-based on hybrid wavelet Basis Function

1
D is dictionary size, S is scale factor, T is translation parameter, θ is the rotation parameter,M1 is the number of dictionary atoms,

N1 is the size of dictionary, M is the constant translation parameter length. M is the translational length.

2 FOR eachScaleS = 1 : M1 do

3 FOR eachtranslationT = 1 : M do

4 FOR eachrotationθ =−π : π do

5 FOR eachn1 = 1 : M1 do

6 FOR eachn2 = 1 : N1 do

7 Temp(n1,n2) =
√

S× sin(n1 × cosθ +n2 × sinθ −T )e−t/2

8 D = temp(:);
9 ENDFOR END FOR

10 storeD(:,count) = temp(:)

11

END FOR

END FOR

ENDFOR

12

Select bases have greater variance than a certain threshold T1 = M2×0.05

Select size of dictionary D1(; ,count) = D1(:,sizeo f dictioanry)

D = D1

END FOR

significant role for the sparse recovery atoms. Sparse representa-
tion was employed here to approximate the basis element func-
tions responsible for image classification, for which the ridgelet-
based over-complete dictionary proved the better choice for the
given sparsified image classification task. Moreover, we the
Ricker wavelet—the negative normalized derivative of the Gaus-
sian function—was used to create ridgelet-based elements for the
hybrid dictionary.

Results showed superior performance for the ridgelet-based
dictionary compared to various other over-complete dictionar-
ies based on transform functions, such as DCT, wavelets, and
curvelets. 2D ridgelets were defined by a wavelet-type function:

ψx,y,θ (ta, tb) = x−1/2((ta cosθ + tb sinθ − x)/a) (6)

whereψ (·) is a wavelet function. ta and tb are the line coefficients,
x is the intercept, and a is the scaling factor used to compute the
basis function.

The Ricker wavelet function is given by:

ψ(t) =
2
3

π
1
4

(
1− t2

σ2

)
e

−t2

σ2 (7)

Ridgelet bases were obtained by selecting different values for x,y,
and θ in Eqn. 6. These bases were prepared as vectors for inser-
tion into the hybrid ridgelet-based dictionary. Pi and sigma are
constants which produced richer wavelet coefficients when based
on the Ricker wavelet function.

For these reasons, the ridgelet transformwas proposed tomodel
sparse signals and measure sparse coefficients for images. The
ridgelet transform is an efficient 2D transform that can be used
to store multi-dimensional signals or images. For example, in
Fourier and wavelet analysis, ridgelet analysis is also used to ap-
proximate non-linear signals. Enhanced approximations can be
constructed by using a simple algorithm for ‘N’ ridgelet functions

(Feng et al., 2015). Ridgelet analysis for object representation is
extremely effective due to objects with singularities along lines by
means ridgelets as a way of concatenating 1D wavelet transform
along lines. This use of ridgelet transforms in image processing is
very attractive because singularities are frequently joined together
along the edges of an image. Thus, the proposed hybrid dictionary
becomes the better choice for the construction of an overcomplete
dictionary that gives better approximations for sparse representa-
tion.

We have extracted the feature vector (x) from input EEG data
and applied D dictionary basis function on the input EEG features.
The y vector is extracted from the inner product of D and x in a
spare representation way using OMP basis function in Eqns. 1 and
2. Eqns. 3 to 5 shows how to compute similarity measured be-
tween vector y and y

′
i based on dictionary D and input EEG vector

(x) and also measured maximum value based on index of similar-
ity between y and y

′
i and Eqns. 6 and 7 represented how we can

compute the dictionary D based on basis functions ψ (t) .
Table 3 gives the algorithm used to construct the hybrid dic-

tionary with ridgelet-based functions. Dictionaries comprising
ridgelet-based functions are over-complete and constructed by
different scaling factors and basis functions that employ Ricker
wavelet functions. Each loop shown in Table 3 illustrates the dif-
ferent scaling, translation, and rotation parameters used to select
the basis for DRT dictionary functions. The temp function was
used to store the basis of the dictionary for each column, and the
threshold for variance was set at 0.05 to normalize and scale dic-
tionary atoms.

A.4 Dictionary construction for sparse representation
The use of fixed dictionaries was proposed because they are

extremely fast and reliable (accurate). Pre-specified dictionaries
are based on discrete cosine, wavelet, ridgelet, and Tchebichef
transform basis functions. For comparison, the KSVD (K means-
singular value decomposition) adaptive dictionary is implemented
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Figure 12. Basis functions used by (a) KSVD, The KSVD-based dictionary elements (or 'atoms') mostly capture singular image points (b) DRT,
The dictionary stores image points in well-ordered forms that also capture structural patterns. Moreover, they performed well with smooth and
regular patterns. (c) DTT, It also stored image structures well with regular patterns for all dictionary elements using an 8 × 8 EEG signal patch.

and compared with the dictionaries proposed here (DRT and
DTT). The KSVD-based dictionary elements (or 'atoms') mostly
capture singular image points (see Fig. 12 (A)). These values are
scattered over different rows and columns compared to initial cells
in a dictionary. The dictionary stores image points in well-ordered
forms that also capture structural patterns. Moreover, they per-
formed well with smooth and regular patterns. The DRT-based
dictionary captured multiple irregular patterns concurrently, as
shown in Fig. 12 (B). Similarly, the DRT dictionary demonstrated
a good capture structure when compared with other fixed dictio-
naries such as DCT, DWT, and DTT and also stored image struc-
tures well with regular patterns for all dictionary elements. The
DTT dictionary has the same cell pattern structure and captured
good edge points in regular forms as shown in Fig. 12 (C). The
patch size used for all dictionaries was (12× 12), which is optimal
and captures well-structured patterns in an image. (When dictio-
nary size increased, computational complexity also increased).

A.5 Performance metrics
Precision and recall are two of the most commonly used eval-

uation metrics in pattern recognition and information retrieval.
Precision-recall used the relevance classification criteria. The pre-
cision can be defined as the ratio of the number of retrieved ele-
ments to the total number of relevant elements in an instance.

A.6 Classification algorithms
A.6.1 Support vector machine

Support vector machines (SVMs) have been extensively used in
image processing and pattern recognition applications. They use a
hyperplane for separation of training data using multidimensional
training values of a fixed number of different classes. It minimizes
the objective function by maximizing the learning (x) = ⟨w.x⟩+b
from the sample data (x) = ⟨w.x⟩+ b,{xi,yi, i = 1, ...,N} among
the closest sample data and the hyperplane xi is an n-dimensional
feature vector, where yi = ±1 , and minimize the ∥w∥2

2 using the
constraint yi (⟨w.xi +b⟩ ≥ 1) under maximization criteria.

The SVM classifier is introduced as a binary classifier that is
converted into a multiclass classifier using two strategies. These
strategies are called one against one (OAO) and one against all
(OAA) (Manikandan and Venkataramani, 2009). The OAO classi-
fier technique classifies every pair of classes while using the most
common label for each pixel. The OAA technique classi�es each
class against the rest, and it chooses the label with largest con�-
dence for each pixel. This strategy performs better when the num-
ber of classes is small (usually< 10) (Manikandan and Venkatara-
mani, 2009). Here, OAA was employed due to the small number
of classes (less than five).

A.6.2 Random forest algorithm

The random forest (RF) can be used for image classification in
remote sensing applications due to its superiority and robustness
to noise compared with other classifiers (Gislason et al., 2006).
In Feng et al. (2015) proposed RF based on an ensemble learning
technique. It required fewer parameters while running compared
with other machine learning classifiers (SVM, ANN). The popu-
larity of RF increased gradually due to achieving equal or higher
accuracy in the field of remote sensing when compared with SVM
for image classification (Martin et al., 1998; Pal, 2005). Random
forest is based on an ensemble of independent individual classifi-
cations and depends on a regression tree (CART). The RF has the
final response for calculating all the decision tree’s output. There
are two steps involved in the selection of this process for the evalu-
ation of RF classifiers. The bootstrap approach selects 70 percent
training samples randomly for the decision tree in the first step,
and the second step uses the remaining 1/3 samples for out-of-bag
(OOB) data, which in RF is used during cross-validation for eval-
uation of the classification accuracy. The OOB is very sensitive
and may cause over-fitting to the training data (Pal, 2005). The
advantage of the selection of random subset predictor variables is
that it provides a better generalization capability and less correla-
tion between trees. The main advantage of RF is that it gives the

Volume 18, Number 3, 2019 227



contribution of each variable to the classification accuracy. There
are two parameters used in RF: the number of trees, denoted as
ntree, and number of selected random predictor variables (Feng et
al., 2015), denoted as mty. Usually OOB error has an inverse re-
lation with ntree: by increasing ntree, the OOB error is decreased
within a certain threshold. There are two methods used for cal-
culating mty RF: one-third and square root. RF is insensitive to
outliers and changing of hyperparameters during training phase;
it produces less computational burden and makes it easy to deter-
mine hyperparameters during training. There are fewer issues of
over-fitting due to an individual decision tree in RF.

A.6.3 Extreme learning machine
The extreme learning machine (ELM) is a basic and new learn-

ing algorithm that has been developed from a single hidden layer
feedforward neural networks (SLFN) (Marc’Aurelio Ranzato et
al., 2007). It is a very time-consuming process to adjust the in-
put weights and hidden layer bias for all feed-forward neural net-
works. To minimize or overcome these problems using traditional
gradient-based learning algorithms, Huang et al. (2015) proposed
an SLFN by randomly choosing input weights and hidden layer
biases for an infinite activation function in the hidden layer. The
SLFN can be observed as a linear system, and the determination
of outputs weights are updated analytically. ELM is described in
great detail by Huang et al. (2015). Based on input N data samples
⟨xi, t j⟩, where x j =

[
x j1,x j2, . . . . . . .,x jn

]T is the jth sample with

n-dimensional features, t j =
[
t j1, t j2, . . . . . . ., t jm

]T characterize the
actual labels of x j standard SLFN with M hidden neurons.
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