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Alzheimer's disease is an age-dependent neurodegenerative disease.
Recently, different non-coding RNAs (ncRNAs), including microR-
NAs, long non-coding RNAs, and circular RNAs, have been found to
contribute to Alzheimer's disease's pathogenesis. Extracellular vehi-
cles could be enriched in ncRNAs and in their role in mediating in-
tercellular communication. Signatures of extracellular vesicular ncR-
NAs have shown them to be a potential biomarkerin Alzheimer's dis-
ease. This perspective discusses the potential role of extracellular ve-
hicle ncRNAs in Alzheimer's disease, providing a theoretical basis for
extracellular vesicular ncRNAs in Alzheimer's disease, from patho-
genesis to diagnosis and treatment.

Keywords

Alzheimer's disease; Non-coding RNA; Extracellular vesicle; Exosome

1. Introduction

Alzheimer’s disease (AD) is an age-dependent neurode-
generative disease with a prevalence rate of 32% in people
aged 85 or older, accounting for 60-80% of all dementia cases.
AD is characterized by the occurrence of senile plaques (SPs)
and neurofibrillary tangles (NFTs), synaptic dysfunction,
neuronal death, chronic inflammation and brain atrophy [1].
SPs are composed of amyloid-beta (A3) oligomers that in-
terfere with neuronal communication at synapses and lead to
synaptic dysfunction and neuronal death. In the amyloido-
genic pathway, amyloid precursor protein (APP) is cleaved
by (-secretase (BACE1) and 7y-secretase sequentially to re-
lease Af in the extracellular space. In contrast, in the non-
amyloidogenic pathway, APP is cleaved by a-secretase to pre-
vent Af generation. NFTs are formed by the hyperphospho-
rylation of microtubule-stabilizing tau protein, which blocks
the intracellular transport of essential molecules, leading to
destabilization of microtubules. Older age, family history, ge-
netics, and certain lifestyle factors are the main risk factors for
late-onset AD [2].

With the advances in next-generation sequencing (NGS)
techniques, several novel classes of non-coding RNAs (ncR-
NAs) have emerged, including microRNAs (miRNAs), circu-
lar RNAs (circRNAs) and long non-coding RNAs (IncRNAs)
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[3]. miRNAs are 17~22 nucleotides in length and suppress
target gene expression via binding to the 3/-untranslated re-
gion (3’-UTR) of the target gene, leading to mRNA decay
or translation inhibition [4]. A miRNA may target several
genes, and similarly, a single gene may be regulated by sev-
eral miRNAs [5]. IncRNAs are a diverse group of ncRNAs
of lengths longer than 200 nucleotides, mainly transcribed
by RNA polymerase II. IncRNAs can be grouped into five
main categories according to their location relative to coding
loci: sense, antisense, bi-directional, intergenic, and intronic.
IncRNAs can act as epigenetic modulators and can promote
or suppress transcription, splice or translate, through four
main mechanisms: (1) guiding specific proteins; (2) binding
to and inhibiting a protein target; (3) serving as a scaffold; and
(4) acting as a cellular signal [6]. The IncRNA BACE1-AS has
recently been found to mediate AS-induced neuronal injury
via autophagy regulation in AD [7].
terized by their covalently closed circular structure and are
expressed in tissue-specific and cell-specific manners. circR-
NAs can function as miRNA or RNA binding protein (RBP)
sponges, enhance particular proteins’ function, act as protein
scaffolds, recruit specific proteins, or serve as templates for
translation [8]. Dysregulation of ncRNAs occurs in AD, pos-
sibly even in the early stage [9, 10]. Moreover, all three of
these types of ncRNAs are involved in AD pathogenesis [11-
14]. Several ncRNAs identified in serum or cerebrospinal
fluid (CSF) have been regarded as potential biomarkers for
AD [15-19]. Dysregulation of ncRNAs in EVs have been
identified in both serum and CSF in AD patients [16, 17, 20—
22].

Extracellular vehicles (EVs) are heterogeneous membra-
nous structures of endosomal origin circulating in the extra-
cellular space, considered a novel mode of intercellular com-
munication. EVs comprise a diversity of subpopulations dis-
tinguished by their size, morphology, composition, biologi-
cal origin and function. EVs can be broadly divided into mi-
crovesicles (MVs) and exosomes. MVs are 50-500 nm in di-
ameter and are secreted directly from the plasma membrane

circRNAs are charac-
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Fig. 1. Schematic representation of EVs biogenesis and release. Exosomes are generated within MVBs and transported to the plasma membrane. MVB
biogenesis is regulated by nSMas2, ESCRTs, Vps4, ALIX, syndecan-syntenin, ARF6, and PLD2. MVB trafficking, docking and fusion are controlled by
kinesins, Arl8, RABs, and SNARE proteins. MVs bud directly from the plasma membrane [26].

by outward budding. Exosomes are 50-150 nm in diameter
and are secreted from the plasma membrane through fusion
with multivesicular bodies (MVBs) or late endosomes. EVs
circulate in various biological fluids and deliver their contents
to recipient cells to elicit functional responses. EV's carry spe-
cific proteins, lipids or RNA species, which determine their
fate and functions in turn. In the brain, several cell types are
capable of releasing EVs. EVs derived from microglia, which
account for approximately 10% of the brain’s cells, are con-
sidered part of the inflammatory response. Moreover, oligo-
dendrocytes, neurons, astrocytes, and embryonic neural stem
cells have been described to release EVs [23, 24].

2. Biogenesis and release of extracellular
vesicles
2.1 Biogenesis and release of exosomes

The biogenesis of exosomes starts within the endoso-
mal system. Several cellular steps are needed to release ex-
osomes, including the generation of intraluminal vesicles
(ILVs) within MVBs, MVB trafficking along microtubules,
and docking and fusion between the plasma membrane and
MVBs (Fig. 1). Lipid raft microdomains play a critical role
in MVB formation. Neutral sphingomyelinase 2 (nSMase2)
mediated generation of ceramide from sphingomyelin hy-
drolysis induces negative membrane curvature and leads to
ILV budding into MVBs [25].

The ESCRT machinery is essential for ubiquitination de-
pendent MVB biogenesis from endosome-derived vesicles.
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The ESCRT system consists of ESCRT-0 (tumor suscepti-
bility 101, TSG101), ESCRT-I (Signal transducing adapter
molecule 1, STAM1), ESCRT-II (Vacuolar protein sorting
25, Vps25), ESCRT-III (Vps20, Vps24, Vps2, and Vacuolar
sorting protein, Snf7) and ATPase Vps4 complex. ESCRT-0
and ESCRT-I recognize and retain ubiquitylated transmem-
brane cargoes on the limiting membrane into MVBs and re-
cruit ESCRT-II/III subcomplexes form a spiral-shaped struc-
ture. The ESCRT-III associated ALIX (ALG-2 interacting
protein X) affects specific cargo selection [26, 27].

Ubiquitination independent MVB biogenesis has also
been extensively described. Syndecan clustering was trig-
gered by heparanase mediated trimming of heparan sulfate
chains. Syntenin further binds syndecan to ALIX and par-
ticipates in exosome formation mediated by ESCRT-III. Se-
lective cargo sorting of CD63 incorporation into exosomes is
regulated by the small GTPase ARF6 (ADP ribosylation fac-
tor 6) and the effector protein PLD2 (phospholipase D2) [28].

Upon maturation, MVBs can be transported to the
plasma membrane along microtubules by multiple kinesin
isoforms to secrete exosomes. MVBs transportation, dock-
ing, and fusion are regulated by Arl8 (ADP ribosylation
factor-like 8), Rabs (RAB7, RAB27, RAB35), and SNARE
complexes (YKT6, Syntaxin-la, Syntaxin-4, Syntaxin-5,
synaptotagmin-7, SNAP23, and VAMP?7) [29].
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Table 1. Dysregulated extracellular vesicular ncRNAs in AD

Source ncRNA Change Ref
miR-424-5p, miR-3065-5p, miR-93-5 u

plasma EVs ) P ] P ) P i [45]
miR-1306-5p, miR-342-3p, miR-15b-3p down

plasma EVs miR-23a-3p, miR-126-3p, let-7i-5p, miR-151a-3p down [44]
miR-135a, miR-384 up

plasma exosome . [47]
miR-193b down

plasma exosome miR-193b down [53]
miR-132 up

plasma neural exosome ) [67,71]
miR-212 down

CSF exosome miR-27a-3p, miR-30a-5p, miR-34c up [68,72]
miR-125b-5 ]

CSF exosome P P [17]
miR-451a, miR-605-5p down

CSF exosome miR-193b down [53]

CSF exosome IncRNA RP11-462G22.1, IncRNA PCA3 up [35]

2.2 Biogenesis and release of microvesicles

The diameter of MVs are incredibly heterogeneous, rang-
ing from 50 nm to 1,000 nm (up to 10 ym). MVs are gener-
ated through the direct outward budding of the plasma mem-
brane via several distinct mechanisms involved in the bio-
genesis of exosomes, such as the ESCRT machinery (Fig. 1).
Similar to nSMase2, acid sphingomyelinase (aSMase) induces
MYV production in a ceramide-dependent manner. Another
mechanism of MV biogenesis involves non-apoptotic plasma
membrane blebs, which expand and retract at the cell sur-
face. These can be released as MVs via actin cytoskeleton
and plasmatic membrane rearrangements. Both cargo sort-
ing and MV shedding are tightly controlled by several small
GTPases, including ARF1, ARF62, RAB22, Racl (Rac family
small GTPase 1), and RhoA [26].

3. Dysregulated extracellular vesicular
ncRNAs in AD

We searched studies on the PubMed database using the
following keywords: extracellular Vesicle, EV, exosome, mi-
crovesicle, MVB, circular RNA, circRNA, Alzheimer’s dis-
ease, and AD. EVs mediate horizontal transfer of RNA be-
tween donor and recipient cells, as first identified by Valadi
et al. [30] and Skog et al. [31]. ncRNAs are highly enriched
in EVs. Pegtel et al. [32] reported the exosome-mediated
miRNA transfer from Epstein-Barr virus-infected cells to un-
infected recipient dendritic cells. These transferred miRNAs
can regulate the gene expression of recipient cells [32]. RNA
sequencing of EVs has revealed abundant IncRNA and cir-
cRNA in human blood [33]. Dysregulation of extracellular
vesicular ncRNA has been identified in several neurodegen-
erative disorders, including AD. Two IncRNAs, PCA3 and
RP11-462G22.1, were increased in Parkinson’s disease (PD)
leukocytes [34]. Similarly, Gui etal. [35] found that these two
IncRNAs were also elevated in CSF exosomes in AD and PD.
Known dysregulated miRNAs and IncRNAs verified by RT-
PCR from serum EVs, serum exosomes, and CSF exosomes
are summarized in Table 1.
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4. Role of extracellular vesicular ncRNAs in
AD

Extracellular vesicular ncRNAs are shuttled between
donor and recipient cells and function actively in recipient
cells, suggesting a novel mechanism of intercellular commu-
nication [36]. Since the first discovery of EVs in AD phys-
iopathology, their multifaceted roles in this setting have been
explored [37], including their role in mediating neuroinflam-
mation [38]. Exosomal miRNAs occurring in the blood have
been investigated, and those from the central nervous system
(CNS), including neurons, astrocytes, and CSF. They are con-
sidered promising diagnostic biomarkers in AD, as detected
by RT-PCR or deep sequencing [20, 39-41]. Moreover, ex-
osomes derived from the CNS have also been isolated in the
blood (termed plasma-derived neural exosomes), furthering
their appeal as target biomarkers in AD [42].

EV miRNAs may be potential biomarkers for the differ-
ential diagnosis of AD (Fig. 2). Lugli et al. [40] applied NGS
to investigate the differently expressed serum exosomal miR-
NAsin AD relative to controls, identifying 20 miRNAs. miR-
342-3p was highlighted particularly, given that its downreg-
ulation has also been reported in previous studies. Cheng et
al. [43] explored serum exosomal miRNA expression in AD
from the AIBL cohort and identified 17 dysregulated serum
exosomal miRNAs. Both [40] and [43] support the poten-
tial biomarker capability of miR-342-3p. Another two miR-
NAs, miR-21-5p and miR-451a, were found to be decreased
in plasma EVs in AD relative to those in dementia with Lewy
bodies (DLB), with area under curve (AUC) values of 0.93
and 0.95, respectively, suggesting these could be potential
biomarkers to discriminate these diseases [44]. Li et al. [45]
examined the expression of 18 miRNAs in plasma EVs in
vascular dementia (VD), AD, and mild cognitive impairment
(MCI). They found that among the three miRNAs found to
be decreased in AD compared to healthy control, only miR-
1306-5p was differentially expressed between AD, MCI, and
VD.
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Fig. 2. Role of EV miRNAs in the differential diagnosis of AD. Blue
color represents serum EVs, and orange color represents CSF EVs. EV miR-
NAs in red color were upregulated in AD, while EV miRNAs in green were

downregulated in AD.

Moreover, upregulation of miR-424-5p, miR-93-5p, and
miR-3065-5p might predict AD over other forms of demen-
tia and healthy control [45]. Barbagallo et al. [46] found
that miR-34b in serum exosomes was higher in AD than VD.
Yang et al. examined the expression of miR-193b, miR-135a,
and miR-384 in plasma exosomes from MCI, AD, PD, and
VD patients, finding that miR-384 may be the best miRNA
discriminating AD, PD, and VD [47]. Wei et al. [48] exam-
ined three miRNAs in plasma exosomes from dementia and
controls, finding that miR-223 in AD was lower than in VD.
Moreover, the miR-223 in untreated AD patients was signif-
icantly lower than those who had already received medical
care. Schneider et al. [49] examined the expression of 752
miRNAs in CSF exosomes in the GENFI AD cohort and spo-
radic frontotemporal dementia (FTD). mir-632 was signifi-
cantly increased in AD compared with sporadic FTD, with
an AUC value of 0.88.

Dysregulated EV ncRNAs have been linked to AD patho-
genesis (Fig. 3). miR-15b-3p, miR-342-3p, and miR-1306-5p
from plasma EVs are decreased in AD patients [43]. miR-
1306 suppresses the expression of a-secretase ADAMI10 in
SH-SY5Y cells [50]. Deregulation of miR-342-3p reduces A3
plaques and ameliorates learning and memory deficit in AD
[51]. miR-126-3p, which is decreased in AD in plasma EVs,
targets TOM1 (target of mybl membrane trafficking pro-
tein) and regulates neuronal accumulation of Af3 oligomers
[52]. miR-193b was found to inhibit mRNA and protein ex-
pression of APP [53]. Inhibition of miR-132/212 impairs S-
nitrosylation balance and induces NOS1-dependent tau phos-
phorylation in AD [54]. MiR-34c, which is increased in AD
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Fig. 3. Role of EV miRNAs in the pathogenesis of AD. EV miRNAs in red
color were promotive, while EV miRNAs in green color were suppressive

for the complementary aspects.

in CSF exosomes, induces synaptic impairment by targeting
Synaptotagmin 1 via the ROS-JNK-p53 pathway in AD [55].
miR-125b-5p ameliorates A-induced neurotoxicity by tar-
geting BACE1 [56]. Given these findings, changes in ncRNA
levels associated with AD may give rise to the various phe-
nomena witnessed in the disease course, such as neuronal
death, synaptic impairment, and inflammation.

5. The therapeutical potential of EV ncRNA
for AD

The blood-brain barrier comprises specialized endothe-
lial cells that interface with astrocytes and pericytes to keep
an optimal environment for neuronal function by supplying
nutrients and other metabolic requirements while eliminat-
ing toxic substances. The blood-brain barrier makes the de-
livery of therapeutics to the CNS challenging, however. Ef-
ficient delivery of drugs to the CNS is limited to lipophilic
compounds of no more than 400 Da [57]. Rabies virus gly-
coprotein (RVG) can target the brain specifically, as demon-
strated in previous studies in which RVG was engineered to
localize at the surface of EVs by fused protein RVG-Lamp2b
(lysosome-associated membrane glycoprotein 2b) [58]. Yang
[59] co-transfected RVG-Lamp2b and circSCMH1
overexpressing plasmids into HEK293T cells to collect EVs
containing circSCMH1. These collected EVs were labeled
with Dil and injected into mice via the tail vein. In the brain,
the Dil™ particles were observed in neurons, astrocytes, and
microglial cells. EV delivery of circSCMHI1 resulted in im-
proved brain plasticity after stroke in monkeys. This study
implies that engineered EVs may have therapeutic potential
in delivering ncRNAs in neurological disorders [59]. So far,

et al.
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attempts to design drugs to target AS or tau have not been de-
cisive. Mesenchymal stem cell (MSC) derived EV's were con-
sidered an alternative AD treatment approach [60-62]. Cui
et al. [63] found that exosomes from hypoxia-preconditioned
MSCs (PC-MSCs) could rescue cognition and memory im-
pairment of APP/PS1 mice via the regulation of inflamma-
tory responses and the restoration of synaptic dysfunction
through increasing miR-21 level. Moreover, they also used
RVG to target MSC derived exosomes, delivering exosomes
into APP/PS1 mice’s brain for AD treatment [64].

6. Conclusions and perspectives

There has been an exponential increase in studies of the
roles of EVs and extracellular vesicular ncRNAs in the patho-
genesis of AD and their biomarker potential. Extracellu-
lar vesicular ncRNAs appear to be attractive novel biomark-
ers for diagnosing and discriminating AD, VD, and MCL
Biomarkers based on serum EV ncRNA deserve further in-
vestigation. Recent studies investigating EV ncRNAs mainly
focused on miRNAs. The roles of EV related IncRNA and
circRNA are as yet rarely explored.

Some challenges remain, however. Microglial EVs play a
beneficial role in the early stage of AD while having a detri-
mental action in the later stages [65, 69]. The detailed roles of
EVs from different sources and at different stages of AD are
still unknown. Moreover, the different sorting mechanisms
of MVB biogenesis determine the incorporation of specific
cargo, but the detailed mechanisms involved in the selec-
tive sorting of ncRNAs remain unclear. Riancho et al. [66]
compared miRNA levels in exosome-enriched CSF fractions
with miRNAs in raw CSF samples, finding that miR-598 and
miR-9-5p were shifted from raw CSF to exosome-enriched
CSF fractions in AD, indicating that the changes of exosomal
miRNAs may be caused by altered exosome trafficking. [70]
circRNAs from EVs in AD has not yet been reported, while
miRNAs have been widely studied. Exosome-mediated deliv-
ery of ncRNAs for the treatment of AD also deserves further
investigation. Further studies may improve our understand-
ing of the role of EVs and extracellular vesicular ncRNAs in
both the etiology and progression of AD.
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