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γ-Aminobutyric acid type A receptors (GABAARs) are GABA gated
heteropentameric chloride channels responsible for the adult brain's
primary inhibition. In specific brain cells, such as in the hippocam-
pus, one of the subtypes of GABAARs, the δ subunit containing
GABAARs (δ-GABAARs), is predominantly expressed and located in
extrasynaptic or perisynaptic positions. δ-GABAARs mediate a slow
constant inhibitory current called tonic inhibition. While δ-GABAARs
and tonic inhibition is critical for theexcitability of singleneurons, ac-
cumulatingdata suggest that the functionofδ-GABAARsarebroader
and includes an integrative role in the network oscillations. While
these open new horizons on the neurobiology of δ-GABAARs, the
complexity continues to challenge the analysis of GABAARs and their
subtypes. This review will summarize the current knowledge of
molecular, cellular and physiological characteristics of δ-GABAARs
during health and disease.
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1. Introduction
Hippocampus is a unique structure. One aspect of this

uniqueness is its special anatomy. Concealed between the
mesencephalon and the medial temporal lobe, this deep cor-
tical structure extends through the lateral ventricle’s inferior
horn, where it lies at the posterior border of the amygdala [1].
Critical for learning and memory, the hippocampus is seg-
mented into several regions [2], including the hippocampus
proper, CA3, CA2, CA1 regions and the dentate gyrus (DG),
a key region in hippocampal memory formation (reviewed in
[3]).

A principal cell type in the DG is the dentate gyrus granule
cells (DGGCs), characterized by unique anatomical features
(reviewed in [4]). The cone-shaped spiny dendritic arbors
of the DGGCs are innervated by different neuronal ensem-
bles such as the input from the entorhinal cortex via the per-
forant path and contralateral hippocampus via the commis-
sural path [5–7]. Diverse GABAergic interneurons synapse
on the soma, axon initial segment, proximal and distal den-
drites of DGGCs. For example, parvalbumin-positive in-
terneurons (PPI) synapse on the axon- initial segment and

the perisomatic domain [8]. These GABAergic interneuron
inputs to the DGGCs are involved in the synchronization of
the network activities during theta- frequency (4-10 Hz) and
gamma-frequency (30-150 Hz) oscillations [9], sharp waves-
ripples (SWRs) [10], and dentate spikes [11].

The critical network operations for neuronal synchro-
nization require the presynaptic terminals of the GABAergic
interneurons (such as PPIs) to precisely match their molec-
ular counterparts at the postsynaptic sites of the DGGCs.
Here, γ-Aminobutyric acid type A receptors (GABAARs),
the GABA gated heteropentameric chloride channels, are
massively clustered in the postsynaptic sites of the sym-
metric inhibitory synapses. GABAARs belong to the su-
perfamily of ligand-gated ion channels (Cys-loop receptors)
[12], which also includes the nicotinic acetylcholine recep-
tors (nAChRs), the 5-hydroxytryptamine type 3 (5-HT3) re-
ceptors, the zinc-activated ion channel (ZAC) and the glycine
receptors in vertebrates [13]. Upon GABA release, the post-
synaptic GABAARs in the mature granule cells become ac-
tive and elicit hyperpolarizing inhibitory postsynaptic cur-
rents (IPSCs), during which chloride and bicarbonate ions
will travel through the receptor channel depending on their
electrochemical gradient. Known to be benzodiazepine (BZ)
sensitive [14, 15], these IPSCs are called phasic inhibition.
The phasic signals are typically generated rapidly (often with
sub-millisecond rise times), with the stimulus-evoked synap-
tic currents being in the range of less than 10 to 200 pA at
a holding potential of -50 mV, which is known to vary in a
typical quantal fashion [16].

In addition to the phasic synaptic inhibition, the DGGCs
and PPIs have some other spots where a subset of high-
affinity extrasynaptic GABAARs is strategically located in the
hippocampus mediate a different tone of GABAergic inhibi-
tion than phasic inhibition. This type of GABAergic signal is
called tonic inhibition. Tonic inhibition is characterized by
constant, slow currents, high GABA affinity, slow desensiti-
zation and BZ insensitivity [17]. The tonic current is about
four times larger than the total phasic current in the DGGCs
[18]. Like cerebellar granule cells [19], where the tonic in-
hibition was first described, distinct subtypes of extrasynap-
tic GABAARs appear to mediate these relatively constant and
slow inhibitory currents [18], which have also been shown in
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Fig. 1. Basic structure of δ subunit. δ subunit shares a standard topological structure with other subunits of GABAARs: a long extracellular N-terminal, a
short extracellular C-terminal, four transmembrane domains (TM1, TM2, TM3, TM4), cytoplasmic domain located between the third (TM3) and the fourth
(TM4) transmembrane domains (Figure not to scale).

the neurons found almost all othermajor brain areas: neocor-
tex, thalamus, hypothalamus and brain stem [20]. This dis-
tributed fashion of tonic inhibition, mediated by GABAARs,
represents distinct subunit composition, which involves ei-
ther α5 or δ subunits [21]. This review will focus on the δ
subunit containing GABAARs (δ-GABAARs), whichmediate
a significant fraction of tonic current.

2. Molecular and cellular properties of
δ-GABAARs

For GABAAR research, the late 80s and 90s were excit-
ing years. Almost the entire GABAAR subunit family was
cloned by Seeburg and his colleagues [22–24]. The cloning
strategy was based on the classical approach: Screening the
brain cDNA libraries by synthetic DNA probes derived from
purified receptors’ peptides. Thus, eventually, it became clear
that GABAARs were assembled from 19 subunit isoforms
(α(1-6), β(1-3), γ(1-3), δ, ϵ, θ, π and ρ(1-3)) which cor-
respond to 11 structurally and functionally distinct receptor
subtypes [22–24]. In general, all these subunits share a com-
mon topological structure: a peptide sequence which is about
450 amino acids long, made up of a long extracellular N-
terminal, a short C-terminal, four transmembrane domains,
intracellular or cytoplasmic domain located between the third
and the fourth transmembrane domains (Fig. 1). This or-
ganization was originally based on the structural studies of
acetylcholine-binding protein and nAChRs [25]. In partic-
ular, the subunits of acetylcholine receptors and the human
GABAAR β3 homopentamer’s crystal structure at 3Å reso-
lution confirmed this prediction [25, 26]. In contrast to the
subunits’ above-described properties, the hetero-pentameric
receptor structure was not fully known until recently. In re-
cent years, oligomerized heteropentameric receptor structure
has also been resolved in detail [27–30].

It is well known that the GABAAR subunit composition

determines their differential distribution and functionality
[31–38]. Among the possible subunit combinations, typi-
cally, there is a combination of 2α and 2β subunits and a
single γ2 or δ subunit (Fig. 2), the 2α, 2β and γ2 combi-
nations being the most abundant. Indeed, about 90% of all
GABAARs are made up of γ2-GABAARs [33]. Thus, the
most GABAAR research is directed to α, β and γ subunits,
which are found both in the postsynaptic and extrasynaptic
locations [39]. Among the α subunits, the BZ insensitive α4
and α6 subunits form a unique partnership with the δ sub-
unit (together with β subunit isoforms) in the forebrain and
cerebellum, respectively [36]. Thus, in the arrangement of δ-
GABAARs, δ subunit has been hypothesized as a replacement
of the γ2 subunit in the receptor heteropentamer recruited
exclusively to extrasynaptic or perisynaptic locations [40]. In
the DGGCs, α4βδ receptors, the most common isoform of
δ-GABAARs, are expressed. Also, α4βδ receptors have been
identified in several other neuronal cell types (see also Ta-
ble 1) [41, 42], and like other δ-GABAAR isoforms, localized
in the extrasynaptic and perisynaptic positions but never in
the postsynaptic sites [43, 44].

By in situ hybridization analysis, the regions of the adult
rat brain in which δ subunits are expressed have been studied
in detail [45]: The δ-subunit is expressed weakly or moder-
ately in the regions of the olfactory bulb (granule cells and
periglomerular), neocortex (layer II/III, layer IV, layer V/VI
and pyriform cortex), hippocampus (DGGCs, stratum pyra-
midalis CA1 and stratum pyramidalis CA3), basal ganglia
(caudate, putamen, nucleus accumbens, claustrum), thalamus
(mediodorsal, ventral posterior nucleus, medial-, dorso- and
ventrolateral geniculate nucleus). In Table 1, a summary of
δ-GABAAR isoforms (e.g., α4βδ, α6βδ, or α1βδ) and their
cell type specific distribution are shown. This specific distri-
bution is well reflected with the tonic inhibition. For exam-
ple, α4βδ receptors mediate the larger fraction (> 70%) of
the tonic inhibition in the DGGCs [21].
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Table 1. Summary of δ-GABAAR isoforms found in specific cells in the forebrain and cerebellum.
Subunit composition Cell type Reference

α6bδ Cerebellar granule cells [46]
α1bδ Hippocampal interneurons, Neocortical interneurons [47, 48]
α4β2δ Thalamic relay neurons, Striatal spiny neurons, Hippocampal dentate granule cells, Neocortical pyramidal cells [41, 42, 49–53]

Fig. 2. Heteropentameric structure of δ-GABAARs. The diagram show-
ing the heteropentameric structure of GABAARs, which are typically com-
posed of two α, two β and one γ or δ subunit. Experimental studies sug-
gest that the subunit arrangement of γ2-subunit containing GABAARs (γ2-
GABAARs) is counterclockwise when viewed from the extracellular space.
It is not known if this arrangement also applies to δ-subunit containing
GABAARs (δ-GABAARs) (Figure not to scale).

3. Variety of δ-GABAARmediated inhibition
It is known that GABA mediates multiple forms of post-

synaptic inhibitory signals, such as fast and slow inhibitory
postsynaptic currents [54, 55]. Additionally, δ-GABAARs,
mediating tonic inhibition and characterized by relatively
constant, slow IPSC, has been known for the last few decades.
However, tonic inhibition with these characteristics has been
considered uniform and the only inhibition associated with
the δ-GABAARs. For example, the α4βδ receptors in DG-
GCs and thalamic relay neurons mediate such tonic currents
[41, 42]. These BZ insensitive GABAARs have a high affin-
ity for the GABA diffused from the synaptic cleft [56], be-
sides the GABA released from GABA transporters [57, 58].
Interestingly, the literature has started to dissect the tonic in-
hibition: Depending on the subunit co-assembly, δ-GABARs
have different GABA sensitivity, desensitization, and kinet-
ics [59]. For example, it was shown that theα4βδ GABAARs
are the most sensitive to GABA levels ranging from ∼ 100
nM to 800 nM.Whereas α1β2δ and α5β3γ2 (in addition to
α1β2γ2) receptors detect GABA levels 1-10 µM range [59].

Accumulating data suggest that extrasynaptic GABAARs
might mediate a significant part of tonic inhibition, in-
dependent of gating by GABA; thus, spontaneous activity
could occur [60, 61]. Such spontaneous activity also applies
to δ-GABAARs mediated tonic inhibition [62]. This phe-
nomenon’s functional significance is not understood, and it
is probably dependent on the specific cell types and isoforms

of δ-GABAARs, such as α1βδ and α4βδ expressed in these
cells.

In addition to studies focusing on δ-GABAARs, some
studies dissect the physiological roles of GABAergic inhibi-
tion without explicitly indicating the associated subunit. So
far, a few types of GABAARs such as the ones containing ei-
ther the δ, α5 subunits or receptors containing only αβ sub-
units have been shown to mediate the tonic inhibition [63].
Thus, it is hard to predict the role of δ-GABAARs in these
studies. For example, in mice, in the reticular thalamic neu-
rons, a phasic inhibition with slowed-down kinetics is medi-
ated by GABAARs [64]. This association is linked to α4 con-
taining GABAARs, but the exact receptor co-assembly is not
clear. Possibly δ-GABAARs might mediate this activity be-
cause, in the thalamus, most of the α4 containing receptors
involve δ-subunit [41]. This is supported by some other find-
ings, too. For example, the δ subunit is expressed explicitly
in the thalamus [45], including the reticular thalamic nucleus
[38]. However, this latter study represents themonkey brain,
reflecting some differences compared to the rodent brain. It
turns out that, in rat and mouse brains, δ-subunit is not ex-
pressed in the reticular thalamic nucleus [38, 65], whereas in
the monkey, it is [38]. Thus, it is not clear if the α4 subunit
linked phasic inhibition with slowed-down kinetics [64] is
mediated by δ-GABAARs even though the specific partner-
ship of δ subunit with α4 subunit in the forebrain, including
the thalamus, is well known [31, 41, 42, 66, 67].

Nevertheless, there is a collection of data supporting an
additional GABAergic inhibition representing an interme-
diate form between the classical phasic (GABA, fast) and
tonic inhibition, which is called GABAA, slow [54, 55] some
of which may be mediated by δ-GABAARs as experimen-
tal evidence supports that δ-GABAARs contribute to post-
synaptic inhibition. Postsynaptic inhibition contributed by
δ-GABAARs was observed in the cerebellum, thalamus and
neocortex [68]; in DGGCs of the mouse hippocampus [69,
70]. Thus, Fig. 3 shows different types of inhibitionmediated
by δ-GABAARs as a proposition. For reference, postsynap-
tic γ2-GABAARs, which mediate phasic inhibition, are also
shown (Fig. 3).

4. Variety of functions
As mentioned above, at the neuronal level, δ-GABAARs

mediated tonic inhibition, which is important for the thresh-
old of action potential generation [36, 71–73]. It is gener-
ally hypothesized that tonic inhibition decreases neuronal ex-
citability. Recent evidence-based computer models revealed
that tonic inhibition might also increase excitability [74].

Volume 20, Number 1, 2021 175



Fig. 3. Variations of GABAergic inhibition. Fast, point to point, phasic inhibition is typically mediated by synaptic GABAARs, clustered in the postsynaptic
membrane of the inhibitory synapses. These receptors evoke inhibitory postsynaptic current (IPSC) (phasic inhibition) in a millisecond range upon GABA
binding. The GABA spillover from the synaptic region (black arrows) results in extrasynaptic receptors, which mediate a slow inhibitory conductance, the
tonic inhibition. Phasic and tonic inhibition of synaptic and extrasynaptic GABAARs has led to a functional distinction of these receptor subtypes. On the
other hand, subsets of GABAARs, including δ-GABAARsmay have intermediate activation, desensitization, and deactivation rates determined by the receptor
subunit isoforms between these two states. This leads to the idea that δ-GABAARs may contribute to postsynaptic inhibitory currents (IPSCs) (Figure not to
scale).

Increasing literature shows the critical role of the nonsy-
naptic GABAAR and/or tonic inhibition in various functions,
including network oscillations [64, 75, 76], synaptic plasticity
[77], synaptic pruning during adolescence [78], neurogenesis
[79, 80], neuronal development [81], information process-
ing, and cognition [81]. For example, in the dentate gyrus,
δ-subunit is linked to enhanced memory and neurogenesis
[82].

δ-GABAARs mediated tonic inhibition is indicated for
modulation of γ oscillations in the mouse hippocampal CA3
interneurons [75]. Also, coupling presynaptic activity to
postsynaptic Inhibition in the somatosensory thalamus in-
volved a process that influenced the δ-selective allosteric
modulator, DS2 [76]. These take δ-GABAARs from being
the mediators of “shunting” inhibition involved in control-
ling neuronal excitability to additional roles in the network
level activities, including but not limited to the thalamocor-
tical system and neurogenesis in the hippocampus.

5. δ-GABAARs and associated
pathophysiology

The δ subunit modulators such as sedative and hypnotic
agents [83], anxiolytic and anticonvulsive agents [84, 85] sug-
gest that δ subunit may play a role in the etiology of the rel-
evant disorders. Alterations of δ subunit or their modula-
tion as therapeutic targets have been linked to sex specific
behavioral disruption [86], Alzheimer’s disease [87], stress

induced deficiency in learning and memory [88], fragile X
syndrome [89] schizophrenia [90], epilepsy [91], mood dis-
orders [92–94], childhood mood disorders [95], anxiety in
methamphetamine dependence [96], major depression [97];
post-partum depression, and post-partum psychosis [94, 98],
consumption of opioids [99], menstrual cycle related prob-
lems [100, 101], stroke [102], Fragile X Syndrome [89, 103],
traumatic brain injury [104, 105], Huntington’s disease [106],
pain [107], insomnia [83, 108–110], alcohol use disorders
[111].

In animal studies, alcohol use disorders or associated be-
havioral alterations have been linked to δ-GABAARs [112,
113] and sex-dependent [114] as well as developmental [115]
factors seem to play a role in the underlying mechanisms. At
the molecular level, ethanol impacts the modulation of the
clathrin adaptor-mediated endocytosis of δ-GABAARs [116],
and its withdrawal influences δ-GABAARs via PKCδ Activa-
tion [117]. Due to the estrous cycle-dependent plasticity of
δ-GABAARs, which was previously shown as associated with
seizure susceptibility and anxiety [100], one study, using the
model of “Drinking-in-the-Dark binge-drinking”, showed
that δ-GABAARs are a critical target for binge drinking
in females, a phenomenon observed at higher rates among
women and girls [118]. The methylation pattern of δ sub-
unit was also suggested as a diagnostic biomarker for alcohol
use disorders [111].
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It is important to talk about the special link between the
δ-subunit and epilepsy. Various mutations (missense, non-
sense, and frameshift mutations in coding DNA sequences
besides mutations in the intronic, 3′ downstream, or 5’ up-
streammutations) in GABA receptor subunit encoding genes
have been linked to consequences such as the distortion
of protein structure, conformation, abundance, or localiza-
tion. Some of these mutations, which are detected in α1,
β3, γ2, and δ subunits, have been associated with idio-
pathic generalized epilepsies (IGEs). For example, mutations
in the γ2 subunit are characterized by change of a single
amino acid (γ2(Q351X [119], γ2(R43Q) [120], and prema-
ture translation-termination codon (PTC)-generating muta-
tions γ2(Q351X) [121]) are associated with different IGEs.
Two δ subunit missense mutations, namely δ(E177A) and
δ(R220H), were reported [122, 123]. Due to the distortion
in the coding sequence, missense mutations lead to an al-
tered amino acid sequence in the signal peptide regions of
mature peptide regions. Dibbens et al. [123] reported mu-
tations in the genomic region (1p36.3) of the δ subunit, rep-
resenting susceptibility locus for generalized epilepsies. The
δ subunit missense mutations, located in the subunit’s extra-
cellular N-terminus, are associated with generalized epilepsy
with febrile seizures plus (GEFS+), a type of IGEs. Thesemu-
tations alter the channel conductance [123], gating and sur-
face expression of δ-GABAARs [122]. Thus, δ-GABAARs are
considered as targets in the treatment of epilepsy.

Neurosteroids are endogenous substances synthesized
from cholesterol into pregnenolone, which is then converted
to compounds such as allopregnanolone and allotetrahy-
drodeoxycorticosterone [124]. It is suggested that fluctua-
tions in neurosteroid interactions, such as those seen dur-
ing stress or the ovarian cycle, determine the seizure thresh-
old, a phenomenon that is partially mediated by δ-GABAARs
[100]. This and other evidence [125, 126] suggest that neu-
rosteroids are novel drug candidates for epileptic disorders
[125, 128]. Consequently, due to their potent actions on δ-
GABAARs [128, 129], δ-GABAARs are novel therapeutic tar-
gets for the treatment of epileptic disorders and maybe a fu-
ture perspective to control epileptogenesis [91, 130]. Ganax-
olone, the synthetic analog of endogenous neurosteroid, is
used as an antiepileptic agent (catamenial epilepsy), although
it is the modulator of all GABAARs, it shows a higher effect
on δ-GABAARs [131–134].

Interestingly, the modulation and pharmacology of δ-
GABAARs have become more critical recently. In addi-
tion to their modulation by insulin [135] and oxytocin
[136], recently in 2019, the allopregnanolone brexanolone
(ZulressoTM , the brand of Sage Therapeutics, Inc.), one
of the neurosteroids known as a potent modulator of δ-
GABAARs has been approved by the Food andDrug Admini-

stration (FDA) for postpartum depression1 as a result of suc-
cessful clinical trials [137–139]. Brexanolone seems to be
effective on other mood disorders, such as major unipo-
lar depression and post-traumatic stress disorder [140]. A
synthetic GABAAR modulator that shares a similar molec-
ular pharmacological profile as brexanolone, the zuranolone
(SGE-217), resulted in a reduction in depressive symptoms
according to a recent phase 2 clinical trial [141].

Despite the progress, the field is dominated by many un-
knowns, which is a significant bottleneck. For example, the
above-mentioned preferential modulation of δ-GABAARs by
neurosteroids is controversial and requires further valida-
tion. Regarding this, some studies suggested that the neuros-
teroid sensitivity of α4/δ-containing extrasynaptic receptors
may not be different than that of α/β/γ2-containing recep-
tors [142, 143]. Along with the other inconsistencies, which
will be summarized in the section “7. The basics of unknowns”,
more research is needed for δ-GABAARs.

6. A circuit pharmacology for δ-GABAARs
The variations and specificities of δ-GABAARs in terms

of their isoforms, inhibitory action, distribution, sensitivity,
modulation and spontaneous activity, which have been de-
scribed so far, lead to the question to ask whether these prop-
erties can be utilized for circuit pharmacology. The idea of
GABAAR circuit pharmacology has probably gainedmomen-
tum when the diversity of subunits and their specific phar-
macology in the subunit assembly have started to be shown
[144, 145]. However, the focus was mainly on the modula-
tors of α subunit isoforms [23, 144–146] such as α5 inverse
agonists RO4938581 [147]; S44819 [148], L-655,708 [149],
Alpha5IA [150]. RO4938581 is under preclinical investiga-
tion for its potential to cure cognitive deficits in people with
Down syndrome [151], for example.

Since the subunit-specific function and specific modu-
lation are key to the strategy of circuit pharmacology, δ-
GABAAR seem to fit into this strategy. Among the isoforms
of δ-GABAARs, two population receptors are expressed in
the hippocampus. α1βδ receptors are expressed predomi-
nantly in hippocampal interneurons, whereas α4βδ recep-
tors are expressed predominantly in granule cells of the den-
tate gyrus (DGGCs) (Table 1). One study selectively si-
lenced one population of these isoforms: α1βδ expressed in
the Parvalbumin positive interneurons [152]. Thus, using
the “PV/Cre-Gabrd/floxed system”, it was reported that in
vitro γ oscillations in the CA3 region were altered in both
PV-Gabrd(+/-) and PV-Gabrd(-/-) mice in these interneu-
rons. Interestingly, the increased γ oscillations were low-
ered to control PV-Gabrd(+/-) levels when 100 nM allopreg-
nanolone (3α,5α-tetrahydroprogesterone) was used. But
when 10 µM synthetic δ-GABAAR positive allosteric modu-

1 Drug Approval Package, FDA (https://www.accessdata.fda.gov/d
rugsatfda_docs/nda/2019/211371Orig1s000TOC.cfm), accessed in
28.01.2021.
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lator 4-Chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]
benzamide (DS-2) was used, this was not observed. DS-2 se-
lectively targets α4βδ receptors but not the α1βδ receptors,
which are expressed in the interneurons. These suggest the
specific role of α1βδ isoform in the hippocampus’s integra-
tive network operations, in a way that can be modulated by
selective agents. In linewith this, another study examined the
paired whole-cell recordings from synaptically coupled retic-
ular thalamus and thalamocortical neurons of the ventrobasal
complex in brain slices of α4 knock-out (α4(0/0)) mice. Re-
sults suggest a dynamic and activity-dependent engagement
of δ-GABAARs receptors for the coupling of presynaptic ac-
tivity to postsynaptic excitability, a process sensitive to DS2,
the specific modulator α4/β/δ receptors [76]. The resolu-
tion of the three-dimensional structure of GABAAR subtypes
in recent years will trigger the design of novel drugs target-
ing specific δ-GABAAR isoforms, which will likely aid the
treatment of network disorders by circuit pharmacology ap-
proach.

7. The remaining unknowns
GABAAR research has been challenged by the recep-

tors’ unusual molecular and cellular diversity and thus a
huge effort is required to fully understand the properties of
GABAARs . Here, we will briefly mention the unknowns re-
lated to molecular and modulatory features of δ-GABAARs,
only. The nonsynaptic localization δ-GABAARs iswell estab-
lished by electron microscopy studies [43, 44]. However, it is
unknown if a passive or an active mechanism mediates this
specific nonsynaptic localization pattern. Previously, it was
suggested that the subunit’s intracellular domain might play
a role in this process [153]. The intracellular domain, which
is found in between the third and the fourth transmembrane
domains, is a large cytoplasmic domain, highly conserved
across the whole span of vertebrate evolution [153].

Despite new studies [154–156], the current knowledge
about the assembly and stoichiometry δ- GABAARs is lim-
ited. Several studies have shown the stoichiometry of δ-
GABAARs as 2α, 2β and δ [157, 158]. For example, one
recent study suggested that recombinant α1β3δ receptors
have the same stoichiometry and subunit arrangement with
α1β3γ2 receptors. However, these results are not entirely
conclusive [155]. Thus, the basics such as assembly rules,
stoichiometry, and arrangement of δ-GABAARs, and their
membrane trafficking, maintenance and modulation are not
precisely known. For instance, in the in vitro live neurob-
lastoma cells, our group reported that recombinant δ sub-
units require both α and β subunits for membrane targeting
[159], confirming the previously hypothesized analogy (γ2
subunit is replaced by δ in the δ-GABAAR arrangement) be-
tween δ subunit and γ2 subunit: it is known that γ2 can-
not assemble into receptors inserted in the cell membrane
without α and/or β subunits [160, 161]. In contrast to our
findings [159], some other previous studies suggest that βγ
and βδ containing receptors exist and show functionality in

Xenopus oocytes [162, 163]. So, there is no consensus. This
may arise from the methodological variations used during in
vitro studies: use of different vectors, cell types, or subunit
isoforms, experimental strategy (such as fluorescent protein
tagging location) may impact on these results. For exam-
ple, in HEK-293T cells, quantification of fluorescent alpha-
bungarotoxin bound subunits on Western blots of surface
immunopurified tagged GABAARs led to the conclusion that
the cell surface expression of α42β2δ- GABAARs was regu-
lated by the ratio of subunit cDNAs transfected [164].

The distribution of δ subunit has been shown in differ-
ent species, which shows species-specific variations. For
instance, in the reticular thalamus, caudate, putamen and
globus pallidus, there is an expression of δ subunit in the
monkey, while this expression is absent in the rat [38]. The
human brain distribution of δ subunit is not known fully. At
the same time, some studies reported the distribution of α1-
α3, β2/β3, and γ2 subunits in the human striatum [165] and
thalamus [37].

Sensitivity to neuroactive steroids has also been ques-
tioned. Neuroactive steroids such as allopregnanolone
(3α5αP) and allotetrahydrodeoxycorticosterone (THDOC)
are considered to selectively affect δ-GABAARs over γ2-
GABAARs. δ-GABAARs sensitivity to neurosteroids in spe-
cific brain regions [166] is hypothesized to be very specific
such that the endogenous neurosteroid THDOC at physio-
logically relevant concentrations (10-100 nM) selectively in-
creases the tonic current, with almost no effect on the pha-
sic current in mouse dentate gyrus granule cells and corti-
cal granule cells [128, 167]. Thus, selective interaction of
δ-GABAARs with neurosteroids has been hypothesized to
have clinical significance due to tonic inhibition’s modula-
tion, impacting excitability, seizure susceptibility, and behav-
ior [100]. On the other hand, the neurosteroid binding site
has been identified in the transmembrane domain of the α-
subunit [168].Moreover, a recent study suggests that neuros-
teroids act through both δ-containing and non-δ-containing
receptors [143]. Thus, the degree of neurosteroid selectivity
of δ-GABAARs is questionable [142, 143].

Similarly, the mechanism by which ethanol potentiates
GABAARs is still not fully understood, and several publica-
tions have reported contradicting results. In general, γ2-
GABAAR subtypes are sensitive to ethanol at amounts re-
quired for high intoxication, whereas the extra-synaptic δ-
GABAARs are hypothesized to be most sensitive to ethanol
at levels of social drinking, that is less than 30 mM [47, 70,
113, 169, 170]. However, this has been challanged by some
publications [171, 172].

8. Conclusions
Increasing studies open newhorizons on the δ-GABAAR’s

neurobiology; however, the complexity continues to be a
challenge. On the one hand, it could turn out that δ-
GABAARs function may be broader than previously hypoth-
esized. This is well reflected with studies showing the pos-
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sible contribution of δ-GABAAR mediated inhibition to the
control of major thalamocortical oscillations. Also, the pos-
sibility of some other forms of phasic inhibition, with roles
in the integrative function and network oscillations, may un-
derlie an even broader spectrum of physiological functions of
δ-GABAAR during health and disease.

On the other hand, knowledge is deficient in the level
of “basics”. There is uncertainty regarding the knowledge
about the assembly [155], membrane targeting [159], cluster-
ing [153] andmodulation of δ-GABAARs [142], for example.
Without elucidation of themechanisms involved in these ba-
sic receptor mechanisms, precisely, it will be challenging to
unravel the δ-GABAA receptor physiological significance and
plasticity during health and disease. Thus, there is a need for
a focused establishment of these “basics” in a subtype-specific
fashion. Such an effort requires novel methodologies and
careful consideration of experimental subject design. Exper-
imental parameters appear to have a critical impact on the
GABAAR research illustrated by the lack of convergent find-
ings obtained by the experimentation on the same subject by
different methods.
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