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Centella asiatica is notable for its wide range of biolog-
ical activities beneficial to human health, particularly its
cognitive enhancement and neuroprotective effects. The
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid re-
ceptors are ionotropic glutamate receptors mediating fast
excitatory neurotransmission essential in long-term potenti-
ation widely thought to be the cellular mechanism of learn-
ing and memory. The method of whole-cell patch-clamp
was used to study the effect of the acute application ofCen-
tella asiatica extract on the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor-mediated spontaneous
excitatory postsynaptic currents in the entorhinal cortex of
rat brain slices. The respective low dose of test compounds
significantly increased the amplitude of spontaneous ex-
citatory postsynaptic currents while having no significant
effects on the frequency. The findings suggested that Cen-
tella asiatica extract increased the response of α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors at
the postsynaptic level, revealing the potential role of Cen-
tella asiatica in modulating the glutamatergic responses in
the entorhinal cortex of rat brain slices to produce cogni-
tive enhancement effects.

Keywords
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1. Introduction
Ionotropic glutamate receptors (iGluRs) are essential in main-

taining neuronal activities. The α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) mediate rapid ex-
citatory neurotransmission in the brain and are essential for cel-
lular processes underlying synaptic plasticity. AMPARs are het-
erotetramers that can be activated by glutamate to allow the in-
flux of ions to depolarise postsynaptic membranes and initiate a
series of cascade signaling linked to the process of synaptic plas-
ticity (Granger and Nicoll, 2014; Herring and Nicoll, 2016; Nicoll,
2017). AMPARs consist of four different subunits GluA1 - 4 and
are widely expressed throughout the central nervous system (Hen-
ley and Wilkinson, 2016; Traynelis et al., 2010). The entorhinal
cortex (EC) is one of the key structures of the medial temporal
lobe memory system. Information is processed and projected from
the cortical association areas through the EC to the hippocampus.
The EC functions as a relay station receiving input from the hip-
pocampus and projecting it back to widespread cortical areas (Me-
dinilla et al., 2013; Sasaki et al., 2015; Squire and Zola-Morgan,
1991). Hence, modulation of the iGluRs in the EC may regulate
synaptic efficiency essential for cognitive functions such as learn-
ing and memory. Synaptic transmission is a highly plastic and dy-
namic process involving a myriad of cellular components at the
synapses. It can be modified by instantaneous, short, interme-
diate, or long-term regulatory mechanisms in the pre- and post-
synaptic regions. The spontaneous excitatory postsynaptic cur-
rents (sEPSCs) of a recorded cell indicate how acute application
of test compounds may modulate the current response from the
pre- or postsynaptic regions of the cell. Centella asiatica (CA),
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also known as pegaga in Malay, is commonly consumed by lo-
cal communities of Malaysia and widely used as a medicinal herb
in traditional medicine such as Traditional Chinese Medicine and
Ayurvedic medicine (Gray et al., 2018a). Studies showed that CA
contains a high level of pentacyclic triterpenoids and the levels
of phytochemicals in CA can be influenced by geographical ori-
gin, genetic, environmental and growth conditions (Gray et al.,
2018a; Singh et al., 2014; Upadhyaya and Saikia, 2012; Zhang et
al., 2012). CA extract and its triterpenoids asiatic acid (AA) and
asiaticoside (AS) have been demonstrated to possess a wide range
of biological activities beneficial to human health such as cog-
nitive enhancing, neuroprotective, neuritogenic, increase synap-
togenesis and hippocampal cell regeneration (Gray et al., 2018b;
Soumyanath et al., 2012; Sun et al., 2015; Xu et al., 2012). Our
previous study demonstrated that CA extract was able to improve
spatial and non-spatial learning and memory in rats and enhanced
the surface expression of AMPARs in the EC and hippocampus
(Binti Mohd Yusuf Yeo et al., 2018; Wong et al., 2019). Various
studies on the biological activities of CA have focused on the hip-
pocampus with limited studies targeting the effects of the extract
and its phytocompounds from the perspective of cellular electro-
physiology involving AMPAR-mediated current responses in the
EC.

2. Materials and methods
2.1 Centella asiatica (CA) extract, asiatic acid (AA) and

asiaticoside (AS)
The preparation of CA extract and its quantitative analysis us-

ing HPLC has been described in the previous publication (Wong
et al., 2019). Briefly, the plant material was purchased from a local
supplier, powdered and extracted using standard extraction proto-
col (60% aqueous ethanol as a solvent with plant material to the
solvent ratio of 1 : 10 (w/v), 8 h extraction time with extraction
temperature at 60 ◦C) at the extraction facility of Institute of Bio-
products Development (IBD), Universiti Teknologi Malaysia. The
resulting extract was concentrated, subjected to freeze-drying, and
analyzed for its photo component via HPLC analysis. The dose of
CA extract was set at 100 mg/L (CA100), 300 mg/L (CA300), and
600 mg/L (CA600) and determined in accordance to previous in
vivo studies and molecular analysis indicating its biological effec-
tiveness (Doknark et al., 2014; Giribabu et al., 2014; Kumar and
Gupta, 2002; Manasa and Sachin, 2016; Sari et al., 2014; Yolanda
et al., 2015). An equivalent dose estimation based on the percent-
age of respective compounds found in the plant extract was used
to estimate the doses of pure compounds (Anukunwithaya et al.,
2017a,b; Haug et al., 2012;Wanasuntronwong et al., 2012). Hence,
equivalent doses of AA and AS relative to the percentage of pres-
ence in the minimal effective dose of CA extract in the whole-
cell patch-clamp experiments were used as a basis of dose estima-
tion for a follow-up study of the effects of AA and AS. With the
limited information acquired on the bioavailability of these pure
compounds of CA and a maximum oral bioavailability at 16.25%
(Yuan et al., 2015), a low dose of approximately ¼ of the equiv-
alent dose were selected for both AA and AS for standardization
of method. Three doses of AA and AS (0.004, 0.012, and 0.024
µM) were examined for their effects in modulating the AMPAR-
mediated sEPSCs. Each set of data for the whole-cell patch-clamp
experiments consisted of n = 4-6 good cells.

2.2 Animals
All procedures were performed on 4-6 weeks old post-weaning

male Wistar Kyoto (WKY) rats weighing 100-150 g obtained from
Animal Research and Service Centre (ARASC) of Universiti Sains
Malaysia (USM). The protocol was in accordance with the interna-
tionally accepted principles for laboratory animal use and care and
has been approved by the Animal Research and Ethics Committee,
USM with the animal ethics approval code [USM/Animal Ethics
Approval/2015/(98)(699)]. The animals were housed in an acrylic
cage (40 cm× 25 cm× 26 cm) andmaintained under standard lab-
oratory conditions (temperature 22± 1◦C and 12 hours light/dark
cycle) with free access to water and commercial pellet diet.

2.3 Preparation of compounds and chemicals
CA extract solution for the acute application was prepared fresh

at 100, 300, and 600 mg/mL. Pure compound AA (catalog no.
546712, Sigma Aldrich, US) and AS (catalog no. 43191, Sigma
Aldrich, US) were dissolved in sterile-filtered dimethyl sulfox-
ide (DMSO, catalog number 3176, Tocris Bioscience, UK) to ob-
tain stock solutions of 0.004 mM, 0.012 mM, and 0.024 mM.
Stock solutions of 50 mM picrotoxin (PTX, catalog number 1128,
Tocris Bioscience, UK) prepared in sterile-filtered DMSO, and 50
mM D-2-amino-5-phosphopentanoic acid (D-AP5, catalog num-
ber 0106, Tocris Bioscience, UK) were prepared in distilled water.
All solutions were prepared at 1000 times more concentrated than
desired concentration and to be diluted to the desired concentra-
tion in perfusing artificial cerebrospinal fluid (aCSF) during ex-
periments.

2.4 Slice preparation and maintenance
Animals were anesthetized and decapitated using an animal

guillotine. The brain was removed and placed in 4 ◦C cutting
solution (in mM: sucrose, 110; KCl, 2.5; CaCl2, 0.5; MgCl2, 7;
NaH2PO4, 1.25; NaHCO3, 25; glucose, 7; pH 7.40, bubbled with
carbogen, 95% oxygen and 5% carbon dioxide). The brain tis-
sue block was prepared for slicing using vibration microtome (Mi-
crom HM 650V, Germany) in an ice-cold cutting solution. Com-
bined EC-hippocampal brain horizontal slices of 400 µm thick
(Fig. 1) were placed into incubation chamber containing aCSF (in
mM: NaCl, 126; KCl, 2.5; CaCl2, 2; MgSO4, 2; NaH2PO4, 1.25;
NaHCO3, 26; glucose, 10; pH 7.40, bubbled with carbogen) at
room temperature for at least one hour for recovery.

2.5 Whole-cell patch-clamp recordings
The brain slices were placed into a recording chamber fixed

with a grid and under perfusion of aCSF at 2 mL/min maintained
by a peristaltic pump (ISMATEC IPC, Germany) and the bathing
solution was constantly bubbled with carbogen (95% oxygen/5%
carbon dioxide). The neurons were visualized and selected using
an upright infrared-differential interference contrast (IR-DIC) re-
search microscope (Nikon Eclipse E600FN) with a 10× objective
lens and 40× water-immersion objective lens. The selected neu-
rons had identifiable pyramidal cell morphology with prominent
apical dendrite emerging from the soma (Lench et al., 2014; Me-
dinilla et al., 2013). Images were projected to a monitor using the
Retiga ELECTRO™ CCD camera (QImaging, Canada) mounted
on the microscope. Electrophysiological recordings were per-
formed at room temperature (22-24 ◦C) using Multiclamp 700B
amplifier and pCLAMP software (Molecular Devices, Sunnyvale,
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Figure 1. A horizontal section containing the EC and hippocampal region. Brain slices (400 µm) from the region approximately between
interaural 2.40 - 4.40 and Bregma -7.60 - -5.60 were harvested for the experiment.

CA) and digitized using Axon Digidata 1440 (Molecular Devices,
Sunnyvale, USA). The glass pipettes were pulled from borosilicate
glass (with filament, GB 150 EFT-10, Science Products, GmbH)
using Flaming-Brown micropipette puller (model P-97, Sutter In-
struments) in five-stages pulling and filled with Cs+-based in-
trapipette solution (in mM: Cs-gluconate, 100; NaCl, 8; MgCl2,
5; EGTA, 0.6; HEPES 40; Mg2+-ATP, 2; GTP, 0.3; pH 7.40).
QX-314 (1 mM) was applied in the intrapipette solution. The
pipette tips had resistance ranging from 5 to 8 MΩ. The cells
were voltage-clamped at -70 mV, and PTX (50 µM) was applied
to block GABAAR-mediated currents while D-AP5 (50 µM) was
applied to block the NMDARs and isolate the AMPAR-mediated
currents. Cell input resistance (300-500MΩ) and series resistance
(15-30MΩ) were constantlymonitored during the experiment, and
cells that varied more than 20% were excluded from the analysis.
Series resistance compensation was not employed to improve the
signal-to-noise ratio. Signals were filtered at 2 kHz and sampled at
10 kHz under control of the pClamp 10 (Molecular Devices, Sun-
nyvale, USA) software program. The data were stored on disk for
later offline analysis.

2.6 Data analysis

Data were analyzed using Clampfit 10 (Molecular Devices,
Sunnyvale, USA). The template match threshold was set at 4 times
for detection (de la Pena et al., 2012). For analysis, only current
traces with identifiable EPSCs having a rise time shorter than de-
cay time were chosen (Kanju et al., 2008). Mean amplitudes and
frequencies for spontaneous events were analyzed and compared
using statistical methods. All current responses were normalized
to the control values and expressed as Mean (± SEM). Compar-
isons between groups are performed using Student's t-test and one-
way ANOVA. A P-value of < 0.05 is considered significant.

3. Results

3.1 Baseline recording of spontaneous postsynaptic
currents (PSCs)

Baseline recording of spontaneous PSCs of brain slices sub-
merged in aCSF was obtained from cells voltage-clamped at -70
mV (n = 6) tomeasure spontaneous PSCs properties which include
amplitude and frequency (Fig. 2A And 2B). One-way ANOVA
analysis revealed that there was no significant change to the am-
plitude (F[4, 25] = 0.3422, P > 0.05) and frequency (F[4, 25] =
0.0601, P > 0.05) of PSCs recorded at -70 mV across five epochs
of one minute each. A separate set of experiments was carried
out to evaluate the effects of acute application of 0.1% DMSO
and PTX on the pyramidal neurons of EC. Baseline spontaneous
postsynaptic currents were recorded at -70 mV under perfusion of
aCSF, followed by acute application of 0.1% DMSO into the per-
fusing aCSF (Fig. 2C And 2D). Application of 0.1% DMSO pro-
duced no significant change to all measured parameters of spon-
taneous postsynaptic currents of cells voltage-clamped at -70 mV
(amplitude (t[10] = 0.4465, P> 0.05, 95%CI = -0.1228 to 0.0818)
and frequency (t[10] = 0.3196, P > 0.05, 95 % CI = -0.7409 to
0.5550)), indicating that all effects observed during treatment with
CA extract was attributable to the treatment and it was not an ef-
fect of DMSO.On a separate set of experiments following the same
protocol as previous, acute application of 50 µMPTX (Fig. 2E and
2F) did not affect all measured parameters of postsynaptic currents
of cells voltage-clamped at -70 mV (amplitude (t[10] = 1.425, P>

0.05, 95 % CI = -0.0479 to 0.2178) and frequency (t[10] = 0.1681,
P > 0.05, 95 % CI = -0.7918 to 0.6807)), indicating that majority
of the synaptic responses of this region are glutamatergic in nature
(Medinilla et al., 2013).
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Figure 2. Baseline recording and verifying effects of 0.1 % DMSO and PTX on spontaneous postsynaptic currents. Recording of spontaneous
postsynaptic currents at the EC produced rather stable responses (A and B). 0.1 % DMSO did not cause significant changes to the amplitude
and frequency of the sEPSCs (C and D). Acute application of PTX produced no significant changes to the parameters, indicating mainly
excitatory transmission at the target region (E and F).

3.2 CA extract, AA and AS enhanced AMPAR-mediated
sEPSCs at a respective low dose

Analysis from Student's t-test showed that application of
CA100 significantly increased the amplitude by 12.48 % (t[10] =
4.699, P = 0.0008, 95 % CI = 0.0656 to 0.1839) while no signif-
icant changes to the frequency (t[10] = 1.527, P = 0.1577, 95 %
CI = -0.5924 to 0.1106) of AMPAR-mediated sEPSCs was found
when compared to blocker control. The amplitude (t[10] = 0.8975,
P = 0.3906, 95 % CI = -0.1578 to 0.0672) and frequency (t[10] =
1.944, P = 0.0805, 95 % CI = -0.7873 to 0.0535) did not differ
significantly with the acute application of CA300 when compared
to blocker control. Similarly, CA600 did not significantly alter the
amplitude (t[10] = 0.5819, P= 0.5735, 95%CI = -0.1701 to 0.0997)
and frequency (t[10] = 0.7343, P = 0.4796, 95 % CI = -0.6810 to

0.3434) of sEPSCs (Fig. 3).

Further experiments were performed using AA. Acute applica-
tion of AA (0.004 µM) significantly increased the amplitude by
9.4 % (t[8] = 2.615, P = 0.0309, 95 % CI = 0.0112 to 0.1775) while
showing no significant change to the frequency (t[8] = 0.4567, P
= 0.66, 95 % CI = -0.5375 to 0.8029). Analysis also showed that
application of AA at 0.012 µM did not significantly alter the am-
plitude (t[8] = 1.131, P = 0.2908, 95 % CI = -0.0184 to 0.0538)
and frequency (t[8] = 0.4984, P = 0.6316, 95 % CI = -0.4092 to
0.6349). Similar trend was observed with the application of AA at
0.024 µM, producing no significant effects on the amplitude (t[8]
= 0.3331, P = 0.7476, 95 % CI = -0.0598 to 0.0447) and frequency
(t[8] = 0.5495, P= 0.5977, 95%CI = -0.3073 to 0.4995) of sEPSCs
(Fig. 4).
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Figure 3. Effects of CA extract on AMPAR-mediated sEPSCs. The AMPAR-mediated currents were isolated with PTX and D-AP5 and recorded
as control. At a low dose, acute application of CA100 extract increased the amplitude (A) of sEPSCs but had no significant effect on the
frequency (B). Trace example (C) of control and CA100 were shown (Student's t -test, n = 6). Acute application of CA300 (D-F) and CA600
(G-I) did not produce significant changes to the amplitude and frequency of the AMPAR-mediated currents.

Acute application of AS (0.004µM) significantly increased the
amplitude by 12.5 % (t[6] = 4.590, P = 0.0037, 95 % CI = 0.0584
to 0.1916) while showing no significant change to the frequency
(t[6] = 0.1689, P = 0.8714, 95 % CI = -0.5288 to 0.6072) (Fig. 5).
Application of AS at 0.012 µM did not significantly alter the am-
plitude (t[6] = 0.883, P = 0.4112, 95 % CI = -0.3057 to 0.6509)
and frequency (t[6] = 1.035, P = 0.3404, 95 % CI = -0.9099 to
0.3688). Similarly, acute application of AS at 0.024 µM did not
significantly alter the amplitude (t[6] = 1.885, P = 0.1084, 95 %
CI = -0.1625 to 0.0211) and frequency (t[6] = 0.2894, P = 0.782,
95 % CI = -0.9089 to 0.7167) of sEPSCs.

4. Discussion
The EC is a crucial region within the medial temporal lobe sys-

tem interacting with hippocampal regions through glutamatergic
inputs with extensive synaptic transmission and plasticity proper-
ties. It acts as a processor of information projecting to and from the
hippocampus, reflecting its essential role in learning and memory
and various cognitive processes such as spatial cognition, repre-
sentation and navigation, attention, and conditioning (Coutureau
and Di Scala, 2009; Igarashi et al., 2014; Lipton and Eichenbaum,
2008; Squire and Zola-Morgan, 1991; Witter and Moser, 2006).

Besides extending direct projections with the cortical regions, the
ECmaintains reciprocal projections with the hippocampal regions
and is a major source of projections to the hippocampus (Medinilla
et al., 2013; Sasaki et al., 2015). The enhanced efficacy of the neu-
ronal networks within the medial temporal lobe system is thought
to improve cognitive functions. Furthermore, many pathological
conditions were shown to be attributable to dysfunctional EC and
EC-hippocampal network, highlighting the important role of EC
in cognition and the potential effects of a strengthened synaptic
transmission on the neural network (Booth et al., 2016; Scharfman
and Chao, 2013). Several studies have put forward evidence for
the potential therapeutic effects of Centella asiatica (CA) in mod-
ulating cognitive function. CA has been widely used as medicinal
herbs by the local communities as well as the Ayurvedic and Tra-
ditional Chinese Medicine to treat illnesses and maintain general
good health (Gohil et al., 2010; Gray et al., 2018a; Lokanathan et
al., 2016). Various studies showed that CA and its phytochemicals
display numerous biological activities such as enhancing cogni-
tive functions, promoting synaptogenesis and cell regeneration in
the hippocampus, as well as conferring neurogenic and neuropro-
tective properties (Gadahad et al., 2008; Gray et al., 2016; Kumar
et al., 2009, 2011; Soumyanath et al., 2012). Our previous study
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Figure 4. Effects of AA on AMPAR-mediated sEPSCs. The AMPAR-mediated currents were isolated with PTX and D-AP5 and recorded as control.
AA 0.004 µM significantly increased the amplitude (A) of sEPSCs while having no significant effect on the frequency (B). Trace example (C)
of control and AA 0.004 µM were shown (Student's t -test, n = 5). There were no significant changes to the amplitude and frequency of the
AMPAR-mediated currents in the acute application of AA 0.012 µM (D-F) and AA 0.024 µM (G-I).

showed that oral administration of CA extract was able to enhance
spatial and non-spatial learning and memory in rats and signifi-
cantly enhanced surface expression of AMPAR subunits GluA1
and GluA2 in the CA1, CA3 and EC (Wong et al., 2019), suggest-
ing the potential link between enhanced glutamatergic excitatory
transmission and cognitive enhancement mediated by CA.

Essential phytocompounds of CA generally have low oral
bioavailability, and administration of CA extract in rat models
produced more prolonged exposure of its phytocompounds com-
pared with separate administration of the individual compounds
(Hengjumrut et al., 2018; Khemawoot et al., 2018). The low oral
bioavailability of bioactive components in natural products is not
an unusual phenomenon due to factors such as poor solubility,
slow absorption, breakdown and dissolution within the gastroin-
testinal tract, and gastrointestinal transit time variations of the bio-
compounds (Anukunwithaya et al., 2017a,b; Yuan et al., 2015). In
the current study, CA100 was the lowest dose of extract found to be
effective in modulating AMPAR-mediated sEPSCs. Hence, for a
follow-up study of the effects of AA andAS, equivalent doses were
estimated from the minimal effective dose of CA extract at CA100.
With the limited information on the bioavailability of these pure
compounds of CA and a maximum oral bioavailability at 16.25%

(Yuan et al., 2015), a low dose of approximately ¼ of the equiva-
lent dose was selected for both AA and AS for standardization of
method.

Interestingly, the first study assessing the effects of CA extract
through electrophysiology recording was recently published, and
CA extract was found to have a half-maximal effective concentra-
tion of 0.25 µg/ml, which was ¼ of the maximum effective dose
used in the study (Wanasuntronwong et al., 2018). This reflects
the relevance of the application of low dose AA and AS at ¼ of
the equivalent dose of CA100. In vitro studies on neuroprotective
effects of AA and AS revealed that these compounds have an ef-
fective dose ranging from 0.01 to 100 nM (Sun et al., 2015; Xiong
et al., 2009; Xu et al., 2012) but the positive effects on cells were
reduced with higher concentrations of compounds (Xiong et al.,
2009; Xu et al., 2012). Different low-dose and high-dose effects of
compounds have been observed in ligand-gated ion channels (Hin-
ton et al., 2017;Mihic et al., 1994; Valle-Mojica et al., 2011) and de-
spite the relatively low concentration used in the current study, AA
and AS exerted significant effects on AMPAR-mediated sEPSCs.
AMPARs are a subtype of iGluRs that play a crucial role in medi-
ating fast excitatory neurotransmission in the CNS. Changes to the
numbers and properties of AMPARs at the postsynapticmembrane
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Figure 5. Effects of AS on AMPAR-mediated sEPSCs. The AMPAR-mediated currents were isolated with PTX and D-AP5 and recorded as control.
AS significantly increased the amplitude (A) of sEPSCs only at a low dose while had no significant effect on the frequency (B). Trace example
(C) of control and AS 0.004 µM were shown (Student's t -test, n = 4). There were no significant changes to the amplitude and frequency of
the AMPAR-mediated currents in the acute application of AS 0.012 µM (D-F) and AS 0.024 µM (G-I).

are developmentally and activity regulated. These changes are es-
sential for synaptic plasticity, formation, and stabilization of ex-
citatory synapses, and formation of the neural circuit (Henley and
Wilkinson, 2016; Herring and Nicoll, 2016). CA extract, AA, and
AS increased the amplitude of AMPAR-mediated sEPSCs at their
respective low dose without having significant changes to the fre-
quency of the current response. This indicated a postsynaptic ef-
fect on AMPAR-mediated currents with postsynaptic alterations in
transmitter-receptor interactions (Luo et al., 2014; Zhaowei et al.,
2014) that led to an increase of synaptic strength between presy-
naptic and postsynaptic neurons. An increase of synaptic strength
with the postsynaptic effect is potentially due to higher expression
of AMPARs at the postsynaptic membrane, and this increase of
synaptic strength has a role in cognitive enhancement (Barre et
al., 2016; Morita et al., 2014).

Our previous study showed that 14-days oral administration of
CA extract enhanced the surface expression of GluA1 and GluA2
subunits in the EC, supporting the notion that the higher num-
ber of functional receptors at synapses leads to stronger synaptic
strength as reflected from the increase of AMPAR-mediated sEP-
SCs amplitude (Binti Mohd Yusuf Yeo et al., 2018; Wong et al.,
2019). Synaptic transmission is strengthened with the rapid traf-
ficking of AMPARs to the postsynaptic density, with the major-

ity of the synaptic AMPARs being GluA1-A2 heteromers (Hen-
ley and Wilkinson, 2016; Sachser et al., 2017; Traynelis et al.,
2010). The extrasynaptic pool of AMPARs are highly mobile and
readily exchanged between synaptic and extrasynaptic membranes
through lateral diffusion. LTP induction involves rapid incorpora-
tion of calcium permeable-AMPARs allowing the influx of Ca2+

that leads to transient increase of conductance and is subsequently
replaced by calcium impermeable-AMPARs (Hanley, 2014; Jaa-
fari et al., 2012). The dynamic recycling and trafficking of AM-
PARs are regulated through posttranslational modification of the
receptor subunits and require interactions with accessory and aux-
iliary proteins through signaling cascades that involve kinases and
phosphatases. Phenolic compounds are secondary metabolites
produced by plants and are widely distributed in all foods of plant
origin, including CA. These compounds interact with kinases to
modulate signal transduction pathways that regulate cell survival
and gene expression, activate pathways in LTP, enhance cognitive
functions and confer neuroprotective effects (Kyselova, 2011; Ren-
deiro et al., 2012; Spencer, 2007; Vauzour et al., 2008). Phospho-
rylation of receptor subunits at multiple sites by several kinases
can produce different effects on interactions with accessory and
auxiliary proteins at the synapses and affecting channel conduc-
tance (Hussain et al., 2015; Shepherd and Huganir, 2007).
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Previous in vitro study using SH-SY5Y human neuroblastoma
cells showed that CA extract significantly increased the neurite
outgrowth and elongation (Xu et al., 2012). This observation was
also found in cells treated with AA, and it was shown to be ERK-
dependent (Soumyanath et al., 2005). Neurite elongation prop-
erties of CA were mediated by different signaling pathways in-
duced by AA and AS (Nalinratana et al., 2018). The triterpenoids
were found to promote neurite outgrowth via activation of ERK
and CREB, and they showed distinct preference on signaling path-
ways of neurite outgrowth. AA was found to confer neuroprotec-
tive effects on dopaminergic neurons of chronic Parkinson's dis-
ease mouse model by increasing phosphorylation of PI3K, AKt,
mTOR, and GSK-3β that leads to activation of signaling path-
ways (Nataraj et al., 2017). AA appeared to exert its effects syn-
ergistically with other triterpenoids to increase neuronal differen-
tiation through the activation of MEK signaling pathway (Jiang et
al., 2016; Lin et al., 2017) and the MEK/ERK signaling pathway
has been indicated to be important in cognitive functions mediated
by glutamatergic receptors (Jiang et al., 2015; Ramis et al., 2013;
Spencer, 2007). With the multiple potential mechanisms of action
and interaction with various molecular components, CA extract
and the pure compounds AA and AS may have acted directly or
indirectly on these signaling pathways, which led to an increase of
the current amplitude of AMPAR-mediated sEPSCs.

It is interesting to note that CA extract and its phytochemicals
were only effective towards AMPAR-mediated current responses
at their respective low dose, suggesting potential synergistic and/or
antagonistic effects of individual or several components in the ex-
tract. Plant compounds have the potential of exerting dual mode
of action, and it can be influenced by an effective range of concen-
tration for the compounds tested (Kong et al., 2000; Spencer et al.,
2003; Xiong et al., 2009; Xu et al., 2012). The observations from
the current study suggested that there exists an effective window
whereby the components act together to produce desired effects of
which beyond that window, the interaction of the components nul-
lify or mask the desired effects (Li and Zhang, 2008; Yang et al.,
2014). It was proposed that an optimal drug combination of com-
ponents in CA could be an analog of nerve growth factor due to
higher potency compared to a single component, further indicating
the complexity of interactions between the effective components
in CA (Lin et al., 2017; Long et al., 2015).

This study revealed the postsynaptic effects of the acute ap-
plication of CA extract and its pure components on AMPAR-
mediated responses in rat brain slices, potentially via the increase
of functional AMPARs at the postsynaptic density. Based on the
present study, further research such as LTP studies of animals
treated with CA extract and pure compounds are warranted to pro-
vide strong support from the aspect of cellular mechanism for the
enhancement effects of CA on learning and memory. The trans-
lation of results between in vivo and in vitro study of CA extract
remains the most significant challenge and the limitation of the
study. Acute application of CA extract may produce different ef-
fects on receptor responses and surface expression due to imme-
diate contact between effective components and receptors. For
consecutive oral administration, components in the CA extract
are subjected to further physiological processes in the body be-
fore the affective component(s) reaches the CNS and crosses the

blood-brain-barrier to exert effects (Banks, 2016; Tajes et al., 2014;
Warren, 2018). This will require further studies on the pharma-
cokinetics of CA extract and transport of effective components in
CA extract across the blood-brain-barrier to establish a more tar-
geted dose of CA extract and pure compounds. Molecular dock-
ing studies would be useful to establish binding feasibility of these
molecules to produce synergistic and/or antagonistic effects.

5. Conclusions
In conclusion, the present study demonstrated that CA extract,

AA, and AS could act directly on the EC to modulate AMPAR-
mediated sEPSCs at the postsynaptic level, in line with findings
supporting the potential role of CA in cognitive enhancementmod-
ulated through increased AMPAR-mediated neurotransmission.
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