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The functional hierarchy of the task-positive networks
indicates a core control system of top-down regulation in
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The cingulo-opercular network (CON), dorsal attention network
(DAN), and ventral attention network (VAN) are prominently acti-
vated during attention tasks. The function of these task-positive
networks and their interplay mechanisms in attention is one of the
central issues in understanding how the human brain manipulates
attention to better adapt to the external environment. This study
aimed to clarify the CON, DAN, and VAN's functional hierarchy by
assessing causal interactions. Functional magnetic resonance imag-
ing (fMRI) data from human participants performing a visual-spatial
attention task and correlating Granger causal influences with behav-
ioral performance revealed that CON exerts behavior-enhancing in-
fluences upon DAN and VAN, indicating a higher level of CON in
top-down attention control. By contrast, the VAN exerts a behavior-
degrading influence on CON, indicating external disruption of the
CON's control set.
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1. Introduction

A set of attention-related brain regions were suggested
important for many cognitive/behavioral functions such
as navigating the environment, filtering external informa-
tion, focusing on goals during tasks, working memory, self-
regulation, and volitional control [1-5]. These task-positive
brain regions were suggested comprising several segregated,
but cooperative, intrinsic functional networks to support at-
tention and cognitive control related tasks [3, 6-11]. One
of the networks is called the cingulo-opercular network
(CON) [7, 8], comprising the dorsal anterior cingulate cortex
(dACC) and bilateral anterior insula (AI). The other one is
called the frontoparietal attention system that can be further
divided into the dorsal attention network (DAN) [6, 12, 13],
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anchored in the bilateral frontal eye field (FEF) and intrapari-
etal sulcus (IPS), and the ventral attention network (VAN) [6,
12, 13], anchored in the right middle frontal gyrus (MFG) and
right temporoparietal junction (TPJ). Although these cortical
networks were frequently mentioned in attention and cogni-
tive control related task-activation studies and resting-state
analysis [14-16], their functional roles and how they interact
with each other still need further elucidation. For example,
whether the top-down control signals come from DAN or
CON remains debated [17].

An attention networks hypothesis proposes that the top-
down control signals from DAN enable better processing of
current focus, while VAN works as a filter sending bottom-
up interference when distractors are salient or behaviorally
relevant and may cause attention reorientation [17-19]. This
hypothesis was supported by studies with various method-
ologies such as lesion investigation [20], effective connec-
tivity analysis based on both functional magnetic resonance
imaging (fMRI) [21-23] and electroencephalographic (EEG)
source localization [24].

In addition to the interaction within the frontoparietal
network, the salience network hypothesis proposes that CON
underlies the function of saliency detection, which regulates
both stimuli selection and focusing of attention [25, 26]. On
the other hand, Dosenbach and his colleagues emphasized
the goal-directed aspect of CON and proposed that the CON
works as a core control center for implementing top-down
task control in all kinds of attention-demanding tasks [7].
Structural and functional connectivity studies on both brain-
damaged patients [27, 28] and normal participants perform-
ing high demanding tasks [29, 30] showed that interference
to CON contributes to inferior behavioral performance, indi-
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cating that CON may underlie the top-down control, which
regulates task-negative activities to prevent internal interfer-
ence to attention. It is worth noting that Corbetta et al. [17]
speculated that the top-down attention control signals might
come from CON besides DAN, and the interference signal
from VAN might even interfere with the task control main-
tained by CON. However, how CON interplays with DAN
and VAN remains unclear.

The relationship between those task-positive networks in
attention needs to be further elucidated. Especially, many
efforts have been made to explore how DAN and VAN in-
terplay in attention, but whether and how the third one,
CON, which was also found frequently activated in many at-
tention tasks, interplay with DAN and VAN remains largely
unknown. To address these questions, we directly exam-
ine the inter-network causal influences between CON and
DAN/VAN in attention tasks to infer the source of the top-
down regulation and that of bottom-up interference. The
current analysis, together with our previous findings re-
garding DAN-VAN interaction [22], may help to elucidate
the task-positive networks’ functional hierarchical structure.
Specifically, we accomplished the examination by analyzing
the fMRI data recorded from healthy human participants at-
tending an experiment, including multiple sessions of visual-
spatial attention tasks (The same dataset analyzed in Wen et
al., 2012) [22]. We applied General Linear Modeling (GLM)
to identify regions of interest (ROIs) in CON, DAN, and
VAN, and then assessed the directional influences between
CON and DAN/VAN using Granger causality (GC) and cor-
related those influences with behavioral performance to ad-
dress the functional significance of the directional connec-
tions. The current work adding CON to the analysis may ex-
pand the proposed attention network interaction model from
the DAN-VAN model to a CON-DAN-VAN model.

2. Material and methods
2.1 Outline

Here we provide an outline of our experimental frame-
work. The current study used the same dataset analyzed in
our previous study [22], specifically designed for Granger
causality and behavior joint analysis:

‘We preprocessed the images and carried out a GLM anal-
ysis to identify the regions of interest (ROIs).

i. We extracted and preprocessed the fMRI time series of
each ROI using Granger causality analysis (GCA) to assess
the ROIs’ directional connections.

ii. We calculated the correlation between the connection
strength and behavioral performance to assess the inter-
ROI interactions’ functional significance.

iii. We combined and averaged the forgoing inter-ROI
causal influences to yield inter-network causal influence,
with their behavioral significance being assessed by corre-
lating with behavioral performance.

The third and fourth steps aimed to intuitively depict
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the task-positive networks’ functional hierarchy during this
visual-spatial attention task.

The detailed information of the experiment and analysis
is provided below.

2.2 Participants

The current study used the same dataset analyzed in our
previous study [22].
right-handed human participants with normal or corrected-
to-normal vision participated in the experiment. All partic-
ipants had no history of taking medicine, psychiatric illness,
or any brain surgery that might affect their central neural sys-
tem. Because the attention task was very demanding and we
want to observe the natural fluctuation of behavior mainly
related to the varying attention level instead of other factors,
the participants had to be well trained and well prepared for
the six runs of task-scanning. Each participant’s training pro-
cedure included multiple out-scanner training sessions and
one in-scanner training in 2-4 days before the MRI scanning
day. Each of these training sessions lasted 0.5~1 hour. All
participants underwent a screening and a short warm-up ses-
sion before the MRI sessions. Only 13 of them finished the
whole six runs. One of them was later excluded from the anal-

Specifically, twenty young, healthy

ysis because of severe image artifacts, which reflected shadow
artifacts on both sides of the brain. The included participants
were 24 £ 1.52 years old (8 females and 4 males). All partic-
ipants signed a written informed consent beforehand, which
abided by the Helsinki Declaration, and all research activities
were authorized by the Brain Imaging Center at Beijing Nor-
mal University.

2.3 Visual-spatial attention task

The current study adopted a mixed blocked/event-related
design. The task protocol contained six runs, each with four
blocks balanced in an ABBA or BAAB arrangement to coun-
terbalance the temporal confound. The experimental time-
line is schematically illustrated in Fig. 1A. Each block lasted
one minute and was followed by a 20 second fixation pe-
riod. The attention (A) blocks and passive-view (B) blocks
shared the same timeline and stimuli except for the color of
the crosshair at the fixation point (light red and light green,
balanced across participants). In each trial of attention (A)
blocks, participants were cued to direct and maintain covert
attention to the left or right hemifield. Following a 2500 ms
delay, a standard or a target stimulus of 100 ms in duration
appeared either in the attended hemifield (valid trial) or the
unattended hemifield (invalid trial). The standard stimulus
was a circular checkerboard. The target stimulus was also a
circular checkerboard but slightly smaller than the standard
stimulus (10% smaller in radius). The standard stimulus ap-
peared 80% of the time with 50% validity, and the target stim-
ulus appeared 20% of the time with 50% validity. The trials
were pseudo-randomly arranged so that the valid trials and
the invalid trials in each block were evenly matched. Par-
ticipants were required to make a speeded keypress response
only to the valid targets. Since the proportion of valid target
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Fig. 1. Experimental paradigm: region of interest (ROI) defined using task activation and mean ROI blood oxygen level-dependent (BOLD)

changes. (A): An example of the stimulus and timeline for one of the trials in an attention block. (B): The task-positive networks activated in the current task

(T > 5.20, P < 0002, FDR corrected) are illustrated using different colors on a three-dimensional brain surface template (Caret 5 visualization software). (C):

A constant elevation in BOLD change can be observed in the attention condition for all task-positive ROIs. The gray area denotes the block period.

stimuli to all stimuli was small (10%), motor processing acti-
vation was weak at the block level. It would not affect the at-
tention task’s activation results. On the other hand, it would
avoid motor processing related component which might con-
taminate the time series for GC analysis at the block level.
In passive-view (B) blocks, the stimulus presentation sched-
ule remained the same, but neither attention nor response
was required. The participant just maintained fixation. Each
block lasted ~60 s (15 trials), with 20 s fixation periods in-
serted between successive blocks. The participants had to be
well trained and well prepared to maintain their performance
during the six runs of task-scanning, which lasted about an
hour. The training procedure of each participant included
multiple out-scanner training sessions and one in-scanner
training in the 2-4 days before the scanning day. Each of these
training sessions lasted 0.5~1 hour. The participants were
fully instructed and went through the out-scanner training
to get familiar with the task.

2.4 Data acquisition and preprocessing

All MRI data were acquired using a 3T Magnetom Trio
whole-body MRI system (Siemens AG, Erlangen, Germany)
at Beijing Normal University MRI Center. The functional
scanning was performed using a T2*-weight echo-planar
imaging sequence (echo time, 30 ms; repetition time, 2000
ms; flip angle, 90°) with 33 axial slices in each volume (field
of view, 200 X 200 mm; matrix size, 64 X 64; slice thickness,
3.60 mm; voxel size, 3.13 mm X 3.13 mm X 3.60 mm). For
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each participant, 300 whole-brain resting-state volumes (10
minutes) were recorded but were not included in the present
study. After the resting-state session, 180 whole-brain vol-
umes were recorded in each of the six task runs. Participants
were fully informed about the requirement of keeping head
still in the scanner, and the head movement was strictly con-
trolled using a set of memory foam adapters. Anatomic im-
ages were acquired with a T1-weighted 128 slice MPRAGE
sequence (repetition time, 2530 ms; echo time, 3.39 ms; flip
angle, 7°; inversion time, 1100 ms; voxel size, 1 mm x 1.33
mm X 1 mm).

The fMRI data were preprocessed using SPM8 software
(http://www fil.ion.ucl.ac.uk/spm). The preprocessing pro-
tocol included slice timing, motion correction, anatomical
co-registration, normalizing to a Montreal Neurological In-
stitute (MNI) space (voxel size, 3 mm X 3 mm X 3 mm),
and spatial smoothing using an 8 mm FWHM Gaussian core.
The scrubbing procedure, global scaling, and regression of
white matter signals, cerebrospinal fluid (CSF), and the 24
head motion parameters were applied to reduce nuisances
further. The 24 head motion parameters refer to Friston’s
24-parameter model of head motion [31, 32], which incor-
porates the 6 standard head motion parameters, the deriva-
tive of the standard motion parameters to account for a one-
frame delay in the effect of motion on the blood oxygen level-
dependent (BOLD) signal [33], and the 12 corresponding
squared items [31].
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The forgoing preprocessed data with spatial smoothing
were fed to a GLM for activation analysis and ROI selection.
The data were also preprocessed using the above steps except
spatial smoothing. These none-spatial-smoothing versions
of preprocessed data were fed to GCA for network analysis.
2.5 Defining regions of interests

To define the ROIs for network analysis, we conducted
a GLM analysis using SPM8 software. For first-level anal-
ysis, the regressor is generated by convolving the rectangu-
lar function representing the block sequence with a canonical
hemodynamic response function (HRF). The individual acti-
vation maps were generated using the contrasts of attention
condition against passive-view condition. For second-level
random effect analyses, the individual contrast maps were fed
to a one-sample t-test to yield a group-level activation map.
False discovery rate (FDR) control was applied to correct for
multiple comparisons (¢ > 5.20, P < 0.002, FDR-corrected).
The ROIs were generated by intersecting the group-level ac-
tivation map with spheres of 5 mm in radius centered at the
voxels with maxima local ¢ values.

To avoid false-positive results which may confound the
ROI selection and to make sure the ROIs defined matched
the well-proposed CON, DAN, and VAN network, we first
compared the GLM activation results with the spatial pattern
of the region associated with “spatial attention” according to
the online meta-analysis (https://neurosynth.org/, 147 stud-
ies, uniformity test, P < 0.01, FDR-corrected). Second, we
compared the GLM activation results with the classical DAN,
VAN, and CON spatial patterns reported in previous litera-
ture [6,7, 17].

2.6 Granger causality analysis

To elucidate the functional hierarchy of the task-positive
networks, a directed network model is required. We chose
GCA, which is widely used in examining the directed influ-
ence between time series to accomplish this goal [15, 22, 34-
36]. The fundamental idea of GC is if the history of time se-
ries X facilitates the prediction of time series Y’s future, then
we say there is a Granger causal influence from X to Y [37].
GC value of X—Y indicates the strength of the information
flow from X to Y.

One of the mathematical realizations of estimating the
Granger causality is comparing the autoregressive (AR) pre-
diction performance of the univariate prediction and multi-

variate regression (MVAR) performance. For example, the
GC from X to Y can be defined as

I
Fxy .y =In IT:’ (1)

where I'1 denotes the variance of the residue of the univariate
AR model fitting and I'2 the covariance of the residue matrix
of the bivariate (or multivariate) AR model fitting. More de-
tails of the mathematical realizations were provided in Wen
etal., 2013 [38].
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Assuming X is one ROl and Y being another, our GC cal-
culation between X and Y has three major steps. 1) Extracting
the time series: Time series of each voxel in X and Y were ex-
tracted from the preprocessed functional images without spa-
tial smoothing. The time series were then converted to per-
centage BOLD signal changes by subtracting the mean signal
value during the inter-block baseline fixation period and then
dividing the difference by the mean value. 2) Making the time
series stationary and zero-mean: For each voxel, each block’s
percentage change signals were averaged within each condi-
tion (attend or passive-view) to yield the block-wise BOLD
response. For the attention condition, the block-wise re-
sponse was subtracted from the percentage BOLD change in
each block and each voxel to yield residual BOLD time-series.
For each block, the residual BOLD time-series’ first five-time
points were discarded to eliminate the transient effects. The
temporal mean of the remained time points of each block was
removed to meet the zero-mean requirement assumed by au-
toregressive model estimation in GCA [34]. 3) Calculating
GC values: each voxel in X were paired with a voxel in Y,
and GC values were calculated for each voxel pair and av-
eraged across all pairs to yield overall GC values between X
and Y, including GC of X—Y and GC of Y—X. Based on the
Bayesian information criterion, the order of the AR model
was determined to be 1 [39-42].

2.7 Assessing the behavioral significance of the inter-region
interactions

Investigating the change of GC values across different
conditions on the group level is more meaningful than merely
observing the raw GC values at the individual level. The for-
mer may reveal the cognitive significance of the directional
connections and to mitigate the confounds caused by indi-
vidual differences and noise background [15, 29, 39]. Ac-
cordingly, we employed a framework to correlate behavioral
performance with the causal influence between brain regions.
The framework formed the foundation of the network con-
struction based on behavior-correlated inter-ROI connec-
tions. Specifically, for each subject, the GC values and be-
havioral performance (either accuracy or response time (RT))
for each attention block were converted into z-scores. For
the convenience of combining the two behavioral measures,
we multiplied the RT z-score by -1 so that larger scores for
both measures indicated better performance. The attention
blocks were then sorted according to z-scores and assigned
to 10 levels, each containing three neighboring blocks. The
sorting assured that the first level denoted the worst perfor-
mance (lowest accuracy or longest RT), and the last level, the
best performance (highest accuracy or shortest RT). For each
voxel pair and level, the three blocks’ GC values were aver-
aged to represent the GC strength corresponding to the per-
formance at that level. Spearman’s rank correlation analy-
sis was then performed to examine the relationship between
level-GC and level-performance, assessed using either accu-
racy or RT.
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Both activation analysis and GCA were calculated at the
block level. Therefore, all events were included in GLM and
GC estimation. When calculating block-level mean RT, the
responses to standard stimuli (false alarm) were excluded.
However, the RT of the trials of the missing target was set
at 2 times the participant’s average hit RT because previous
behavioral studies have shown that in visual-motor experi-
ments, RT in target-absent trials is usually twice as long as
the average RT of hit trials [43, 44].

To identify whether a directional connection, for exam-
ple, A—B, was behaviorally significant, we combined the
GC-accuracy and GC-RT correlation results. Specifically,
if the GC value of A—B and accuracy or RT (or both)
were significantly positive at P < 0.05, A—B was behavior-
enhancing; in other words, a stronger A—B was associated
with better performance. By contrast, if the GC value and
accuracy or RT (or both) were significantly negative at P
< 0.05, A—B was behavior-degrading; in other words, a
stronger A—B was associated with worse performance. If a
correlation was significantly positive for one behavioral mea-
sure but significantly negative for the other, the directional
connection’s role was considered ambiguous. We observed
no ambiguous connections in our study.

2.8 Assessing the behavioral significance of the inter-network
interactions

The GC values of all cross-network ROI-pairs were cal-
culated and averaged to yield the network-pairs’ GC values.
For example, let A and B be two separate networks and a;
be the ith ROIl'in A, and by, the jth ROI in B. We calculated
the GC values of a; — b; for all i-j combinations and those
in the opposite direction to yield the inter-network GC of
A—B and B—A, respectively. The inter-network GC values
were then correlated with the behavioral performance using
the same conventions introduced above to identify behavior-
significant interactions on the inter-network level.

3. Results

Twelve subjects performed the experiment according to
instructions. For each subject, reaction time and response ac-
curacy varied from block to block. The mean reaction time
was 426.80 £ 47.45 ms, and the mean accuracy was 82.13 +
8.76%.

3.1 Task positive activation and regions of interest

The GLM analysis yielded an activation map highlighting
three major task-positive networks: CON, DAN, and VAN
(t > 5.20, P < 0.002, FDR-corrected). The activation of
the CON comprised dACC and bilateral Al [7, 26]; the ac-
tivation of the DAN comprised the bilateral FEF and IPS;
and the activation of the VAN comprised the right anterior
MFG (raMFG), the right posterior MFG (rpMFG), and TPJ
(Fig. 1B) [6], were all observed. The coordinates of the center
voxels of the ROIs are listed in Table 1. The mean percent-
ages of BOLD signal changes extracted from these regions
showed a constant elevation in attention condition (Fig. 1C).
Among the 10 ROIs, the dACC and right Al (rAl) had the
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Table 1. Center coordinates of the ROIs

MNI coordinate (mm)

Network ROIName tvalue P (FDR)
x y z
dACC 14.64 < 0.0002 6 12 48
CON r Al 16.57 < 0.0002 36 27 6
1AL 14.11 < 0.0002 -30 21 0
r FEF 10.68 < 0.0002 30 0 57
DAN 1 FEF 9.63 < 0.0002 -30 3 54
r IPS 18.38 < 0.0002 42 -48 51
11PS 12.90 < 0.0002 -30 63 54
r pMFG 16.56 < 0.0002 45 15 27
VAN raMFG 11.48 < 0.0002 42 51 21
r TPJ 9.88 < 0.0002 42 -48 36

Abbreviations: Al, anterior insula; aMFG, anterior middle frontal
gyrus; CON, cingulo-opercular network; dACC, dorsal anterior cingu-
late cortex; DAN, dorsal attention network; FEF, frontal eye field; IPS,
intraparietal sulcus; 1, left; pMFG, posterior middle frontal gyrus; r,

right; TPJ, temporoparietal junction; VAN, ventral attention network.

most robust signal increases in the attention condition. Be-
sides, comparing the activation results with the meta-analysis
of spatial attention tasks, we found that the activation pattern
was consistent with the classical networks significantly acti-
vated in previous spatial attention tasks (Fig. 2). The group
activation results were also consistent with the classical DAN,
VAN, and CON spatial patterns reported in previous litera-
ture [6, 7, 17] (Fig. 1B).

3.2 Behavioral significance of the inter-region interactions

To assess the causal connections between different net-
works’ ROIs and the behavioral significance of those connec-
tions, we calculated the GC values between the ROIs and cor-
related these values with behavioral performance (see Meth-
ods section for details). Since we previously investigated the
causal interactions between DAN and VAN, we did not re-
peat these calculations [22]. The current work mainly fo-
cused on the connections between CON and DAN/VAN,
which were not assessed in our previous studies and were less
often discussed in other studies. The causal connections sig-
nificantly correlated with behavioral performance are shown
in Fig. 3A. Generally, most of the behaviorally significant
causal connections from the CON ROIs to the DAN and
VAN ROIs were behavior-enhancing. In the opposite direc-
tion, the behavioral significance became inconsistent across
the ROI-pairs. The connections from the bilateral FEF or
raMFG to the dACC and those from the left IPS (IIPS) or
the right temporoparietal junction (rTPJ) to the rAl were
behavior-degrading, while most of the connections from the
bilateral FEF or rIPS to the AI were behavior-enhancing.
Fig. 3B illustrated an example of identifying behaviorally sig-
nificant connections between dACC and rFEF in which the
causal influence of dACC—rFEF was significantly and posi-
tively correlated with the RT score, while that in the opposite
direction was significantly and negatively correlated with the
RT score.
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Fig. 2. Comparing the group activation results of the current spatial-attention task with the spatial pattern of the regions associated with

“spatial attention” according to the online meta-analysis (https://neurosynth.org/, 147 studies, uniformity test, P < 0.01, FDR-corrected).

3.3 Behavioral significance of the inter-network interactions

The inter-ROI causal influences were averaged within
four categories CON—DAN, DAN—CON, CON—VAN,
and VAN—CON-to assess network-level interactions. Anal-
ysis of the correlations of the inter-network interactions
with the behavioral performance showed that stronger
CON—DAN and CON—VAN were associated with higher
accuracy (d{ACC—AI R = 0.92, P = 0.00047, uncorrected;
dACC—VAN, R = 0.66, P = 0.044, uncorrected; scatter
plot in Fig. 2B, left and middle panels). By contrast, a
stronger VAN—CON was associated with lower accuracy (R
= -0.82, P = 0.0068 uncorrected; see Fig. 2B, right panel).
The results showed different behavior consequences be-
tween DAN—CON and VAN—CON. The pattern of behav-
iorally significant network interactions between CON and
DAN/VAN was intuitively depicted in Fig. 3C.

4, Discussion

We used fMRI and Granger-causality-based network-
behavioral joint analysis to examine the visual-spatial
attention-related network’s functional hierarchy. Our ex-
amination of the block-level activation showed sustained ac-
tivation of the three proposed networks. They included
the cingulo-opercular network (CON), dorsal attention net-
work (DAN), and ventral attention network (VAN). The
results were consistent with previous literature [6, 7, 17]
and enabled the following Granger-causality-based neural-
behavioral analysis. By assessing the causal influence be-
tween CON and DAN/VAN and correlating those influ-
ences with behavioral performance, we observed behavior-
enhancing influences from CON to DAN and VAN and

48

behavior-degrading influences from VAN to CON on both
inter-ROI level and inter-network level.

4.1 Task activation and the ROIs

During attention blocks, the participants frequently di-
rected attention according to cue and maintained attention
for seconds (top-down attention control) and frequently be
affected by invalid stimulus (bottom-up interference), which
cause interference even reorienting. The three processes
were proposed to activate CON, DAN, and VAN. By con-
trasting the attention blocks against the passive view blocks,
our primary purpose is to validate the three networks’ activa-
tion and provide reliable ROIs for GC analysis rather than in-
specting complex visual-spatial components at the trial level,
which is not the focus of the current study and had been
done by many previous studies. To avoid defining ROIs
based on false-positive activation results, we carefully com-
pared the current study’s activation map with those indepen-
dently reported in previous literature, especially those dedi-
cated to defining the classical DAN, VAN, and CON accord-
ing [6, 7, 17, 18, 45]. Our results of the activation were con-
sistent with the previous studies. Further comparison with
the meta-analysis could be regarded as a double-check of the
ROI selection efficacy (Fig. 2).

4.2 Top-down influence from CON to the frontoparietal attention
system

Visual attention is considered to be controlled by the fron-
toparietal attention system, including the DAN and VAN.
The CON is thought to integrate internal and extra personal
information to regulate other brain areas and guide behav-
ior, which is crucial for task-control [8, 46, 47]. On the
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are the same as above. (C): A schematic depiction of the behaviorally significant causal interactions between the CON and the other two task-positive networks.
Red color denotes behavior-enhancement, and blue denotes behavior-degradation. The previously reported [22] causal interactions between DAN and VAN

and their behavioral significance were also displayed.

other hand, the DAN initiates and maintains goal-directed The findings that stronger CON—DAN leads to better be-
top-down signals important for attention control [17, 48, 49]. havioral performance suggests a network-level mechanism in

Volume 20, Number1, 2021 49



which top-down control signals pass from the CON to the
DAN. Consistent with previous fMRI studies, the top-down
influences of the CON contribute to goal-oriented behavior
in task-relevant information [25, 50].

The finding that stronger CON—VAN was associated
with behavior enhancement implies the presence of top-
down control signals from the CON to VAN to filter behav-
iorally irrelevant input and enhance the efficacy of attention
processing in the attended domain [17, 45]. On the patholog-
ical level, attention deficit hyperactivity disorder (ADHD) pa-
tients showed an abnormally heightened processing of irrel-
evant information, while interference control was continu-
ously compromised. Moreover, ADHD patients have shown
reduced activation in dACC than in healthy controls [51-53].

4.3 Bottom-up interference from VAN

Our results also showed bidirectional interactions be-
tween VAN and CON. Emerging evidence has shown that at-
tention reoriented to a new source output from the VAN in-
terrupts ongoing selection in the DAN, which, in turn, shifts
the attention toward the novel object of interest [15, 22].
Our results showed that a stronger VAN—CON was asso-
ciated with lower accuracy, reflecting the interference effect
of VAN. The result, together with our previous finding [22],
indicates that VAN not only sends bottom-up interference to
DAN but also to CON, disrupts the processing conducted by
CON in attention-demanding tasks, thus potentially acting as
a “circuit breaker”.

44 Summary

Our results demonstrated the relationship between CON
and the frontoparietal attention system, and we further pro-
posed a functional hierarchy model in the visual attention
task. Our previous study emphasized the relationship be-
tween DAN and VAN [22]. Combined with the present re-
sults, the CON appeared to be the highest-ranking network
in the hierarchy, suggesting that it may regulate the fron-
toparietal attention network by transmitting top-down sig-
nals to accomplish attention goals. Generally, the top-down
processing from the CON to the DAN specializes in select-
ing and linking stimuli and responses to guarantee attention
performance. In contrast, the CON regulation of top-down
signals prevents interference by VAN to ignore distraction.
VAN may also break the attentional set maintained by CON
to enable attentional reorienting. These findings add to our
understanding of the brain’s functional hierarchy from the
perspective of network connectivity.

4.5 Methodological considerations

Granger causality analysis was employed in the present
study to construct a functional hierarchy network employing
BOLD fMRI data during the attention task. Granger causality
analysis is an exploratory approach, which is not restricted to
the preselection of interacting regions and assumptions about
the structure and the direction between the brain regions.
Therefore, GCA (unlike SEM and dynamic causal modeling
(DCM)) does not appear to have the issues of the model’s mis-
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specification and inaccurate results [39]. While the applica-
bility of Granger causality to fMRI data is debated [54], it is
noteworthy that from a statistical point of view, if a time se-
ries is analyzable by functional connectivity measures such as
temporal correlation and coherence [55], it is analyzable by
Granger causality. Recent work shows that both resting-state
and task-state fMRI data are well described by autoregressive
models, which are the basis for deriving Granger causality
[9, 40, 41, 56].

GCA is suggested vulnerable to noise [54] and sometimes
limited by the AR model order. However, by applying GCA,
the information streams between ROIs would be more di-
rectly measured and intuitively displayed. When ROI A is
influencing ROI B, which means there is a steady informa-
tion stream from A to B. Thus, when predicting ROI B’s fu-
ture activity, the activity of ROI A would contribute to the
prediction in addition to using the history of ROI B merely.
By applying GCA, such an information stream could be quan-
tified by the coefficient of the history of A on future B, which
reveals the synchrony of activation and reflects dependencies
between ROIs. In the present study, GCA is used to build the
hierarchy of task-positive networks, which not only depicted
the organization of the structure but also demonstrated the
information streams and provided the bases for further anal-
yses on the functions of the ROIs (i.e., target brain regions)
in a visual-spatial attention task.

It is worth noting that avoiding false-positive results in
the first step of ROI definition using GLM activation result
is crucial for the subsequent analysis [57]. Therefore, we did
not define the ROI only by considering the task GLM activa-
tion results based on the current dataset. In practice, we care-
fully compare the current study’s activation map with those
independently reported in previous literature and the activa-
tion map by meta-analysis (see Method). As mentioned, our
activation results were consistent with the previous studies
in the literature and the meta-analysis, which excluded false-
positive confound.

Our GC analysis did not rely on the same information that
the GLM analysis relied on. Traditionally, we represent the
regional BOLD activity as y(t) = x(t) + €(t), where x(t) de-
notes the task-evoked amplitude change of the BOLD sig-
nal, which is mainly considered in GLM analysis, and €(t) is
considered as noise. Further, according to previous studies
[29, 58], €(t) includes the so-called ongoing activity s(t) and
the true noise n(t), and s(t) comprises subtle temporal infor-
mation that may infer the information transmitting between
the brain regions. Therefore, the representation of BOLD
activity can be reframed as y(t) = x(t) + s(t) + n(t). The GC
analysis only focused on €(t), independent of the task-evoked
component x(t). The results of the GLM, which is a univari-
ate analysis, does not affect the strength of GC, which exam-
ines the temporal interdependence between ongoing activ-
ities of two regions and falls into the scope of multivariate
analysis.
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4.6 Limitations and future research directions

Although the number of participants was a limitation of
our study, we adopted a mixed blocked/event-related design,
which allowed us to reveal the target networks’ hierarchy.
The experiment was designed specifically for GC-behavior
joint analysis, which is suitable for evaluating the behav-
ior significance of effective connectivities. First, the exper-
iment had to contain a sufficient number of blocks for a sin-
gle condition (12 attention blocks in six runs in our case); the
more blocks, the merrier. Second, each block needed to be
sufficiently long for GC estimation; the longer, the better.
Third, because the attention task was very demanding and we
wanted to observe the natural fluctuation of behavior mainly
related to the varying strength of GC rather than other fac-
tors, the participants had to be well trained and well prepared
to maintain their performance during the six runs of task-
scanning, which lasted for approximately 1 hour. The first
and the second methodological demands linked to the third
practical issue greatly limited our ability to employ this kind
of design in massive recoding studies.

The second limitation is that we could only perform GC-
behavior joint analysis on the block level signals, which con-
tain frequent trial events. By itself, the current GC-behavior
joint analysis cannot distinguish whether the control signal
is related to the task level control or the trial level control.
Although CON is considered to perform at the task-level [7],
while the interaction between DAN and VAN is discussed at
the trial-level [6, 17], and it is possible that the causal influ-
ence exerted from CON may reflect task-level control signals,
while those from DAN and VAN may reflect trial-level con-
trol signals, a more sophisticated framework that could elab-
orate the control signals on trial-level is still needed in future
studies.

It is worth noting that the current study only considered
a specific visual spatial-attention task paradigm. Whether
this functional hierarchy survives other attention paradigms
such as visual feature attention paradigm, auditory attention
paradigm, or even other attention-demanding paradigms re-
mains unclear. Therefore, studies using more sophisticated
designs, a larger sample size, and more attention paradigms
should be carried out to elucidate further the generality of the
functional hierarchy of CON, DAN, and VAN in the future.

5. Conclusions

This study obtained significant findings in its assessment
of the functional hierarchy of the CON and frontoparietal at-
tention network in the context of behavior-correlated causal
interactions. We found that the CON and the DAN may
regulate the VAN activity by top-down signals, whereas the
VAN exerted a bottom-up influence on the activity of the
Based on fMRI data with Granger
causality analysis, our findings suggested a hierarchy of
behavior-correlated causal influence among CON, DAN, and
VAN.

other two networks.
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