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We explore the underlying molecular mechanisms and to
identify key molecules in Huntington's disease by utilizing
bioinformatics methods. The gene expression profile of
GSE3621 was extracted from the gene expression om-
nibus. Differentially expressed genes between the R6/1
transgenic mouse model of Huntington's disease and con-
trols at different time points were screened by limma pack-
age in R. Kyoto encyclopedia of genes and genomes
database. It was used to analyze the pathways of differ-
entially expressed genes. A searching tool of the protein-
protein inferaction network was constructed and visual-
ized by Cytoscape. Molecular complex detection was
utilized to performed module analysis. There were 513,
483, and 528 differentially expressed genes identified at
weeks 18, 22 and 27, respectively, when compared with
the control samples. Also, 24 significantly enriched R. Ky-
oto encyclopedia of genes and genomes database path-
ways were identified (? in week 18, 6 in week 22, 9 in
week 27), and 31 significant modules were identified from
the protein-protein interaction network (13 in week 18, 8
in week 22, 10 in week 27). Hoxd8, Atf3, and Egr2 were
confirmed as transcription factors related to Huntington's
disease. There are widespread gene expression changes
in Huntington's disease at different time points. Some hub
genes, such as Usp18, Oasl2, and Rip4, may play impor-
tant roles in the pathogenesis of Huntington's disease.
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1. Introduction

Huntington's disease (HD) is an autosomal dominant inherited
neurodegenerative disease caused by a repeat expansion of pro-
longed CAG in the huntingtin (HTT) gene (Rodrigues and Wild,
2018). Mutant protein and production of transcriptional disorders,
proteasome, autophagy, apoptosis, mitochondria, and metabolic
dysfunction, neuroinflammation, oxidative stress, and consequent
neurodegenerative changes, especially in the striatum. Among
these, transcriptional dysregulation is one of the most important
pathological mechanisms in HD (Bithell et al., 2009; Seredenina
and Luthi-Carter, 2012; Vuono et al., 2015). The clinical character-
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istics of HD are progressive motor, cognitive as well as emotional
disturbances (Bano et al., 2011). There is a wide range of gene ex-
pression changes in HD, and there is evidence that these changes
are due in part to complex clinical manifestations (Seredenina and
Luthi-Carter, 2012).

Inflammation is an emerging research area in neurodegenera-
tive diseases (Kwan et al., 2012). Elevated circulating monocytes
and levels of serum inflammatory cytokines are found in HD pa-
tients that considered to be hyper-responsive to immune stimuli
(Ellrichmann et al., 2013). The elevated level of serum inflamma-
tory cytokines was also found in some HD mouse models (Wild et
al., 2008).

Trager et al. (2015) found myeloid cells from the HD mouse
model showed increased cytokine production when stimulated by
lip polysaccharides (LPS) in vitro, macrophage isolated from R6/2
mouse showed elevated level of phagocytosis, similarly to results
in HD patients.

Gene expression profiling is a rapid, high-throughput method
for identifying mRNA expression in cells. By comparing the dif-
ferent gene expressions of the HD with controls, we can better un-
derstand the pathogenesis of HD and help to find potential target
genes for treatment. Recently, bioinformatics mining and network
construction were considered to play a critical role in research-
ing and predicting the pathogenesis of various neurodegenerative
disorders, including HD (Thanh-Phuong et al., 2014; Trager et al.,
2015). However, up to the present, there is no bioinformatics study
on HD differential gene expression profiles at different time points.

Hodges et al. (2008b) analyzed the differential gene expression
in the R6/1 mouse line throughout the progression of phenotypic
signs from 18 to 27 weeks and uploaded data at the GEO acces-
sion GSE3621. By using GSE3621, we aim to further mine the
key molecules and the potential molecular mechanisms related to
HD pathogenesis. In this study, significant DEGs the R6/1 trans-
genic mouse model of Huntington's disease and controls at differ-
ent time points were screened, followed by functional annotation.
Potential HD related genes were revealed by PPI network analysis
of proteins encoded by DEGs. In addition, some hub genes were
also identified by MCODE analysis. The present study may pro-
vide new insights into the molecular mechanisms at different time
points of HD pathogenesis.
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2. Materials and methods
2.1 Microarray data

Gene expression profile of GSE3621 was downloaded from
GEO (http://www.ncbi.nlm.nih.gov/geo/) database. Researches
were designed to elucidate the relationship between mRNA dif-
ferential expression and the emergence of the behavioral pheno-
type in the R6/1 mouse model of HD. Nine R6/1 transgenic mice
(expressing full-length versions of mutant 122-131 glutamines) at
week 18 (n = 3), week 22 (n =2), week 27 (n =4) and 9 R6/1 wild
controls at week 18 (n = 3), week 22 (n = 3) and week 27 (n = 3)
were used. Hodges et al. (2008a) detected a difference in activity
at 18 weeks, such as rotarod performance, while novel object ex-
ploration and locomotor activity changed significantly at 22 and
27 weeks, so three-time points were selected to detect DEGs.The
base data built on the platform of GPL1261 was analyzed by the
Affymetrix mouse genome 430 2.0 array.

2.2 Data pre-processing and analysis of DEGs.

Identifiable expression forms of data were first converted from
the original raw one. The limma package (linear models for mi-
croarray data) in the R language (Smyth, 2005) was used to identify
DEGs between R6/1 transgenic mice and controls. The student's
t-test was used to select the DEGs by the criteria of P values <
0.05 and [log, FC| > 1.

2.3 Cluster analysis of DEGs

To elucidate the changes of DEG expression at the three differ-
ent time points, a clustered heatmap of DEGs was constructed by
using Bioconductor (gplots package in R). Mean expression values
of DEGs among the three different time-point between R6/1 trans-
genic mice and controls were utilized to constituent the expression
matrix.

2.4 KEGG pathway enrichment analysis of DEGs

DAVID (Database for annotation visualization and inte-
grated discovery) online analysis tools (http://david.abce.ncifcrf.
go) form an integrated bioinformatics database. The system can
excavate the biological functions of numerous genes and protein
ID, and play a vital role in further extraction of biological gene
information (Huang et al., 2009). The KEGG (www.genome.jp/
kegg/) pathway enrichment analysis was performed to identify
DEGs by using DAVID (Kanehisa et al., 2008). Enriched terms
including more than two genes and P values < 0.01 were consid-
ered statistically significant.

2.5 PPI network construction and analysis

The STRING (search tool for the retrieval of interacting
genes, http:/string.embl.de/) is an online comprehensive perspec-
tive database designed to evaluate protein interaction information
(Szklarczyk et al., 2011). In this study, STRING was designed to
obtain a PPI network of DEGs and visualized by Cytoscape sub-
sequently (Smoot et al., 2011). The confidence score of 0.4 was
confirmed as the cut-off standard. MCODE (Bader et al., 2003) is
the preferred computational method to analyze protein complexes
from PPI networks. MCODE can generate overlapping clusters by
identifying densely connected subgraphs and filtering non-dense
subgraphs (Spirin and Mirny, 2003). In our study, MCODE was
applied to screen modules of the PPI network with a node score
cut-off = 0.2, degree cut-off = 2, max depth = 100 and k-core = 2.

370

Table 1. DEG counts at three-time points in HD transgenic mouse

Timepoints DEGs  Upregulated genes  Downregulated genes
18 weeks 513 220 293
22 weeks 483 201 282
27 weeks 528 267 261

2.6 TF annotation

TFs were annotated among DEGs basing on TRANSFAC ver-
sion 6.0 (http://www.gene-regulation.com) (Matys et al., 2003).
The differences and similarities between TFs at the three time-
points as well as the degrees of TFs were analyzed.

3. Results
3.1 Identification of DEGs at three time points

A total of 513, 483, and 528 DEGs were identified at week
18, week 22, and week 27, respectively, when comparing with the
control samples. Upregulated and downregulated DEGs are listed
in Table 1. There are more downregulated DEGs than upregulated
DEGs at the first two time-points, at week 27, the up and down-
regulated genes are almost equal.

3.2 Cluster analysis of the DEGs

To further define the changes of DEG expression level at three-
time points in HD transgenic mice, cluster analysis is conducted.
Cluster heat maps are performed by comparing the R6/1 transgenic
mice and controls at three-time points, respectively. The top fifty
DEGs are shown in Fig. 1.

3.3 KEGG pathway enrichment analysis

The KEGG pathways enriched for dysregulated genes are listed
in Table 2. The results show that the pathways of dysregu-
lated genes are relatively the same between week 18 and week
22, which are enriched in the pathways of neuroactive ligand-
receptor interaction, protein digestion, and absorption, measles,
influenza A and cytosolic DNA-sensing pathway. At week 27,
downregulated genes are enriched in pathways related to cocaine
addiction, amphetamine addiction, serotonergic synapse,and al-
coholism; upregulated genes are enriched in pathways related to
retinol metabolism, chemical carcinogenesis, rheumatoid arthri-
tis, and cytokine-cytokine receptor interaction, respectively. In
general, DEGs are predominantly involved in pathways of im-
mune (infective disease) and neuropsychological system-related
diseases.

3.4 PPI network construction and analysis

The PPI network of DEGs is visualized by Cytoscape following
a PPI search; the PPI networks of the DEGs identified at three-time
points are shown in Fig. 2. The PPI network of week 18 consisted
of 134 protein nodes and 275 pairs; week 22 consists of 130 protein
nodes and 253 pairs, and week 27 consisted of 159 protein nodes
and 367 protein pairs. In analyzing the MCODE, degrees > 5 are
set as the cut-off criterion, and a total of 32 genes are identified
as hub genes (Fig. 3) and summarized in Table 3. AVP is the hub
gene at week 18 and had the highest score in the network, Rtp4,
Oasl2, and Usp18 had higher scores both in week 22 and week 27.

Wang et al.
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Table 2. KEGG pathways of significantly up and downregulated genes at three time pointsin HD transgenic mouse

Contrast group KEGG pathway Gene Genes P-value
counts
18 weeks
Downregulated mmu04080: Neuroactive ligand- 11 DRD1, PTH2R, A630033H20RIK, ADORA2A, GM10334, 4.93 x 107%
genes receptor interaction NPY2R, LPAR3, GRIN3B, VIPR1, PLG, CHRNG
mmu04974: Protein digestion and 6 SLCI5A1, GM10334, ATP1B4, MEP1B, CELA2A, COLI0A1 2.0 x 10-93
absorption
mmu05031: Amphetamine addic- 5 ARC, DRDI, PPPIR1B, SLC6A3, GRIN3B 4.0% 1079
tion
mmu05030: Cocaine addiction 4 RDI1, PPPIR1B, SLC6A3, GRIN3B 0.01
mmu05034: Alcoholism 7 GNGTI1, DRDI, PPPIRIB, ADORA2A, SLC6A3, CRH, 0.0l
GRIN3B
Upregulated genes mmu05162: Measles 5 IRF7, OAS1B, IFNA11, CD209B, MX2 40x 1079
mmu05164: Influenza A 5 IRF7, OAS1B, IFNA1L, CCLS5, MX2 9.0 x 1079
mmu05168: Herpes simplex infec- 5 IRF7, OAS1B, IFNA11, CCL5, LTA 0.01
tion
mmu04623: Cytosolic DNA- 3 IRF7, IFNAL1, CCL5 0.03
sensing pathway
22 weeks
Downregulated mmu04080: Neuroactive ligand- 11 DRD1, PTH2R, A630033H20RIK, ADORA2A, GM10334, 1.0x 10~ %
genes receptor interaction NPY2R, LPAR3, GRIN3B, VIPR1, PLG, CHRNG
mmu04974: Protein digestion and 6 SLCI5A1, GM10334, ATP1B4, MEP1B, CELA2A, COLI0A1 2.0 x 10~%
absorption
mmu05034: Alcoholism 7 GNGTI, DRDI, PPPIRIB, ADORA2A, SLC6A3, CRH, 1.0x 1070
GRIN3B
Upregulated genes mmu05162: Measles 5 IRF7, OAS1B, IFNA11, CD209B, MX2 3.0x 1079
mmu05164: Influenza A 5 IRF7, OAS1B, IFNA1l, CCL5, MX2 9.0 x 1079
mmu04623: Cytosolic DNA- 4 IRF7, IFNAL1I1, CCL5 0.03
sensing pathway
27 weeks
Downregulated mmu05030: Cocaine addiction 4 PPPIR1B, DRD2, SLC6A3, PDYN 7.0 x 1079
genes
mmu05031: Amphetamine addic- 4 ARC, PPPIR1B, SLC6A3, PDYN 0.01
tion
mmu04726: Serotonergic synapse 5 PTGS2, SLC6A4, ALOX12B, TPH2, HTR5B 0.02
mmu05034: Alcoholism 6 PPPIR1B, DRD2, SLC6A3, CRH, PDYN, HIST1H3I 0.02
Upregulated genes mmu00830: Retinol metabolism 6 CYP4A12A, ADHI, CYP3All, UGT2B5, SDRI6C5, 4.02x 107%
CYP2C50
mmu05204: Chemical carcinogen- 5 ADHI, CYP3Al11, NAT2, UGT2BS5, CYP2C50 40x 1079
esis
mmu05323: Rheumatoid arthritis 4 ITGB2L, H2-AA, IL15, MMP1A 0.02
mmu04060: Cytokine-cytokine re- 6 IFNA2, IL3, IL17B, TNFRSF18, IL15, CD27 0.02
ceptor interaction
mmu05150: Staphylococcus aureus 3 DSGI1B, ITGB2L, H2-AA 0.04
infection
Volume 18, Number 4, 2019 371



Table 3. Dysregulated hub genes at three-time pointsin HD transgenic mouse

Time-points Genes (Degree)

Counts

18 weeks Avp (13), Trh (8), Crh (8), Pmch (8), Npff (7), Prok2 (7), Lpar3 (7), Prokrl (7), Goltla (7), Vip (6), Pth2r 13
(6), Viprl (6),Drdla (6), Adora2a (6)

22 weeks Mx2 (7), Rtp4 (7), Irf7 (7), Oasl2 (7), Usp18 (7), Parp12 (6), Gbp3 (6), Sp100 (5) 8

27 weeks Rtp4 (9), Ifid4 (9), Oasl2 (9), Ifitl (9), Uspl18 (9), Gbp6 (9), Isg15 (9), Ddx60 (9), Irgm?2 (9), Parp9 (9) 10

Table 4. Transcription factors among DEGs at three-time pointsin HD transgenic mouse

Transcription factors

Time-points

Upregulated genes Downregulated genes
18 weeks Atf3, Foxil, Foxb2, Geml, Foxd3, Hoxbl3, Hoxd8, Pax3, Egr2, Fosl2, Pou2f3, Pparg, Ppplrlb, Ankrd2, Asbll, Sall4
Stat4, Twistl, Irf7, Vsx1, Vgll2
22 weeks Atf3, Foxb2, Gem1, Foxd3, Hoxb13, Hoxd8, Stat4, Twistl, Irf7  Egr2, Fosl2, Ppplrlb, Ankrd2, Asbl1, Sall4
27 weeks Atf3, Hoxd8, Ascl2, Pax9, Sox3, Tead2, Twistl, Ankrd1 Runx3, Egr2, Gata3, Gfilb, Hoxal, Hoxd9, Ppplrlb, Nrlh4,
Prrx2, Fhl5, Nkd2, Zfp423
3.5 TFs matory stimulation is impaired in their BACDD mouse model of

TFs among the DEGs at the three-time points are listed in Ta-
ble 4. The maximum number of TFs is found at week 18, including
Hoxd8, Atf3and Stat4. The minimum number of TFs is found at
week 22, including Egr2 and Atf3. By analyzing the PPI network,
Atf3, HoxdS8, and Egr2 were the critical TFs in the development
of HD.

4. Discussion

So far, the exact pathophysiological mechanism of HD is still
not clear (Kieburtz et al., 2018). In this study, we aim to explore the
underlying molecular mechanisms and to identify key molecules
in HD by using bioinformatics methods. By analyzing the gene ex-
pression profiles of the brain from the HD mouse model at three
different time points, hundreds of DEGs are found in this study.
DEGs are identified to be enriched in pathways related to immune
(infective disease) and neuropsychological systems. According to
the PPI network and MCODE analysis, some hub genes are iden-
tified, including Rtp4, Oasl2, and Usp18. TFs among DEGs are
also identified, including Atf3, Hoxd8, and Egr2. We infer that
these genes may participate in the pathophysiological mechanism
of HD.

RTP4 (Receptor Transporter Protein 4) is a protein-coding gene
(Saito et al., 2004). A study on the gene in neurodegenerative dis-
ease is relatively rare, and we do not retrieve the relevant research
on RTP4 and HD. In the study, we find RTP4 is related to the
pathway of signaling by GPCR (G protein-coupled receptor).

Yao et al. (2015) have demonstrated GPCR modulate huntingtin
levels and toxicity in vitro and in vivo in STHdhQ7/Q11 cells,
their research revealed that by modulating the GPCR function,
mHTT levels and toxicity could be stabilized or reduced. How-
ever, the specific mechanism of RTP4 in GPCR and its possible
impact on HD still need further study. OASL?2 is an interferon
stimulating gene and involves in innate immune response (Ellrich-
mann et al., 2013). It has been proved to be an important reaction
module for macrophage activation (Zhu et al., 2014). Kwan et al.
(2012) demonstrate that migration of macrophage under inflam-

372

HD, which may predict one of the potential mechanisms of HD
(Kwan et al., 2012).

McDermott et al. (2011) also suggest that OASL2 takes part
in the responses which are crucial for macrophage activation and
migration. OASL2 dysregulation may interrupt activation and mi-
gration of macrophage in the HD mouse model or interaction with
mHTT fragments in immunological manners. USP18 (ubiquitin-
specific protease 18) is an interferon-inducible protein and partic-
ipate in regulation of interferon response on viral infection (Chen
et al., 2015).

Goldmann et al. (2015) demonstrate that Usp18 is essentially
contributedto microglial quiescence in white matter microglia.
Microglia are regardedas macrophages in the central nervous sys-
tem and are important for tissue homeostasis. Microglia dysfunc-
tionis thought to be involved in the pathogenesis of certainneu-
rodegenerative and neuroinflammatory disorders. (Goldmann et
al., 2015) further report that microglial Usp18 could negatively
regulate the activation of Stat1 and inductinterferon-induced genes
concomitantly, thereby terminating interferon signaling.

Valekova et al. (2016) find that prominent decline of
IFNa
influencelFNarelated innate immune response, lead to en-
hanced disease progression, further suggesting a highly critical
role for IFN¢a in HD. These results conclude Uspl8 as a key
negative regulator of microglia activation and identify a protective

in central nervous system of HD animals could

role of Uspl8 for microglia function on regulating the interferon
pathway. By preventing destructive microgliopathy and influenc-
ing interferon levels, USP18 may take part in the pathogenesis
and progression of HD.

ATF3 is a member of the mammalian activated transcription
In our study, we findthat ATF3 is dif-
ATF3 is consid-
ered to be an effective marker for regeneration after nerve in-
jury and thought to be a new indicator for nerve injury (Linda et

factor protein family.
ferentially expressed at all threetime points.

Wang et al.
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Figure 1.

Cluster heat maps of top fifty DEGs in threetime points. (A) Week 18, (B) week 22, and (C) week 27.

Relative levels of gene

expression are showed using a color scale: Yellow stands for high expression value, and blue stands for low expression value. Changes of

color from blue to yellow represent the changes in expression value from low to high. DEGs differentially expressed genes.
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Figure 2. Protein-protein interaction networks of DEGs. Undirected network at (A) week 18, (B) week 22, and (C) week 27. Green nodes
represent the downregulated DEGs, and red nodes represent the upregulated DEGs. DEG, differentially expressed gene.

al., 2011). ATF3 can bind to other members of the ARF/CREB
(cAMP-response element-binding protein) family, including C-
Jun, ATF2and JUNB, by forming dimmers to actas a transcrip-
tional activator and inhibitor (Wang et al., 2015).

Previously enormous researches have demonstrated the role of
CREB in HD pathogenesis and disease progression (Chaturvedi et
al., 2012; Choi et al., 2009; Giralt et al., 2013).

ATF3 may participate in HD by influencing CREB signaling.

Volume 18, Number 4, 2019

HoxdS8 is a protein encoded by the HOXDS8 gene (Wilming et al.,
2015). It is a highly conserved family of transcription factors and
plays a key role in the morphogenesis of multicellular organisms
(Brison et al., 2012).

Hoss et al. (2014) have demonstrated that a large amount of
HOX genes differentially expressed in HD patients. Hox genes
are a major transcription factor family in embryonic development
(Lemons and McGinnis, 2006). They are highly associated with

373



Figure 3. Significant modules screened from the PPl networks by using MCODE. Undirected network at (A) week 18 (14 nodes), (B) week 22
(8 nodes), and (C) week 27 (10 nodes). Green nodes represent the downregulated DEGs, and red nodes represent the upregulated DEGs.

DEG, differentially expressed gene.

most aspects of early development and are significantly expressed
in neural differentiation (Pearson et al., 2005). An increase in HOX
transcriptional activity may be compensatory, helping to main-
tain or reconstitute cell polarity or indirect epigenetic regulation.
EGR2 (Early growth response protein 2) is a protein encoded by
the EGR2 gene. EGR2 is a transcriptional regulator containing
two zinc finger DNA binding sites and is highly expressed in mi-
grating neural crest cells (Swiatek and Gridley, 1993).

Many studies have focused on the abnormal expression of
EGR?2 on the Charcot-Marie-Tooth disease, which is a hereditary
motor and sensory neuropathy (Krajewski et al., 2000). So far, we
can confirm that EGR2 playsimportant roles in early neurodevel-
opment; however, its role in HD needs further study.

A large number of previous enrichment analyses have been ap-
plied on HD, and many KEGG pathways are involved, including
DNA replication, p53, GnRH, and NF-kappa B signaling pathway
(Li et al., 2015). In this study, we find infectious diseases, such
as measles, herpes simplex infection, and immune system such
as neuroactive ligand-receptor interaction and rheumatoid arthritis
enriched pathways are more common than other pathways. Neu-
rotoxicity of mHTT is the trigger point for HD, Tai et al. (2007)
suggested that the presence of mHTT aggregation could initiateim-
mune responses in CNS and pointed out microglia and astrocytes
were the major contributors to the inflammatory reaction. Tai et
al. (2007) demonstrated that microglial activation in striatum was
closely associated with the occurrence of cognitive function (Tai
et al., 2007). Elevated IL-6 and IL-8 levels were detected in pre-
manifest subjects in the study of Bjorkqvist (2016) and they ex-
trapolated the results were possibly corresponding to the innate
immune response (Wild et al., 2008).

Chang et al. (2015) also observed plasma inflammatory pro-
teins, such as MMP-9 and TGF-f1 altered in pre-symptomatic,
early, or late stages of HD (Ionescu et al., 2011). In addition to
the indirect effects of mHTT neurotoxicity on immune system, ?
demonstrated mHTT could directly interact with IKKYy, which was
responsible for immune response. Khoshnan et al. (2004) also
confirmed the mHTT could bind to and directly activate IKKf3,
which regulated mHTT neurotoxicity via triggering the caspase-
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dependent cleavage of mHTT. Summarizing previous studies, we
concluded that immune responses mightplay important roles in the
pathogenesis of HD, and some immune-related cytokines can be
used as biomarkers for disease progression and evaluate the prog-
nosis of the disease. At the same time, interfering with certain
immune pathway may prevent progression or improve prognosis
in HD patients.

Our research had some limitations. First, we used bioinfor-
matics to analyze DEGs based on R6/1 transgenic mouse model,
which had 5' end of the human HD gene carrying115-150 CAG
repeat at expansions expressed ubiquitously in the mouse genome
(Menalled et al., 2002), such genetic manipulation may potentially
alter the overall number of genes express or silenced, mismatching
the preclinical results presented in our study with gene expression
in HD patients. Secondly, potential genetic rearrangements of cel-
lular or animal models on each generation leading to the unstable
expansion or retraction of the CAG length repeat may also affect
the results of DEGs (Gatto et al., 2015). Moreover, the regula-
tion on the expression the microinjection fragments from the 5'
end of the human HD gene isolated from a phage genomic clone
(Mangiarini et al., 1996) are under the regulation of murine genes
which may not be operated by the same gene regulation as in the
human disease. However, the use of other full-length mouse mod-
els (such as the BACHD or YAC128 mice) as well as knock-in HD
mice models (HAHQ125 and zQ175 mice), which includes on their
genomic insertion part of the regulatory genes, could improve such
limitations (Gatto et al., 2019).

In conclusion, by performing bioinformatics analysis of gene
expression, hundreds of genes related to HD were identified, in-
cluding Rtp4, Oasl2, and Uspl8. Furthermore, our study sug-
gests that HD may have similar pathways involved in several dis-
eases, including measles, herpes simplex infection, and rheuma-
toid arthritis, and most of the involved pathways are mainly fo-
cused on the immune system. Our study provided novel insight
into the molecular mechanisms of HD, which may help to explore
the pathogenesis of HD and may improve the treatment strategy of
the HD.

Wang et al.
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