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This article describes neural models of attention. Since attention is
not a disembodied process, the article explains how brain processes
of consciousness, learning, expectation, attention, resonance, and
synchrony interact. These processes show how attention plays a crit-
ical role in dynamically stabilizing perceptual and cognitive learn-
ing throughout our lives. Classical concepts of object and spatial at-
tention are replaced by mechanistically precise processes of proto-
type, boundary, and surface attention. Adaptive resonances trigger
learning of bottom-up recognition categories and top-down expec-
tations that help to classify our experiences, and focus prototype at-
tention upon the patterns of critical features that predict behavioral
success. These feature-category resonances also maintain the sta-
bility of these learned memories. Different types of resonances in-
duce functionally distinct conscious experiences during seeing, hear-
ing, feeling, and knowing that are described and explained, along
with their different attentional and anatomical correlates within dif-
ferent parts of the cerebral cortex. All parts of the cerebral cortex
are organized into layered circuits. Laminar computing models show
how attention isembodied within a canonical laminar neocortical cir-
cuit design that integrates bottom-up filtering, horizontal grouping,
and top-down attentive matching. Spatial and motor processes obey
matching and learning laws that are computationally complemen-
tary to those obeyed by perceptual and cognitive processes. Their
laws adapt to bodily changes throughout life, and do not support at-
tention or conscious states.

Keywords

Attention; Learning; Adaptive resonance theory; Neural models; Cognitive pro-

cessing; Neural networks

1. Introduction
1.1 Attention is an emergent property of interacting brain
networks and systems

From our earliest years, parents and teachers may exhort
us to “pay attention” to one or another important type of
knowledge or event that we need to learn about, or action
that we need to perform. Indeed, achieving success in life
is quite unlikely unless one can pay attention to important
tasks and valued goals for long periods of time. One just has
to think about sports or the arts to realize this. The amount
of sustained attention that is needed for a baseball player, bal-
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let dancer, or virtuoso instrumentalist to achieve mastery is
often spread over years, if not a lifetime, of effort. Even more
mundane skills like learning to tie ones shoes or to drive a car
take concerted attention over a period of days or weeks.

Many factors will determine how well we succeed in
learning any of these skills. And understanding the central
role of attention in achieving success is rendered difficult by
the apparently intangible nature of this state of mind, seem-
ingly so different from the vividness of seeing a friend’s face,
hearing a favorite piece of music, knowing our own name, or
feeling a warm rush of feeling when we see someone we love.

One reason why understanding how we pay attention is
so difficult is that the act of paying attention is not separa-
ble from multiple other processes that are going on at any
time in our brains, such as seeing, hearing, knowing, or feel-
ing. Indeed, attention is an emergent property of interactions
among thousands, or even millions, of neurons within brain
networks and systems. Moreover, as I will explain below,
mechanistically distinct types of attention occur in different
brain systems. Separating them is made even more difficult
by the fact that they can all interact synchronously together
to enable us to experience a unified sense of self.

This article is devoted to providing accessible explanations
of how, where, and why attention works in our brains. Such
explanations are based on the mostly highly developed neu-
ral models of how our brains make our minds, including how
we become conscious, and how consciousness is linked to
our ability to pay attention. These models have been get-
ting incrementally developed over the past 40 years. A self-
contained and non-technical summary of brain models and
how they may be combined to make our minds can be found
in [1].

1.2 From attention to the CLEARS processes and Adaptive
Resonance Theory

Other reviews of attention can be found in Wikipedia
(https://en.wikipedia.org/wiki/Attention) and Scholarpedia
(http://www.scholarpedia.org/article/ Attention). These re-
views describe observable psychological properties of atten-
tion, but not the mechanisms that cause them or the functions
that these mechanisms carry out during behavior.
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The current article explains how attention is integrated
within interacting psychological and brain processes of Con-
sciousness, Learning, Expectation, Attention, Resonance,
and Synchrony (CLEARS). These processes, and how they
interact, are explained below. The CLEARS processes have
been modeled and simulated on the computer as part of Adap-
tive Resonance Theory (ART), which is the currently most
advanced cognitive and neural theory of how our brains
learn to attend, recognize, and predict objects and events in
a changing world that is filled with unexpected events self-
contained and non-technical exposition of ART and other
brain processes with which it interacts is found in the book
[1]. Various articles include analyses of how normal and
abnormal cognitive and emotional information processing,
learning, recognition, memory, and consciousness interact
[3-19, 28, 40]; how sequences of objects and events are
temporarily stored in cognitive or motor working mem-
ories before being chunked, or unitized, into learned se-
quence categories [21, 23, 31, 36, 39, 41]; how adaptively-
timed reinforcement learning interacts with cognitive pro-
cesses [22, 29, 30, 32, 33]; how visual grouping, attention,
perception, and search interact with ART learning processes
(25, 34, 35, 37, 38]; how auditory, speech, and language pro-
cesses are clarified by ART dynamics [2, 24, 26]; how social
cognition processes like gaze following and joint attention in-
teract with ART dynamics [27]; and how ART may be used to
design autonomous adaptive algorithms and robots for tech-
nology [20].

1.3 ART uniquely follows from a thought experiment about
correcting errors in a dhanging world

ART is not “just another” neural model. It has been de-
rived from a Gedanken, or thought, experiment as the unique
solution of the universal problem of how predictive errors
can be autonomously corrected in a changing world [12].
The hypotheses from which the thought experiment is de-
rived are, moreover, just a few familiar facts that we know
from our daily lives. These facts are familiar because they are
ubiquitous environmental constraints that have guided the
evolution of our brains. When these hypotheses act together,
as they regularly do in environments where individuals be-
have, they define a multiple constraint satisfaction problem
that ART uniquely solves.

Grossberg ([12], p. 7) summarizes this evolutionary chal-
lenge as follows: “The importance of this issue becomes clear when
we realize that erroneous cues can accidentally be incorporated into
a code when our interactions with the environment are simple and
will only become evident when our environmental expectations be-
come more demanding. Even if our code perfectly matdied a given
environment, we would certainly make errors as the environment
itself fluctuates”.

The thought experiment translates this purely logical in-
quiry about error correction into processes operating au-
tonomously in real time with only locally computed quan-
tities. The thought experiment thus shows how, when
familiar environmental constraints on incremental knowl-

198

edge discovery are overcome in a self-organizing manner
through evolutionary selection processes, ART circuits nat-
urally emerge. As a consequence, ART architectures may, in
some form, be expected to be embodied in all future truly au-
tonomous adaptive intelligent devices, whether biological or
artificial.

14 ART is a principled biological theory. Back propagation and
Deep Learning are not

Perhaps because of the fact that ART uniquely follows
from the hypotheses of the thought experiment, all of the ba-
sic neural mechanisms that ART has proposed have been sup-
ported by psychological and neurobiological data. ART has
also provided a unified explanation of hundreds of other ex-
periments, and has also made scores of predictions that have
subsequently received experimental support, as the above
cited articles about ART illustrate.

ART is thus a principled biological theory of how our
brains learn to attend, recognize, and predict objects and
events in a changing world. It is not just an algorithm defined
by feedforward adaptive connections with no top-down at-
tentional mechanism, as it the case with many popular neu-
ral learning algorithms, including competitive learning, sim-
ulated annealing, Boltzmann Machine, back propagation, and
Deep Learning.

In particular, back propagation and Deep Learning lack a
mechanism for paying attention to predictive data and for dy-
namically stabilizing learning of it. As a result, neither back
propagation nor Deep Learning is trustworthy—because nei-
ther is explainable—nor reliable—because each can experience
catastrophic forgetting. Explainability means that the basis for
making a prediction can be explicitly derived from the state
of the algorithm. Catastrophic forgetting means that an ar-
bitrary part of an algorithm’s learned memory can unpre-
dictably collapse. Life-or-death decisions, including medical
and financial decisions, cannot confidently be made using an
algorithm with these weaknesses. Grossberg [42] explains
why back propagation and Deep Learning have these defi-
ciencies.

Many learning algorithms can be trained as classifiers, but
do not have the unique combination of properties that ART
embodies, including how attention helps to realize ART’s
ability to realize autonomous adaptive intelligence in re-
sponse to a changing world. This article summarizes how
attention does this.

Back propagation became popular in the 1980’s after a
publication by Rumelhart, Hinton, and Williams [43] ap-
plied earlier discoveries of scientists like Amari [44], Werbos
[45, 46], and Parker [47-49]. Schmidhuber [50] provides an
extensive historical summary of various contributions to the
development of back propagation. It was soon, however, re-
alized that back propagation suffers from many serious prob-
lems. For example, Grossberg [51] summarized 17 problems
of back propagation which Adaptive Resonance Theory had
already overcome starting in the 1970s. They are, listed as
follows:
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+ Real-time (on-line) learning vs. lab-time (off-line)
learning

+ Learning in nonstationary unexpected world vs. in sta-
tionary controlled world

« Self-organized unsupervised or supervised learning vs.
supervised learning

+ Dynamically self-stabilize learning to arbitrarily many
inputs vs. catastrophic forgetting

+ Maintain plasticity forever vs. externally shut off learn-
ing when database gets too large

« Effective learning of arbitrary databases vs. statistical re-
strictions on learnable data

+ Learn internal expectations vs. impose external cost
functions

« Actively focus attention to selectively learn critical fea-
tures vs. passive weight change

+ Closing vs. opening the feedback loop between fast sig-
naling and slower learning

+ Top-down priming and selective processing vs. activa-
tion of all memory resources

« Match learning vs. mismatch learning: Avoiding the
noise catastrophe

« Fast and slow learning vs. only slow learning: Avoiding
the oscillation catastrophe

« Learning guided by hypothesis testing and memory
search vs. passive weight change

« Direct access to globally best match vs. local minima

+ Asynchronous learning vs. fixed duration learning: A
cost of unstable slow learning

« Autonomous vigilance control vs. unchanging sensitiv-
ity during learning

+ General-purpose self-organizing production system vs.
passive adaptive filter

Several of the most serious problems will be discussed be-
low.

Due to such problems, back propagation was gradually
supplanted by other neural network algorithms. Although
Deep Learning shares these problems with back propagation,
it has become popular lately, largely because of the advent in
the intervening years of huge online databases—which make
it easier to train the algorithm using lots of data—and much
faster computers-which facilitate the multiple learning trials
that are needed because of the algorithm’s slow learning rate.
Many tend like to think of Deep Learning as “back propaga-
tion on steroids”, since it has not solved the core foundational
problems of its back propagation learning algorithm.

1.5 Brain evolution needs to achieve behavioral success: A modeling
method and cycle

Itis important to understand ART in an evolutionary con-
text. The concept of “survival of the fittest” is often used to
describe how Charles Darwin’s proposed evolutionary mech-
anism of natural selection works [52]. When applied to our
brains, natural selection requires that “brain evolution needs
to achieve behavioral success”, because it is only through be-
haviors that the cumulative effects of a species’ evolutionary
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specializations can be tested against the persistent challenges
of changing environments.

Predictive ART, or pART, architecture macrocircuit
How prefrontal cortex learns to control all higher-order intelligence

Working memory, learned plans, prediction, optimized action

DLPFC
h

[prc| [ves| | vea | Fer | | pHC |

VLPFC

Reinforcement

learning, [ oFc |o—4l 1ma [l 1o | prod  visual
emotion, Py perception,
motivation, category
adaptively- learning,
timed object
learning, attention

Fig. 1. The predictive ART, or pART, architecture unifies many of
the brain processes that control biological intelligence. ART cate-
gory learning and object (or prototype) attention processes take place in the
model’s posterior inferotemporal cortex (ITp) and anterior inferotemporal
cortex (ITa). The other brain regions and their processes are modelled by
additional biological neural networks, whose abbreviations are printed with
the same color (black, red, green) as the functions that they carry out. V1:
striate, or primary, visual cortex; V2 and V4: areas of prestriate visual cortex;
MT: middle temporal cortex; MST: medial superior temporal area; ITp: pos-
terior inferotemporal cortex; ITa: anterior inferotemporal cortex; PPC: pos-
terior parietal cortex; LIP: lateral intraparietal area; VPA: ventral prearcuate
gyrus; FEF: frontal eye fields; PHC: parahippocampal cortex; DLPFC: dor-
solateral hippocampal cortex; HIPPO: hippocampus; LH: lateral hypothala-
mus; BG: basal ganglia; AMGY: amygdala; OFC: orbitofrontal cortex; PRC:
perirhinal cortex; VPS: ventral bank of the principal sulcus; VLPFC: ventro-
lateral prefrontal cortex. Output signals from the BG that regulate reinforce-
ment learning and gating of multiple cortical areas are not shown. See Fig.
41 for some of these. Output signals from cortical areas to motor responses
are also not shown. [Adapted with permission from [21] published in SAGE

journals.]

1.6 pART: Increasingly comprehensive attentive brain ardhitectures

Despite its status as the unique solution of the thought ex-
periment about error correction using only locally computed
quantities in a changing world, ART is just one of the biolog-
ical neural network architectures that model how our brains
make our minds. This is true because our brains need to solve
many other problems than learning to attention, recognize,
and predict objects and events in a changing world. The pre-
dictive ART, or pART, architecture embeds the core ART
adaptive classification abilities within a more comprehensive
brain macrocircuit of how human brains work (Fig. 1). Each
of the processes in Fig. 1 have been developed as rigorous
neural models, along with parametric simulations of many
psychological and neurobiological data.

The two inferotemporal cortical areas in pART—
posterior inferotemporal cortex (ITp) and anterior in-
ferotemporal cortex (ITa)—carry out ART-like attentive
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EMERGING UNIFIED THEORY OF VISUAL INTELLIGENCE
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Fig. 2. A macrocircuit of some of the main brain regions and the processes that they carry out within and between the ventral, or What, cortical

stream and dorsal, or Where cortical stream, that comprise an emerging neural model of biological vision. Bottom-up, horizontal, and top-down

interactions among these regions overcome computationally complementary weaknesses that each process would exhibit if acted alone. [Reprinted with

permission from [20] published in Elsevier.]

category learning. These cognitive networks receive pre-
processed outputs from visual cortical areas in the lower
right of the pART architecture—V1, V2, V4, MT, MST,
PPC/LIP—that carry out the functionally distinct processes
which together enable our brains to consciously see.

The macrocircuit in Fig. 2 summarizes key psychologi-
cal processes that occur in different brain regions that inter-
act within an emerging unified theory of visual intelligence.
Note that these processes occur within both the ventral, or
What, cortical processing stream and the dorsal, or Where,
cortical processing stream (Fig. 3; [54-57]), and interact us-
ing a combination of bottom-up, horizontal, and top-down
interactions. It will be explained below how these top-down
interactions embody distinct object and spatial attentional
processes, and how and why paying conscious spatial atten-
tion to an object enables us to look at it and reach for it.

These models have been derived incrementally over the
years using a modeling method and cycle that reflects the fact
that brain evolution needs to achieve behavioral success, as
summarized in Fig. 4.
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1.7 Fast learning without catastrophic forgetting and paying
attention to critical feature patterns

Below it will be shown how attention plays a key role in
the ability of ART to support our behavioral success, and
thus survival. ART top-down expectations enable humans
to learn how to attend to those combinations of critical fea-
tures which control actions that have led to behavioral suc-
cess in the past (Fig. 5). These top-down learned expectations
enable ART, and ourselves, to learn quickly and to remem-
ber what we have learned, often for many years, without ex-
periencing catastrophic forgetting, or the unexpected collapse
of part of our learned memories. Despite the persistence of
these learned memories, they can also be forgotten, or ex-
tinguished, when they lead to unexpected consequences that
disconfirm them.

1.8 Feature-category resonance: Multiple resonances support
attention, learning, and consciousness

As Fig. 5 illustrates, an attended critical feature pattern
across a level of feature detectors reactivates the bottom-up
adaptive filter pathways that activate a level of learned recog-
nition categories. The activated category, in turn, reacti-
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Temporal lobe: ‘what’

Fig.3. Whatand Where cortical streams process inputs from both the
visual and auditory modalities, with the What stream carrying out
perception and recognition processes, and the Where stream carry-
ing out spatial representation and action processes. V1: primary visual
cortex; Al: primary auditory cortex; IT: inferotemporal cortex; ST: supe-
rior temporal cortex; PPC: posterior parietal cortex; VLPFC: ventrolateral
prefrontal cortex; DLPFC: dorsolateral prefrontal cortex. [Reprinted with
permission from [53] published in Nature Publishing Group.]

vates its top-down learned expectation signals. The positive
feedback loop between features and categories gives rise to
a feature-category resonance that synchronizes, amplifies, and
prolongs the system’s response to the attended critical feature
pattern and the category to which it is bound.

A feature-category resonance triggers fast learning in the
adaptive weights, or long-term memory (LTM) traces, in
the bottom-up and top-down pathways. Such an LTM trace
learns a time-average of the critical feature patterns that are
active when its pathway is active. More will be said about this
learning law below.

A feature-category resonance also supports conscious recog-
nition of the visual objects and scenes that it is processing at
any given time. Table 1 summarizes a classification of dif-
ferent kinds of attentive resonances that occur across our
brains, each of which supports a functionally different kind
of conscious perception or recognition. These resonances il-
lustrate the general prediction that “all conscious states are
resonant stages” [12]. Multiple resonances typically synchro-
nize with one another during daily experiences, so that we
can consciously see, hear, know, and feel things about the
world around us, thereby enabling the emergence of a uni-

fied self.

1.9 Equations, modules, and modal ardhitectures that enable an
attentive conscious self to emerge

These resonances can synchronize because they share the
same computational and functional units that are used within
all parts of our brains, and can thus synchronously interact in
a self-consistent manner (Table 2).

A small number of fundamental equations suffice to model
all brain functions, just as a small number of fundamen-
tal equations form the foundation of all theoretical physics.
These include equations for neuronal activation, also called
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MODELING METHOD AND CYCLE

Design Principles

Art of Modeling/v

Behavioral Neural

Data Data
Behavioral /Br:in
Predictions Mathematical Predictions

Model and Analysis

Technological Applications

At every stage, spin off new model designs and mechanisms to
technologists who need autonomous adaptive intelligence

Fig. 4. Modeling method and cycle whereby to incrementally dis-
cover an increasingly comprehensive theory of how brain make
minds, and to spin off new designs and mechanisms to engineers and
technologists who are developing increasingly autonomous adaptive
intelligent algorithms or robots. This Method of Minimal Anatomies be-
gins by analyzing parametric data from scores or hundreds of behavioral ex-
periments in a given topical area, and deriving from them design or organiza-
tional principles from which to define minimal mathematical models which
embody the principles. Each minimal mathematical model can be interpreted
as a neural network. At each stage of its derivation, this neural network ex-
plains much larger behavioral and neurobiological databases than were used
to derive it, and explains how particular combinations of brain mechanisms
interact to generate behavioral functions as emergent properties. The ex-
planatory boundaries of each neural network call attention to design prin-
ciples that have been omitted. Their inclusion permits the derivation of a
neural network with a broader explanatory and predictive range. This cycle
has continued through multiple iterations, leading to neural architectures,
such as pART, which provide unified explanations of large interdisciplinary

databases. [Reprinted with permission from [18] published in Frontiers.]

short-term memory, or STM, traces x;; activity-dependent
transmitter habituation, also called medium-term memory,
or MTM, traces y;; and learning using adaptive weights,
also called long-term memory, or LTM, traces zy;that were
introduced in [58, 59]; see [60] for a review. In brief, these
equations are:

STM: Short-term Memory Shunting Model

— (Eizi + F) {Za 95 (25) G3iYi; Zji + Ji]

(1)
MTM: Medium-term Memory

dyi/dt = H (K — yr;) — Lfx (2k) i (2)
LTM: Gated Steepest Descent Learning and Memory

dzgi/dt = My fr (xx) (hi (25) — 2ki) (3)
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ADAPTIVE RESONANCE
feature clusters reactivate bottom-up pathways

Activated categories reactivate their top-down pathways

Categories
LTM ST™
LTM
@R _>| Feature Patterns

v

Feature-Category resonance synchronizes
amplifies
prolongs system response

Resonance triggers learning in bottom-up and top-down
adaptive weights: adaptive resonance!

Fig. 5. A feature-category resonance binds together an attended critical
feature pattern with the category that represents it. See the text for

details. [Adapted with permission from [18] published in Frontiers.]

In Eqn. 1, the automatic gain control terms (B;-z;) and
(Eix; + F;) keep the activities x; within the finite bounds
B;/C; and - F;/ E;. The balance between the total excitatory

term (Bz — .Tl) |:Z] fj (LL']) Djiij'Zji + Iz:| and the total
inhibitOI‘y term (ElZEZ + Fl) [Z] g; (,T]) Gti}iZji + J;

keep the activities from saturating at either their maxi-
mum or minimum values and, more generally, enables
such a network to process spatial patterns of ana-
log x; values in response to external excitatory and
inhibitory inputs, I; and J;, respectively, and excita-
tory feedback signals and inhibitory feedback signals,
225 [i (5) Djiyjizjiand 325 g5 (25) GjiYjiZji,  respec-
tively, that may vary greatly in size through time [51, 61].

The shunting dynamics in Eqn. 1 embody the membrane
equations of neurophysiology operating in a recurrent on-
center off-surround anatomy [62]. When the automatic gain
control terms are removed, then the shunting STM equation
reduces to the additive STM equation. The additive STM
model cannot saturate, but it also does not have many of the
valuable properties of the shunting model, including such es-
sential properties for biological vision as the ability to discount
the illuminant, or to compensate for huge changes in illumi-
nation that occur every day [63, 64].

The MTM Eqn. 2 describes how the chemical transmitter
concentration at the ends of the axons, or pathways, between
neurons balances between a process of accumulation HK —
ki) and one of gated release, or inactivation -Lfy(xx)yk;.

The LTM Eqn. 3 describes how learning switches on and
off when the stimulus sampling signal f;.(xy,) is positive or zero,
respectively. When it is positive, then the adaptive weight,
or LTM trace, zj; tracks the sampled signal h;(x;) by steepest
descent.

With these STM, MTM, and LTM variables defined, it
is possible to say that, when a feature-category resonance
(Fig. 5) occurs between attended critical features and the
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Table 1. A summary of the adaptive resonances that support
conscious experiences of seeing, hearing, knowing, and
feeling. [Reprinted with permission from [19] published in

Taylor & Francis Group.]

CLASSIFICATION OF RESONANCES

Surface-shroud resonances support conscious seeing
of visual qualia

Feature-category resonances support conscious recognition
of visual objects and scenes

Stream-shroud resonances support conscious hearing
of auditory qualia

Spectral-pitch-and-timbre resonances support conscious
recognition of sources in auditory streams

Item-list resonances support conscious recognition of
speech and language

Cognitive-emotional resonances support conscious feelings
and recognition of them

recognition category to which they are bound by bottom-up
and top-down excitatory signals, then fast learning is trig-
gered in the adaptive weights, or long-term memory (LTM)
traces, in the synaptic knobs at the ends of the bottom-up
adaptive filter and top-down expectation axons (Table 1).
Learning regulates the size of the adaptive weights, which
regulate the amount of chemical transmitter that is released
from synaptic knobs to the abutting nerve cell body, or
change the sensitivity of postsynaptic membranes to these
presynaptic signals, or both [65-67].

These equations are assembled within a somewhat larger
number of modules, or microcircuits, that carry out differ-
ent functions within each modality. They may be thought
of as the “molecules” of biological intelligence. The mod-
ules include the following kinds of networks: shunting on-
center off-surround networks, gated dipole opponent pro-
cessing networks, associative learning networks, and adap-
tively timed spectral learning networks. Each type of module
exhibits a rich set of useful computational properties, but are
not general-purpose computers. Rather, each kind of module
was shaped by evolution to carry out a range of different tasks
that could be accomplished by specializations of its design.

For example, shunting on-center off-surround networks
exhibit properties like contrast normalization, including dis-
counting the illuminant during visual perception; contrast
enhancement, noise suppression, and winner-take-all choice
during the choice of a recognition category; short-term mem-
ory and working memory storage during the persistent short-
term storage of individual events or sequences of events; at-
tentive matching of bottom-up input patterns and top-down
learned expectations, as occurs during a feature-category res-
onance; synchronous oscillations, as occurs during conscious
resonances; and traveling waves that can occur during epilep-
tic seizures.
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Table 2. A small number of equations and a somewhat larger
number of modules, or microcircuits, are specialized and
assembled in modal architectures that carry out different
modalities of intelligence.
TRUE THEORIES ARE EMERGING

A small number of equations

e.g., shunting activation dynamics (STM)
activity-gated learning (LTM)
habituative transmitter gates (MTM) ...

A larger number of modules*

e.g., on-center off-surround nets
resonant matching nets
opponent processing nets —
spectral timing nets
boundary completion nets
filling-in nets...

Specialized combinations
of modules*, using a few
basic equations, are
assembled in
architectures that solve
modal problems

A still larger number of modal architectures

e.g. vision
audition
smell D
touch
cognition “Modules are micr
emotion... not the “independent modules” of Al

These equations and modules are specialized and assem-
bled into modal architectures. The term “modal” stands
for different modalities of biological intelligence, includ-
ing architectures for vision, audition, cognition, cognitive-
emotional interactions, and sensory-motor control.

An integrated self is possible because it builds on a shared
set of equations and modules within modal architectures that
can interact seamlessly together.

Although they cannot compute everything, unlike a uni-
versal Turing machine or its hardware embodiment in a
von Neumann computer (https://en.wikipedia.org/wiki/Vo
n_Neumann_architecture), modal architectures are general-
purpose in the sense that they can process all inputs to their
modality, whether from the external world or from other
modal architectures. Modal architectures are thus more gen-
eral than a traditional Al algorithm. The types of resonances
summarized in Table 3 form part of several different modal
architectures, including modal architectures that enable con-
scious seeing, hearing, feeling, and knowing.

The exposition below will describe how the CLEARS pro-
cesses interact within ART. Some of the psychological and
neurobiological data for which ART has provided a unified
explanation will be summarized, as well as ART predictions
that not yet been tested experimentally.

1.10 Large-scale ART applications in engineering and tedinology

Before moving on to these explanations, it is use-
ful to note that ART properties such as fast learn-
ing without catastrophic forgetting, and learned selec-
tion by attention of the critical features that control ef-
fective decisions and predictions, have encouraged the
mathematical analysis, computer simulation and applica-
tion of multiple ART algorithms towards the solution of
large-scale problems in engineering and technology. See
http://techlab.bu.edu/resources/articles/C5.html, [68] and
[69] for a partial list of applications, and the following ar-
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Table 3. Some pairs of computationally complementary
processes and the brain regions where they occur. [Reprinted
with permission from [19] published in Taylor & Francis Group.]
SOME COMPLEMENTARY PROCESSES

Visual Surface
Blob Stream V1-V4

Visual Boundary
Interbob Stream V1-V4

Visual Motion
Magno Stream V1-MT

Visual Boundary
Interbob Stream V1-V4

WHAT Steam WHERE Stream
Perception & Recognition Space & Action
Inferotemporal and Parietal and

Prefrontal areas Prefrontal areas

Object Tracking
MT Interbands and MSTv

Optic Flow Navigation
MT Bands and MSTd

Motor Target Position
Motor and Parietal Cortex

Volitional Speed
Basal Ganglia

ticles for the mathematical and computational development
of various ART algorithms [70-84].

2. Object attention and spatial attention

2.1 Dynamics of exogenous and endogenous object and spatial
attention shifts during visual search

For at least the past 40 years, the cognitive neuroscience
literature has made the distinction between object attention
[85] and spatial attention [86]. These Duncan and Posner ar-
ticles included new experiments, but can be viewed as a fur-
ther development of extensive earlier work by multiple au-
thors. A small sample of early experiments includes those
of Neiser [87], Lappin [88], and Treisman, Kahneman, and
Burkeil [89] about object-based attention, often studied in
displays that include multiple possible target and distractor
objects. Early experiments probing spatial attention were
carried out in alert monkeys [90-92], brain injured patients
[93], and normal individuals [94].

The most compelling studies of object and spatial atten-
tion successfully dissociate paying attention to a single ob-
ject at multiple positions, or to a single position inhabited by
multiple objects (e.g., [95-99]). Although such studies repre-
sent an ideal that is possible to implement in the laboratory,
in the real world, object attention and spatial attention often
strongly interact, for example, when planning one’s escape
from a predator in a forest. Such interactions have been the
subject of hundreds of experiments which are often subsumed
under the general rubric of visual search. Triesman and her
colleagues interpret their data using their Feature Integration
model (e.g., [100-104]), while Wolfe and his colleagues do so
using variants of their Guided Search model (e.g., [105-110]).

Biological neural network models have provided unified
mechanistic explanations of many of the most challenging
data about visual search (e.g., [7, 22, 37, 111]). These mod-
els of perceptual and cognitive information processing had
previously been used to explain and predict other kinds of
psychological and neurobiological data. Visual search data
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were hereby integrated within a broad landscape of exper-
imental paradigms probing different aspects of how brains
make minds.

For example, the Spatial Object Search, or SOS, model of
Grossberg, Mingolla, and Ross [112] has the title “A neural
theory of attentive visual seardh: Interactions of boundary, surface,
spatial, and object representations’. The SOS model explains
and simulates visual search data as emergent properties of in-
teractions between visual perception processes of boundary
completion and surface filling-in, object attention processes
whereby ART categories are learned and recognized, and spa-
tial attention processes whereby attention shifts to objects in
different locations.

Interactions between object attention and spatial attention
have been probed in the laboratory when, for example, they
are sequentially primed by object or spatial cues during rela-
tively brief time intervals. Theeuwes, Mathot, and Grainger
[113] discuss such interactions in the context of “exogenously
controlled object attention”, and review related studies by
other authors. Exogenous control refers to bids for attention
from the external world, whereas endogenous control refers
to top-down attentional processes within our brains.

An exogenous attention shift to a location in space may
be caused by the sudden appearance of an object in a scene
[114, 115]. This automatic exogenous allocation of spatial
attention can compete with endogenous top-down object at-
tentional priming, thereby illustrating competition for atten-
tional resources across the Where and What cortical streams.
For example, if an observer is primed to look for a color sin-
gleton, then an abrupt onset of an object at a different posi-
tion will cause an attentional shift that slows down search for
the color singleton [114, 116].

Posner [86] emphasized this orienting process, as illus-
trated by the title of his article, “Orienting of attention”. The
examples proposed by Posner [86] and Theeuwes et al. [113]
describe an orienting response due to transient appearances
of objects at different positions. As I will explain below,
orienting can also be driven endogenously during an ART
search, or hypothesis testing, for the internal representation
of any event, whether or not it occurs along with a shift of
spatial attention.

As noted by Theeuwes, Mathot, and Grainger [113], Pos-
ner and Cohen [117] studied exogenous attention shifts in an
experimental setup where subjects fixate a central position
surrounded by a regular array of outline boxes. Then one
of two peripheral boxes is cued by brightening, before a tar-
get is presented inside a box. Participants detected the target
faster when it appeared at the cued, relative to the uncued,
box, thereby illustrating how a shift in spatial attention can
facilitate object processing and attention at the cued position.
It was also shown that this facilitation is coded in retinotopic
coordinates.

Several labs have proposed that abrupt onsets capture at-
tention by strongly activating transient cells that are designed
to respond to rapid cue changes. These cells are abundant in
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the Where cortical stream that is also often referred to as the
magnocellular pathway (e.g., [118-121]) due to its abundance
of retinal Y cells that are insensitive to object form and color
blind, but highly sensitive to luminance transients and mo-
tion [122-126].

3D FORMOTION MODEL

Form Motion
Directional grouping,
V2 Depth-separated boundaries attentional priming MST

! 1l

BIPOLE CELLS Long-range motion filter

grouping .
cross-orientation competition 2nd boui:d:;:t:electlon MT

i

HYPERCOMPLEX CELLS I
end-stopping

spatial sharpening

f I

Spatial competition

COMPLEX CELLS Short-range motion filter
m contrast pooling
Vi orientation selectivity 1 vi

TRANSIENT CELLS

SIMPLE CELLS directional selectivity

orientation selectivity |

LGN contours LGN contours

Fig. 6. Macrocircuit of the 3D FORMOTION model for form-to-
motion, or FORMOTION, interactions from cortical area V2 in the
‘What cortical stream to cortical area MT in the Where cortical
stream. This interaction enables an observer to track a moving form in
depth. See the text for details. [Adapted with permission from [127] pub-
lished in Brill.]

2.2 From data about transient cells to the 3D FORMOTION model
of visual form and motion perception

A detailed psychological, anatomical, and neurophysio-
logical model has been incrementally developed to explain
how transient cells, among many others, contribute to our
brain’s ability to compute the direction and speed of objects
that are moving within a cluttered environment that also
contains many moving environmental distractors. This 3D
FORMOTION model (Fig. 6) integrates form and motion
information across multiple brain regions of the What and
Where cortical streams, including cortical areas V1, V2, V4,
MT, and MST (Fig. 7), to accomplish this feat.

The 3D FORMOTION does so by developing a rigorous
computational solution of the global aperture problem whereby
our brains convert the ambiguous hodgepodge of local mo-
tion signals arriving at our retinas from the environment into
coherent cortical representations of object motion direction
and speed (e.g., [128-135]).

As illustrated by Fig. 8, when an object moves under real
world conditions, such as a leopard running across a grassy
field, only a small subset of its image features, notably its
bounding contours, may generate motion direction cues that
accurately describe its direction-of-motion. The movements
of the leopard’s limbs as it runs (red arrows) occur in multiple
directions other than the direction that the leopard is moving
(green arrows). The same is true of the contours of the spots
on the leopard’s coat as they move with the limbs. Most lo-
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cal motion signals differ from the direction of object motion
because they are computed from local views of object motion
within neurons’ finite receptive fields.

MULTIPLE BRAIN REGIONS INTERACT
TO SOLVE THE APERTURE PROBLEM

MST

|

V2 e MT
Vi

Form-Motion interactions are necessary to solve the problem

Fig. 7. Cortical regions and their bidirectional or cyclic interac-
tions that carry out form-to-motion, or FORMOTION interactions.

[Adapted with permission from [128] published in Elsevier.]

MOST MOTION SIGNALS MAY NOT NOT POINT IN
AN OBJECT’ S DIRECTION OF MOTION

Aperture Problem

EVERY neuron’s receptive field experiences an aperture problem

How does the brain use

the small number of correct, unambiguous motion signals
to compute an object’ s motion direction?

Fig.8. The aperture problem arises because of two related limitations
individual neuron’s receptive fields to compute the true motion di-
rection of an object. One limitation arises because a line moving in any
direction within a circular aperture appears to move in the direction that is
perpendicular to its orientation. Another limitation arises because the mo-
tion direction of a moving object often differs from the directions in which
its parts move. The 3D FORMOTION model solves the aperture problem.
See the text for details. [Reprinted with permission from [1] published in
Oxford University Press.]

The right insert in Fig. 8 illustrates the insight of Hans
Wallach in 1935 [136] that the motion direction of a line
seen within a circular aperture is perceptually ambiguous. No
matter what the line’s real direction of motion may be, its per-
ceived direction is perpendicular to its orientation. This phe-
nomenon was called the aperture problem by Marr and Ullman
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A CONFIRMED PREDICTION:
FORM and MOTION are COMPLEMENTARY

Prediction: Grossberg (1991, Perception & Psychophysics)
Data: Ponce, Lomber, and Born (2008, Nature Neuroscience)

Why separate cortical FORM and MOTION streams?

8 A V1-V2-v4 V1-MT-MST
11 Wy . . M M
I 1M orientational directional

"
N

£ X

My 1991 prediction:
V2 - MT interaction achieves fine moving-form-in-depth
which facilitates object tracking, etc.

fine direction
coarse depth

fine depth
coarse direction

Ponce et al. in 2008 provided strong evidence for it

Fig. 9. Form and motion computations are complementary: The form
stream binocularly matches features that the two eyes receive from a nearby
object to compute an estimate of the object’s depth with respect to the ob-
server. Each binocular match occurs between left eye and right eye repre-
sentations of the same object feature in the world (see left image). These
features thus represent the same object orientation in the world, thereby en-
abling a fine depth estimate to be computed. Restricting matches to the same
orientation, however, enables them to compute only coarse direction estimates
of object motion direction. The motion stream generates fine direction esti-
mates of an object’s motion by pooling over the object’s differently oriented
contours that are moving in the same direction (see right image). Pooling
over orientation enables only coarse depth estimates of the object. FORMO-
TION interactions from V2-to-MT enable cells in MT to overcome these
complementary weaknesses to compute fine moving-form-in-depth, which can
be used to support accurate object tracking. If V2 is cooled, then only coarse
depth estimates are recorded in MT, even though fine estimates of motion
direction are unimpaired.

Note: Prediction: Grossberg [34]. Data: Ponce, Lomber, and Born [139].

[137]. The aperture problem is faced by any localized neural
motion sensor, such as a neuron in the early visual pathway,
that responds to a moving local contour through an aperture-
like receptive field.

Until the aperture problem is solved, our brains cannot
compute an object’s direction and speed of motion, and thus
cannot localize spatial attention to track the object. The mi-
crocircuit in Fig. 6 of the 3D FORMOTION model shows
that the model’s cortical area MST can control top-down at-
tention upon the object motion direction and speed repre-
sentation that is computed in cortical area MT. As described
in [127] and [1], this attentional circuit obeys the same ART
Matching Rule that is realized in all object attentional circuits,
and which also supports learning and stable memory of the
directionally tuned cells that enable leopards, and humans, to
solve the aperture problem. Berzhanskaya, Grossberg, and
Mingolla [127] also describe and explain many other data
about object motion perception, including the coordinates in
which it is computed. The ART Matching Rule will be ex-
plained in greater detail below.
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2.3 Why FORMOTION is needed: Form and motion obey
computationally complementary laws

Interactions between the form and motion streams are
needed because the laws of form and motion processing are
computationally complementary. As shown in Fig. 9, form
processing within the What cortical stream areas of V1, V2,
and V4 is orientationally sensitive, whereas motion process-
ing within the Where cortical stream areas of V1, MT, and
MST is directionally sensitive. Positionally and orientationally
precise binocular matches between our two eyes (see left im-
age) enable us to compute fine estimates of an object’s depth.
In contrast, to compute an object’s motion direction, motion
signals need to be pooled from multiple boundaries of the
object with possibly different orientations (see right image).
Such pooling cannot be done during a binocular estimate of
depth. Hence fine depth estimates coexist with coarse direction
estimates within the What stream. Because pooling across
orientations must be done to derive a fine direction estimate,
the Where stream can only compute a coarse depth estimate.

FORM AND MOTION AFTEREFFECTS

MOTION

direction

bE
o]
PEH

4 4 4 &

FORM

orientation

stimulus

aftereffect

percept HERE

180°

waterfall
illusion

Mackay
illusion

Fig. 10. Aftereffects of form and motion processing exhibit differ-
ent asymmetries, with 90 degree differences between stimulus and
aftereffect in the form stream, and 180 degree differences between
stimulus and aftereffect in the motion stream. See the text for details.

[Reprinted with permission from [1] published in Oxford University Press.]

Fig. 10 summarizes one of many demonstrations that
computations of form and motion are, in fact, orientation-
ally and directionally sensitive, respectively. The left half of
the figure describes the Mackay illusion: Inspect intersecting
lines before looking at a black wall or screen, where an after-
image of nested circles can be seen. The two images differ by
90 degrees. The right half of the figure describes the waterfall
illusion: Inspect downward motion before looking at a black
wall or screen, where an afterimage of upward motion can be
seen. The two images differ by 180 degrees. These different
symmetries for orientational vs. directional processing make
clear that different brain systems support form and motion
perception.
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Form-to-motion interactions from V2-to-MT overcome
the complementary weaknesses described in Fig. 9 to com-
pute fine moving-form-in-depth estimates in MT (Fig. 11).
This representation can then serve as a basis for attentively
tracking a moving object, such as a predator or prey, in MST
and beyond. I made this prediction in 1991 [138]. As Fig. 9
notes, Ponce, Lomber, and Born [139] confirmed my pre-
diction in 2008 by reversibly cooling V2 and showing the
predicted properties of fine direction and coarse depth esti-
mates by MT cell responses, which returned to fine direction
and fine depth estimates by MT responses after V2 recovered
from cooling.

FORM and MOTION are COMPLEMENTARY

Depth Direction
Form Fine Coarse
Motion Coarse Fine
Formotion Fine Fine

Fig. 11. Summary of the complementary weaknesses of form and mo-
tion cortical computations that are overcome by FORMOTION inter-

actions from V2-to-MT.

ViSTARS NAVIGATION MODEL

Optic Flow  Object

Navigation Tracking

Use FORMOTION
model as front end
for higher level
navigational circuits

Medial Superior Temporal area
Lovel 6 &8

MSTd: Heading filter
MSTv: Object motion grouping

Medial Temporal area
. Level 587
Input natural image sequences
MT+: Directional long-range filter
MT-: Differential motion filter

Estimate Heading MT-- MSTd
additive processing

Primary visual conex: (V1)
Level 384

Directional transient cells.
Estimate Object Position MT--MSTd
direction and speed

. . Retina - LGN
subtractive processing 2

Non-directional transient cells
On-Center OFF-sumound network

Complementary Computing!

Video input

Fig. 12. The computation of heading during optic flow navigation,
and of object position, direction, and speed during object tracking,
obey computationally complementary laws. The ViSTARS model ex-
plains these different computations and the functions that they accomplish.
See the text for details. [Adapted with permission from [140] published in

Elsevier.]
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2.4 Attentive object tracking and optic flow navigation:
Complementary Computing

Once our brains overcome the aperture problem to com-
pute reliable estimates of object motion, this information is
used to support two different kinds of visually-guided naviga-
tional behaviors: object tracking and navigation. Object track-
ing enables us to track a target that is moving relative to us.
A moving target can even be tracked behind multiple occlud-
ers, as could occur when a predator is tracking a moving prey
that is intermittently occluded by bushes and trees in the for-
est. The predator can complete a continuous trajectory of the
prey’s motion, even behind the occluders, using long-range
apparent motion [130], which also maintains spatial atten-
tion upon the location that is currently most active in the tra-
jectory.

Navigation enables us to move relative to the world
around us. Fig. 12 summarizes the macrocircuit of the Visual
Steering, Tracking, And Route Selection, or VISTARS, neu-
ral model of navigation [140-142]. The model shows that ob-
ject tracking and optic flow navigation are carried out by two
parallel cortical streams within cortical areas MT and MST
(Fig. 7), with the ventral stream M T~ -to-MSTv carrying out
object tracking, and the dorsal stream MT ™ -to-MSTd carry-
ing out optic flow navigation. Optic flow is the pattern of
motion that is generated in an observer’s brain when objects
in a visual scene move relative to the observer. See, for exam-
ple, the video: https://www.youtube.com/watch?v=tGYder
2LHAA.

Fig. 12 notes that these two parallel processing streams use
computationally complementary processes: Additive process-
ing enables the brain to determine the direction of heading, or
a navigator’s self-motion direction, whereas subtractive pro-
cessing is used to determine the position, direction, and speed
of a moving object. These complementary types of process-
ing enable the computation of an observer’s heading while
moving relative to a scene, and of an object’s movements rel-
ative to the observer. This latter information can, in turn, be
used to avoid collisions with objects in a scene while moving
through it. Both processes contribute to an observer’s ability
to lock attention onto a valued goal object and to maintain it
while navigating towards that object.

2.5 Complementary matching and learning laws for recognition
and action

The complementary laws of tracking and navigation are
just one of many examples of the general principle of Com-
plementary Computing that organizes how multiple pairs of
interacting brain regions are specialized. Table 3 lists some
pairs of psychological processes, and the cortical areas within
which they occur, for which neural models have articulated
computationally complementary properties.

Table 4 summarizes complementary properties of learn-
ing and matching within the What and Where cortical
streams. The What stream learns invariant object recogni-
tion categories within the anterior inferotemporal cortex, or
ITa (Fig. 1). This learning can occur quickly without caus-
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Table 4. Learning and matching processes within the What
and Where cortical streams obey complementary laws. See
the text for details. [Adapted with permission from [17] published
in Elsevier.]

WHAT and WHERE LEARNING and MATCHING
are COMPLEMENTARY

Spatially-invariant object
learning and recognition

Spatially-variant reaching
and movement

Continually update sensory-
motor maps and gains

Fast learning without
catastrophic forgetting

IT PPC
WHAT WHERE

MATCHING | EXCITATORY | INHIBITORY

LEARNING MATCH | MISMATCH
ART VAM

ing catastrophic forgetting. A single invariant object category
can recognize multiple views of an object at different posi-
tions and image sizes on the retina. The ability of an invariant
category to recognize an object that is seen at different posi-
tions is the spatially-invariant property that is summarized in
the figure, in order to contrast it with the spatially-variant al-
location of spatial attention in the posterior parietal cortex,
or PPC, to control reaching and other movements towards
different positions in space. As our limbs change in size and
strength over the years, the circuits that control them can
continually update their motor maps and gains—that is, can
experience “catastrophic forgetting’—to ensure skillful per-
formance.

The bottom part of Table 4 contrasts the computation-
ally complementary mechanisms of matching and learning
in the What and Where streams that generate these distinct
learning and behavioral properties. As in the case of ob-
ject tracking and navigation, invariant category learning and
movement control differ by obeying excitatory vs. inhibitory
laws, in this case matching laws. The category learning prop-
erties have been modeled by ART, some of whose founda-
tional properties will be reviewed below, including how ART
learning occurs when there is a good enough match between
bottom-up input patterns and top-down learned expectation
signals that focus object attention upon the critical features
that predict successful decisions and actions. Such a match
is excitatory because it initiates an attentive resonance which
triggers category learning. It is thus an adaptive resonance,
hence the name of ART.

The movement control properties have been modeled by
Vector Associative Map, or VAM, dynamics [143, 144]. Un-
like the excitatory matching and matdi-based learning of ART,
a VAM model carries out mismatdi-based learning that is used
to calibrate its inhibitory matching computations, as when an
arm’s present position is subtracted from a desired target po-

207


https://www.youtube.com/watch?v=tGYder2LHAA
https://www.youtube.com/watch?v=tGYder2LHAA

sition to compute a difference vector that controls the di-
rection and distance of a reaching movement to the target.
VAM dynamics will not be further discussed herein, except to
note that, because of its inhibitory matching dynamics, VAM
models cannot pay attention or become conscious.

2.6 From object attention to prototype attention

The heuristic concepts of object and spatial attention can
be refined in terms of the brain mechanisms that carry out
these attentional processes. Object attention is replaced by
the concept of prototype attention during recognition learn-
ing. As will be discussed more fully below, each active cat-
egory in an ART architecture reads-out a top-down expecta-
tion which learns a prototype that encodes a time-average of
the critical feature patterns that are attended when the cate-
gory is active. This critical feature pattern also chooses the
active category via its bottom-up adaptive filter signals to the
category level. All of these operations occur within the What
cortical stream.

2.7 From spatial attention to boundary and surface attention

The heuristic concept of spatial attention is replaced by
the mechanistically more precise concepts of boundary atten-
tion and surface attention during visual perception. One reason
that boundaries and surfaces are so important in spatial atten-
tion is that they are, when properly understood in terms of
the processes of boundary completion and surface filling-in,
the functional units of visual perception [112, 145-165].

Boundaries and surfaces are computed in the What cor-
tical stream within visual cortical areas such as V1, V2, and
V4 (Fig. 2). Boundaries and surfaces are another example of
computationally complementary processes (Table 3). These
complementary properties are summarized in Fig. 13, and are
illustrated by the boundary completion and surface filling-in
processes that occur during the visual illusion of neon color
spreading.

VISUAL BOUNDARY AND SURFACE
COMPUTATIONS ARE COMPLEMENTARY

Neon color spreading

All Boundaries

Are

Invisible! Filling-in of
BOUNDARY SURFACE Visible
COMPLETION FILLING-IN C.olor and

Lightness
oriented unoriented
inward outward
insensitive to sensitive to
direction-of-contrast direction-of-contrast
Fig. 13. Visual boundary and surface laws are complementary.

[Adapted with permission from [166] published in Elsevier.]
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2.8 Why are boundary completion and surface filling-in needed?

Boundary completion and surface filling-in compensate
for gaps and uncertainties that exist in retinal images due to
the existence of a blind spot, retinal veins, light scattering
within the retina, and other image-degrading processes. The
blind spot is as large as the region of maximal retinal sensitiv-
ity to light, the fovea, yet we are not aware of it. Partly this
is because the retina jiggles rapidly in its orbit, thereby cre-
ating transient signals from external objects due to their mo-
tion relative to the retina. These transients refresh the signals
from external objects at the retina. The blind spot and retinal
veins do not create transients because they are attached to the
retina, hence they fade from visibility.

The result is an incomplete representation of the exter-
nal world where the blind spot and veins have occluded
it (Fig. 14, top image). Boundary completion and surface
filling-in complete visual representations over the occluded
regions (Fig. 14, bottom three images).

EVERY LINE IS AN ILLUSION!
> - -*
o

Boundary completion
Which boundaries to connect?

Surface filling-in

What color and brightness do we SEE?’;"’

Fig. 14. After retinal occlusions such as the blind spot and retinal
veins fade because they do not generate transient refresh signals on
the retina, boundary completion and surface filling-in restore visual
representations over the occluded retinal regions. [Reprinted with

permission from [23] published in Springer.]

2.9 Hierardhical resolution of uncertainty and consciousness:
Seeing to reach

It requires multiple processing stages in the visual cortex
to create complete, context-sensitive, and stable cortical rep-
resentations of visual boundaries and surfaces. I call this pro-
cess hierarchical resolution of uncertainty. Hierarchical resolu-
tions of uncertainty are needed in multiple brain processes
to generate sufficiently complete representations of sensory
data upon which to base successful actions.

The processing stage where perceptual representations
are completed needs to be distinguished from the previous
processing stages so that the complete representation can
be used to control successful goal-oriented actions. Actions

Volume 20, Number1, 2021



Table 5. Multiple processing stages-that is, a hierarchical
resolution of uncertainty-are needed to transform incomplete
and ambiguous retinal representations, such as those
occluded by the blind spot and retinal veins, into complete
perceptual representations using processes like boundary
completion and surface filling-in (Fig. 13). A conscious
resonance “lights up” the processing stage in such a hierarchy at
which a sufficiently complete, context-sensitive, and stable
representation is computed with which to control actions. That is
why, conscious seeing helps to ensure effective looking and
reaching, conscious hearing helps to ensure effective auditory
communication and speaking, and conscious feeling helps to
ensure effect goal-oriented action.

CENTRAL CLAIM

Conscious states are part of larger adaptive behavioral
capabilities that help us to adapt to a changing world

Resonances for conscious
seeing help to ensure effective reaching
hearing help to ensure effective speaking

feeling help to ensure effective goal-oriented action

based upon incomplete representations could cause serious
problems. The selected processing stage resonates with the
subsequent one in the cortical hierarchy to selectively “light
up” the complete representation. The lighting-up process
renders the complete representation conscious so it can be
used to guide successful actions. In this sense, we consciously
see in order to look and reach, hear to communicate and
speak, and feel to control effective goal-oriented actions (Ta-

ble 5).

2.10 From spatial attention to surface attention and conscious
seeing by surface-shroud resonances

Spatial attention plays a major role in lighting up such a
complete representation. It does so, in particular, by resonat-
ing with the object’s completed—notably, filled-in—surface
representation. Itis in cortical area V4 that such a completed
surface representation is computed, thereby triggering a res-
onance with the posterior parietal cortex, or PPC.

This V4-to-PPC-to V4 resonating feedback loop is called
a surface-shroud resonance (Fig. 15) because surface attention
in PPC fits its shape to that of the surface with which it is
resonating. Form-fitting spatial attention was called an atten-
tional shroud by Tyler and Kontsevich [169].

Just as a feature-category resonance supports conscious
recognition of a visual object or scene, a surface-shroud res-
onance supports conscious seeing of an object’s visual qualia
(Table 1). When a feature-category resonance synchronizes
with a surface-shroud resonance, our brain knows what a fa-
miliar object is as we see it, and are then also ready to reach
it via the active surface representation in PPC (Fig. 16). The
top-down feedback from PPC to V4 carries out surface atten-
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SURFACE-SHROUD RESONANCE

Spatial Attention
Competition

WV
AL

Perceptual Surfaces

Carrasco, Penpeci-Talgar, and Eckstein (2000)
Reynolds and Desimone (2003)

Fig. 15. A surface-shroud resonance between cortical areas V4 and PPC
lights up the complete surface representation that can be used to
control effective looking and reaching, as it focuses surface atten-
tion upon that surface representation, and thereby increases its ef-
fective contrast (light blue region). This enhancement has been reported
in both psychophysical experiments (e.g., [167]) and neurophysiological ex-
periments (e.g., [168]). [Reprinted with permission from [19] published in
Springer.]

Note: Carrasco, Penpeci-Talgar, and Eckstein [167]. Reynolds and Desi-

mone [168].

tion even while the bottom-up signals from PPC to down-
stream movement circuits embody the intention to move to
the attended location (e.g., [170-174]). Boundary-shroud
resonances can, in a similar way, become conscious and con-
trol reaches to an object’s contours.

WHAT KINDS OF RESONANCES SUPPORT
KNOWING VS. SEEING?

What Stream Where Stream

REACHING

KNOWING SEEING
Feature-Prototype Surface-Shroud
Resonance Resonance

Synchronous linkage between resonances enables us to
consciously KNOW what the object is as we SEE it
and REACH to it

Fig. 16. A surface-shroud resonance that supports conscious seeing
can synchronize with a feature-category resonance that supports
conscious knowing, or recognition (see Table 1), so that we can both
see and know a familiar object when we attend it. The position of the
attended object in PPC can then be used to look at or reach it. [Adapted with

permission from [19] published in Springer.]
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2.11 Using seeing and knowing resonances to explain
psydhophysical paradoxes and mental disorders

When a lesion in the feature-category resonance pathway
occurs, then visual agnosia results during which humans, and
the model, can reach to a target without knowing what it is, as
in the patient DF reported by Goodale et al. [55]. Properties
of surface-shroud resonances have been used to explain chal-
lenging data both about visual perception in normal humans
and defects of consciousness in clinical patients. Here I will
just note that normal properties such as limited capacity of at-
tention, perceptual crowding, change blindness, and motion-
induced blindness, and clinical properties of visual and audi-
tory neglect, all get a unified explanation in [19], which also
provides references to the relevant experimental literature.

For example, in response to a hemifield lesion of parietal
cortex, the model explains many properties of the visual or
auditory neglect that ensues. Explained clinical data go con-
siderably beyond the familiar facts that such individuals may
omit drawing parts of a scene, or neglect to dress the side of
the body, that the lesioned hemifield would have processed.
In all these cases, the visual cortex is intact but, without the
parietal cortex to support a surface-shroud resonance, con-
scious seeing of, and spatial attention to, the afflicted hemi-
field does not occur.

COMPLEMENTARY COMPUTING

New principles of
UNCERTAINTY and COMPLEMENTARITY
which clarify why

Multiple parallel processing streams with multiple
processing stages exist in our brains

‘PP {

Fig. 17. Complementary computing requires new principles of un-
certainty and complementarity, including the need for a hierarchi-
cal resolution of uncertainty, which clarify why multiple processing
streams with multiple processing stages exist in our brains, as illus-
trated by the famous macrocircuit diagram of the visual system in
the lower right corner that is adapted with permission from [175].

[Reprinted with permission from [20] published in Elsevier.]

2.12 Complementary Computing, hierardhical resolution of
uncertainty, and consciousness

The above text has reviewed four examples of pairs of in-
teracting processing streams in our brains that exhibit com-
putationally complementary properties; namely, the first four

210

processing pairs that are listed in Table 1. The processes in
Table 1 are only a partial list of known computationally com-
plementary processes in our brains. All of these processes
need multiple processing stages to carry out a hierarchical
resolution of uncertainty, and thus also require that com-
pleted representations be “lit up” by conscious resonances. I
will show in the next sections that ART circuits also exhibit
complementary properties. Complementary Computing has
hereby emerged, from results of multiple modeling studies
over the years, as a basic principle of how brain systems are
specialized, yet strongly interact (Fig. 17).

2.13 Shifting attention into and out of objects: Evaluating the
processes underlying the object advantage

With this background about prototype, surface, and
boundary attention in hand, it is easier to mechanistically
explain data about interactions between them. The experi-
ments of Brown and Denny [176] are particularly illuminat-
ing in this regard.

Explaining data of this kind is possible using the
ARTSCAN model of Fazl, Grossberg, and Mingolla [7] and
its extension to the ARTSCAN Search model of Chang,
Grossberg, and Cao [5], whose macrocircuit is summarized in
Figs. 18 and 19. Perhaps the most important computational
property of these models is that they enable autonomous in-
cremental learning of invariant object categories. Fig. 18 de-
scribes interactions that support learning and naming of in-
variant object categories. Interactions between surface and
boundary attention in the Where cortical stream, and proto-
type attention in the What cortical stream, coordinate these
learning, recognition, and naming processes. Fig. 19 de-
scribes the model processes that can direct a search for a pre-
viously learned, and currently desired, target object in a scene,
thereby clarifying how our brains solve the Where’s Waldo
problem. More about how invariant object categories are
learned will be said in the following section.

The experiments of Brown and Denny [176] built upon
experiments of Egly, Driver, and Rafal [177] who also stud-
ied how visual attention shifts between objects and locations,
in both normal individuals and individuals with parietal le-
sions. Fig. 20 summarizes reaction time, or RT, data, as well
as model computer simulations, from four different experi-
mental conditions. These conditions are: (a) no shift of atten-
tion, (a) shift of attention to a different location on the same
object, (c) shift of attention to a different location outside the
object, and (d) shift of attention to a different location on a
different object. In each condition, a cue precedes a target.
Sometimes both are in the same object, sometimes in differ-
ent objects, sometimes one outside an object, sometimes both
outside an object.

Brown and Denney [176] showed that inter-object
(Fig. 20d, left) and object-to-location (Fig. 20c, left) shifts of
attention take longer than intra-object shifts (Fig. 20b, left).
In all these cases, attention first needs to be engaged at the
location of the cue. They also found that shifting attention
from one object to another object, or from an object to an-
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Fig. 18. Interactions of modelled brain regions within the ARTSCAN
Search model enable them to learn to recognize and name invari-
ant object categories. Invariant object category learning is modulated by
Where-to-What stream interactions from spatial attention in the Where
cortical stream-that is sustained by a surface-shroud resonance-and ob-
ject attention in the What cortical stream-that obeys the ART Matching
Rule. Dashed boxes indicate boundary and surface processes. Green arrows
carry excitatory cortical signals from the Where stream to the What stream
whereby invariant category learning and reinforcement learning occur. Red
connections ending in circular disks indicate inhibitory connections. ITa:
anterior inferotemporal cortex; ITp: posterior inferotemporal cortex; PPC:
posterior parietal cortex; LIP: lateral intraparietal cortex; LGN: lateral genic-
ulate nucleus; ORB: orbitofrontal cortex; Amyg: amygdala; BG: basal gan-
glia; PFC: prefrontal cortex; FEF: frontal eye fields; SC: superior colliculus;
V1 and V2: primary and secondary visual areas; V3 and V4: visual areas 3

and 4. [Reprinted with permission from [5] published in Frontiers.]

other location, takes nearly the same amount of time (369 &+
10 msec versus 376 + 9 msec, P > 0.87 in Fig. 20a, right). The
main RT differences thus seem to be because attention does
not need to be disengaged from the object as it moves inside
it, and it takes longer to disengage attention when it needs
to move to a different object or location outside the original
object.

In every condition, the cue and target trigger a surface at-
tention signal to their location, thereby leading to the for-
mation of a surface-shroud resonance. The longer reac-
tion times in the inter-object and object-to-location attention
shifts compared to intra-object attention shifts are simulated
in ARTSCAN by the time it takes for an attentional shroud
caused by the cue to collapse, and with it the corresponding
surface-shroud resonance, before any other location or object
can form a new shroud in response to the target. Reaction
time, or RT, in each trial was computed in the model as the
time it takes for surface contour or eye movement activity at
the target location to reach a prescribed threshold.

The shroud does not collapse in the intra-object case. In-
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Fig.19. ARTSCAN Search macrocircuit for Where’s Waldo search. A
cognitive search for a desired object can be initiated by an object’s Name Cat-
egory in the prefrontal cortex, or PFC. Search for a desired object can also be
initiated by a Value Category in the amygdala, or Amyg. Either search can
proceed via What-to-Where stream interactions. Black arrows represent
bottom-up excitatory input signals. Blue arrows represent top-down exci-
tatory search signals. Abbreviations are the same as in the caption of Figure

18. [Reprinted with permission from [5] published in Frontiers.]

ARTSCAN SIMULATIONS OF
INTRA- VS. INTER-OBJECT ATTENTIONAL SHIFTS

No Shift of Shift on the
Attention Same Object
a b RT data
- -
c d
RT simulations
- ] -
Shift Outside Shift to a
the Object  Different Object

Fig. 20. Data from [176] about intra- vs. inter-object attentional shifts,
and computer simulations of it by the ARTSCAN model [7]. [Adapted

with permission from [7] published in Elsevier.]

stead, presenting a cue at one end of an object can cause a
spread of both surface and boundary attention to the other
end of the object. Such a spread of attention has been re-
ported psychophysically by Roelfsema, Lamme, and Spekrei-
jse [178] and simulated by Grossberg and Raizada [179]. Sub-
sequent activation of surface attention by the target at the
other end of the same object can add to the baseline of spread-
ing attention, thereby reaching the RT threshold sooner than
it can when the target lands outside the object.
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Table 6. The ARTSCAN model family summarizes
incremental developments of ARTSCAN to explain and
predict increasingly large psychological and neurobiological
databases. The 3D ARTSCAN Search architecture has not yet
been developed, although all of its component architectures have.
This synthesis would enable the Where’s Waldo Problem to be
solved in the natural world of objects in depth.
ARTSCAN MODEL FAMILY

ARTSCAN
View-invariant object category learning and recognition with
freely moving eyes in 2D scene Fazl, Grossberg, and Mingolla (2009)

PARTSCAN
View-, position-, and size-invariant object category learning and recognition
with freely moving eyes in 2D scene = Cao, Grossberg, and Markowitz (2011)

dARTSCAN
ARTSCAN with transient and sustained distributed attention and
prefrontal priming  Foley, Grossberg, and Mingolla (2012)

ARTSCAN SEARCH

Solution of Where’s Waldo Problem:

Directed search to find valued target object in a 2D scene
Chang, Grossberg, and Cao (2014)

3D ARTSCAN
ARTSCAN in 3D scene with 3D perceptual representations that remain stable
as the eyes move  Grossberg, Srinivasan, and Yazdanbakhsh (2014)

3D ARTSCAN SEARCH Unify all the above

Note: Fazl, Grossberg, and Mingolla [7].
Markowitz [70]. Foley, Grossberg, and Mingolla [180]. Chang,

Cao, Grossberg, and
Grosserg, and Cao [5]. Grossberg, Srinivasan, and Yazdanbakhsh
[35].

2.14 Explaining how invariant categories are learned also
explains all the Brown and Denny data

The original ARTSCAN model could simulate only four
of the nine experimental conditions that were reported by
Brown and Denny [176]. Simulating the entire data set
became possible in a consistent extension of ARTSCAN
called distributed ARTSCAN, or dARTSCAN (Table 6).
dARTSCAN is one of several ARTSCAN developments over
the years aimed at explaining ever larger databases about in-
variant category learning and search (Fig. 21).

The model circuits in Fig. 18 support learning of invari-
ant object categories in the following way: Surface atten-
tion upon an object is maintained by a surface-shroud res-
onance between V2/V4 and PPC during learning of its view-
invariant category. The attentional shroud in PPC that is
maintained by the surface-shroud resonance inhibits a Cat-
egory Reset stage that is also in PPC. Inhibition of Category
Reset removes inhibition from ITa. The emerging view-
invariant category in ITa can thus get associated with all the
view-specific categories of the object that are learned in ITp.
In this way, only views of the attended object can be incorpo-
rated into the view-invariant object category, thereby solving
the view-to-object binding problem.

The model automatically controls surface attention shifts
across the object so that it can inspect multiple object views to
learn. These attention shifts use interactions between model
cortical areas V2, V3A, V4, and LIP, among other brain re-
gions. Details of these interactions, and data that support
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SPATIAL ATTENTION HIERARCHY

PPC/PFC
Spatial Shrouds

PFC

Top-down
priming

PPC

v4
Object Surfaces

PPC /_\
Object Shrouds

Transient Cells

Fast (WHERE stream) Slow (WHAT stream)

Fig. 21. The distributed ARTSCAN, or dARTSCAN, model adds spatial
shrouds in the prefrontal cortex, or PFC, and both transient cell in-
puts from MT and sustained cell inputs from V4 to help form object
shrouds and spatial shrouds in PFC and the posterior parietal cortex,

or PPC. [Adapted with permission from [180] published in Elsevier.]
each of them, are found in [7].

When surface attention shifts to another object, the pre-
viously active surface-shroud resonance collapses, along with
further category learning of the previously attended ob-
ject. ARTSCAN can only learn view-invariant categories
(Fig. 18). A consistent extension of ARTSCAN to the posi-
tional ARTSCAN, or pARTSCAN, model of Cao, Grossberg,
and Markowitz [70] can learn view-, position-, and size-
invariant object categories. pARTSCAN can, in turn, be ex-
tended to dAARTSCAN in order to solve the Where’s Waldo
problem after invariant category learning ends.

COMPLETE BROWN AND DENNY (2007) SIMULATIONS

Cue s Target Reaction T

D D D |:| D D D |:|_ includes PFC/PPC interactions,
DDDDDDDD_ notably PFC priming
*ANEN -

|:| D_D D — *) simulations
I

.

of |

ol e

L1l N

Fig. 22. JARTSCAN can simulate all nine conections from the exper-
iments of Brown and Denny [176], not just the four conditions that
ARTSCAN can simulate. [Adapted with permission from [180] published

in Elsevier.]
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dARTSCAN further developed ARTSCAN to incorpo-
rate prefrontal spatial shrouds and transient signals from the
Where stream to both PPC and PFC (Fig. 21). These pro-
cesses, and more (e.g., affective processing regions like amyg-
dala, or Amyg, and volitional control regions like basal gan-
glia, or BG), are included in the ARTSCAN Search architec-
ture of Figs. 18 and 19. Within both dARTSCAN and the
more general ARTSCAN Search architecture, all nine con-
ditions of the Brown and Denny [176] experiments can be
simulated (Fig. 22), not just the four that ARTSCAN could
simulate (marked by *), in addition to data from many other
experiments. Details of these explanations are provided in

(5].

3. Adaptive resonance theory: learning to
attend, recognize, and predict a changing
world

3.1 Stability-Plasticity Dilemma: Life-long learning without
catastrophic forgetting

ART is a cognitive and neural theory of how our brains
learn to attend, recognize, and predict objects and events
in a changing world that may be filled with unexpected
events. ART has the broadest explanatory and predictive
range of current cognitive and neural theories. Its predic-
tive power derives from its ability, shared with humans, to
autonomously carry out fast, incremental, unsupervised and
supervised learning and self-stabilizing memory in response
to a changing world. ART hereby clarifies how humans can
rapidly learn huge amounts of new information throughout
life, and to integrate it into unified conscious experiences that
support an emerging sense of self.

Fast learning in ART includes the possibility of learning
an entire database on one learning trial [71, 73]. Our capacity
for fast learning is often taken for granted, as when we see an
exciting movie just once and then describe many details about
it later to friends and family. In the laboratory, humans have
been able to recognize thousands of pictures that they saw
just once (e.g., [181-188]). Indeed, the ARTSCENE neural
model [25] shows how ART can rapidly learn to classify nat-
ural scene photographs, and outperforms alternative models
in the literature which use biologically implausible computa-
tions. The combination of fast learning and stable memory,
upon which all human civilization builds, is an evolutionary
achievement that many other popular learning algorithms,
such as back propagation and Deep Learning, do not have
[42].

ART mechanistically explains how humans can rapidly
learn about wide range of novel and changing environments,
even with no prior instruction about the statistics of these
environments. ART also explains how humans can rapidly
learn these things without just as rapidly forgetting them.
Neither we, nor ART models, ever need to worry that, by
learning to recognize a new friend’s face within a few sec-
onds, we will suddenly forget familiar faces of our family and
friends. ART hereby avoids catastrophic forgetting. Most al-
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ternative neural learning algorithms, including back propa-
gation and Deep Learning, do experience catastrophic forget-
ting [189-191], whether they try fast learning, or slow learn-
ing of an environment whose statistics change through time.
Grossberg [12] has called the problem whereby our
brains learn quickly without catastrophically forgetting its
past knowledge the stability-plasticity dilemma. The stability-
plasticity dilemma must be solved by every brain system that
hopes to adaptively respond to the “blooming buzzing confu-
sion” of signals that we experience each day. ART solves the
stability-plasticity dilemma by specifying mechanistic links
between processes of between CLEAR processes. Grossberg
[11, 12, 192] predicted that all brain processes that solve the
stability-plasticity dilemma use CLEARS mechanisms.

LEARN MANY-TO-ONE and ONE-TO-MANY MAPS

Many-to-One One-to-Many
Compression, Naming Expert Knowledge
(ay,b) (a,bq)
(az,b) (a,by)
(as,b) (a,bs)
(a4!b) (a=b4)
Animal
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Fireman's
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Fig. 23. A supervised ARTMAP system can learn both many-to-one
maps and one-to-many maps. [Reprinted with permission from [1] pub-

lished in Oxford University Press.]

ART wuses CLEARS interactions to mechanistically ex-
plain why humans are intentional beings who pay atten-
tion to salient objects, why "all conscious states are resonant
states”, and how we learn both many-to-one maps (represen-
tations whereby many object views, positions, and sizes all
activate the same invariant object category) and one-to-many
maps (representations that enable us to expertly know many
things about individual objects and events). Fig. 23 summa-
rizes what these concepts mean. How ART learns both kinds
of maps will be explained after some more background is pro-
vided.

Before further explaining ART mechanisms, it is worth
emphasizing that all of the foundational mechanisms of ART
have received increasing support from subsequent psycho-
logical and neurobiological data since ART was introduced
in [9, 10]. Since then, ART has undergone continual devel-
opment to explain and predict increasingly large behavioral
and neurobiological data bases, ranging from data about nor-
mal and abnormal human and animal perception and cogni-
tion, to the spiking and oscillatory dynamics of laminar tha-
lamocortical networks in the visual and auditory modalities.
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Some of these ART models unify explanations and predic-
tions about behavioral, anatomical, neurophysiological, bio-
physical, and even biochemical data. ART currently provides
(e.g., [17]) functional and mechanistic explanations of such
diverse topics as:

« laminar cortical circuitry;

- invariant object and scenic gist learning and recognition;

« prototype, surface, and boundary attention;

+ gamma and beta oscillations;

« learning of entorhinal grid cells and hippocampal place
cells;

« computation of homologous spatial and temporal mech-
anisms in the entorhinal-hippocampal system;

« breakdowns of vigilance control during autism and me-
dial temporal amnesia;

« cognitive-emotional interactions that focus motivated
attention on valued objects in an adaptively timed way;

« planning and control of sequences of linguistic, spatial,
and motor events using item-order-rank working memories
and learned list chunks;

« influence of subsequent speech sounds on conscious
speech percepts of previous sounds;

+ segregation of multiple noisy sources by auditory
streaming; and

« normalization of speech sounds to enable learning and
imitation of speech from speakers of all ages.

The brain regions that ART models to explain such pro-
cesses include visual and auditory neocortex; specific and
nonspecific thalamic nuclei; inferotemporal, parietal, pre-
frontal, entorhinal, hippocampal, parahippocampal, perirhi-
nal, and motor cortices; frontal and supplementary eye fields;
cerebellum; amygdala; basal ganglia; and superior colliculus.

3.2 Experts learn prototypes of a changing world: Excitatory
matcing and matd learning

As summarized in Table 4, our brains use different predic-
tive mechanisms for perceptual/cognitive and spatial/motor
learning that are carried out by computationally complemen-
tary cortical processing streams. Perceptual/cognitive pro-
cesses in the What ventral cortical processing stream often
use excitatory matching and matdi-based learning to create rep-
resentations of objects and events in the world. Match-based
learning in ART depends upon top-down learned expecta-
tions that focus prototype attention to solve the stability-
plasticity dilemma. As noted above, this kind of learning
can occur quickly without causing catastrophic forgetting.
However, as Table 4 shows, match learning, and by exten-
sion ART, does not describe the only kind of learning that
the brain needs to accomplish autonomous adaptation to a
changing world. ART is thus not a “theory of everything”.

3.3 Resonance and learning of attended critical feature patterns

Excitatory matching and attentional focusing on bottom-
up data using top-down expectations generates resonant
brain states: When there is a good enough match between
bottom-up and top-down signal patterns between two or
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more levels of processing, their positive feedback signals
amplify, synchronize, and prolong their mutual activation
(Fig. 5), leading to a resonant state that focuses attention on
a subset of features (the category prototype, or critical fea-
ture pattern) that can correctly classify the input pattern at
the next processing level and lead to successful predictions
and actions. Amplification, synchronization, and prolonga-
tion of activity triggers learning in the more slowly vary-
ing adaptive weights that control the signal flow along path-
ways between the attended features and the recognition cate-
gory with which they resonate. Such a resonance embodies a
global context-sensitive indicator that the system is process-
ing data worthy of learning, hence the name Adaptive Reso-
nance Theory.

ART hereby models alink between the mechanisms which
enable us to learn quickly and stably about a changing world,
and the mechanisms that enable us to learn expectations
about such a world, test hypotheses about it, and focus at-
tention upon information that may predict desired conse-
quences. ART hereby explains how, in order to solve the
stability-plasticity dilemma, only resonant states can drive
fast new learning.

3.4 Prototype attention obeys the ART Matching Rule: Modulatory
on-center, off-surround network

Carpenter and Grossberg [71] mathematically proved
that the simplest attentional circuit that solves the stability-
plasticity dilemma is a top-down, modulatory on-center, off-
surround network (Fig. 24). This ART Matching Rule pro-
vides excitatory priming of critical features in the on-center,
and driving inhibition of irrelevant features in the off-
surround. The modulatory on-center emerges from a balance
between top-down excitation and inhibition, driven by neu-
rons that obey the membrane equations of neurophysiology.

Categories
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Fig. 24. The ART Matching Rule focuses prototype attention upon
critical features that regulate category learning and prediction. It is
realized by a top-down, modulatory on-center, off-surround network that
also suppresses irrelevant features. See the text for details. [Adapted with
permission from [193]. A closely related circuit appears in [71] published in

Frontiers.]
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3.5 Top-down attentional priming

Attentional priming by the modulatory on-center can be
illustrated by the following example: Suppose you are asked
to “find the yellow ball as quickly as possible, and you will
win a $100,000 prize”. Activating a top-down, modulatory
expectation of a “yellow ball” can subliminally enhance, or
“prime”, the activity of its critical feature pattern, without
causing these cells to generate suprathreshold activities. If
and when the ball does appear, the primed cells can fire more
energetically and rapidly. Sensory and cognitive top-down
expectations hereby support excitatory matching with consis-
tent bottom-up data (Table 4). In contrast, a big enough
mismatch between a top-down expectation and bottom-up
data can suppress the mismatched part of the bottom-up data,
while attention focuses upon the matched, or expected, part
of the bottom-up data.

3.6 Data support for the ART Matching Rule

Many anatomical and neurophysiological experiments
have provided support for the ART prediction of how at-
tention works, including data about modulatory on-center,
off-surround interactions; excitatory priming of features in
the on-center; suppression of features in the off-surround;
and gain amplification of matched data (e.g., [194-203]).
The ART Matching Rule is often called the “biased competi-
tion” model of attention by experimental neurophysiologists
[204, 205]. The ART Matching Rule property that bottom-
up sensory activity may be enhanced when matched by top-
down expectations is consistent with neurophysiological data
showing facilitation by attentional feedback [178, 200, 206].

The experiments of Sillito etal. ([200], pp. 479-482) on at-
tentional feedback from cortical area V1 to the Lateral Genic-
ulate Nucleus (LGN) provided particularly strong support
for an early prediction that the ART Matching Rule should
acts in this circuit [10]. Sillito et al. [200] wrote that “the
cortico-thalamic input is only strong enough to exert an effect on
those dLGN cells that are additionally polarized by their retinal in-
put..the feedback circuit seardhes for correlations that support the
‘hypothesis’ represented by a particular pattern of cortical activ-
ity”. Moreover, the “cortically induced correlation of relay cell
activity produces coherent firing in those groups of relay cells with
receptive-field alignments appropriate to signal the particular ori-
entation of the moving contour to the cortex...this increases the gain
of the input for feature-linked events detected by the cortex”.

In other words, top-down priming, by itself, cannot fully
activate LGN cells. Instead, it needs matched bottom-up reti-
nal inputs to do so, and the LGN cells whose bottom-up sig-
nals support cortical activity get synchronized and amplified
by this feedback.

Additional anatomical studies have shown that the V1-to-
LGN pathway realizes a top-down on-center off-surround
network [200, 207, 208]. This kind of circuit also occurs
during auditory processing: Zhang et al. [209] reported that
feedback from auditory cortex to the medial geniculate nu-
cleus (MGN) and the inferior colliculus (IC) also has an on-
center off-surround form. Temereanca and Simons [210]
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have produced evidence for a similar feedback architecture
in the rodent barrel system.

The appearance of the ART Matching Rule circuit in mul-
tiple modalities can be understood from the need to solve the
stability-plasticity dilemma during development and learning
in all of them.

3.7 Mathematical definition of the ART Matching Rule

The ART Matching Rule has been represented mathemat-
ically in a similar way by more than one lab. In particular, the
“normalization model of attention” [211] simulates several
types of experiments on attention using the same equation
that the distributed ARTEXture (dARTEX) model ([145],
equation (A5)) used to simulate human psychophysical data
about Orientation-Based Texture Segmentation (OBTS) of
Ben-Shahar and Zucker [212]. Reynolds and Heeger [211]
defined an algebraic equation for attention with built-in di-
visive terms to model normalization. Bhatt et al. [145] mod-
eled attention using the dynamics of an ART neural network
model. When these dynamics reach steady state, the result-
ing algebraic equation includes a divisive term that is not built
explicitly into ART dynamics. The divisive term arises from
the automatic gain control, or shunting, terms that occur in
Eqn. 1. When such an equation reaches equilibrium, its time
derivative dx;/dt equals zero. Solving for x; puts the auto-
matic gain control terms into the denominator. The auto-
matic gain controls of a shunting STM equation are thus the
cause of normalized attention at equilibrium.

3.8 Imagining, planning, and hallucinating

A balance between excitation and inhibition in the on-
center of a top-down expectation is what makes it modula-
tory. This balance can be modified by volitional gain con-
trol signals from the basal ganglia (Fig. 24). For example,
if volitional signals inhibit inhibitory interneurons in the
on-center, then read-out of a top-down expectation from a
recognition category can fire, not merely modulate, cells in
the on-center prototype. Such volitional control may con-
trol mental imagery and the ability to think and plan ahead
before choosing an appropriate action.

A similar modulatory circuit, again modulated by the basal
ganglia, is predicted to control temporary storage in the pre-
frontal cortex of sequences of events in working memory [31]
and a task-appropriate span of spatial attention (“useful-field-
of-view”) in the parietal and prefrontal cortex [180].

ART predicts that all these properties arise from a cir-
cuit design which uses top-down expectations to dynamically
stabilize fast learning throughout life. This ability to learn
quickly without catastrophic forgetting can then be volition-
ally modulated by the basal ganglia to support imagination,
internal thought, and planning. This modulation has brought
huge evolutionary advantages to human civilization.

When basal ganglia modulation breaks down, various
clinical disorders can occur. In particular, if these volitional
signals become tonically hyperactive, then top-down expec-
tations can fire without overt intention, leading to properties
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Table 7. The ART attentional system and orienting system
are computationally complementary. The attentional system
is where learning and prototype attention occur. It involves brain
regions like temporal and prefrontal cortex. The orienting system
responds to unexpected and unfamiliar events to drive a memory
search, or hypothesis testing, to discover and, if necessary, learn a

better matching category. It involves brain regions like the

hippocampal system and nonspecific thalamus.
ART
COMPLEMENTARY Attentional and Orienting Systems

Attentional System <==p Orienting System

Expected Events Unexpected Events

Familiar Events Unfamiliar Events

Resonance Reset
Attention Memory Search
Learning Hypothesis Testing
Recognition

Temporal cortex
Prefrontal cortex

Hippocampal system
Nonspecific Thalamus

like schizophrenic hallucinations [213]. Such mental disor-
ders have probably persisted because the evolutionary advan-
tages of the circuits that allow them are so momentous.

3.9 More Complementary Computing: Resonance and reset
controls ART learning and search

Match learning occurs only if a good enough match occurs
between bottom-up information and a learned top-down ex-
pectation that is read out by an active recognition category.
A good enough match can trigger an adaptive resonance that
learns a time-average of attended critical feature patterns.
Such learning leads to stable memories of arbitrary events
presented in any order.

Match learning, by itself, is insufficient for an obvious rea-
son: If learning occurs only when a good enough match oc-
curs between bottom-up data and learned top-down expecta-
tions, then how is anything really novel learned? ART solves
this problem by using an interaction between complementary
processes of resonance and reset that control attentive learn-
ing and memory search, respectively. These processes bal-
ance between processing the familiar and the unfamiliar, the
expected and the unexpected. When an input is unexpected
but familiar, memory search can discover a better matching,
but known, category. When an input is unexpected and un-
familiar, search can discover an uncommitted cell population
with which to learn a new category.

The resonance process is predicted to take place in an at-
tentional system within the What cortical stream, in brain re-
gions like the temporal and prefrontal cortices (Table 7). This
system computes processes like resonance, prototype atten-
tion, learning and recognition. It is here that top-down ex-
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pectations that obey the ART Matching Rule are matched
against bottom-up inputs. When a top-down expectation
achieves a good enough match with bottom-up data, this
match process focuses prototype attention upon those critical
features in the bottom-up input that are expected. If the ex-
pectation is close enough to the input pattern, then a state of
resonance develops as the attentional focus takes hold, which
is often realized by oscillatory dynamics that synchronize the
firing properties of the resonant neurons [214].

A sufficiently bad mismatch between an active top-down
expectation and a bottom-up input activates the complemen-
tary orienting system, which includes the hippocampal system
and the nonspecific thalamus (Table 7). Output signals from
the orienting system rapidly reset the recognition category
that has been reading out the poorly matching top-down ex-
pectation (Fig. 25). The cause of the mismatch is hereby
removed, thereby freeing the system to activate a different
recognition category. To discover a better matching cate-
gory, the reset event triggers memory search, or hypothesis
testing.

ART 1 MODEL
ATTENTIONAL ORIENTING
SYSTEM SYSTEM
STM F; |<—— Reset
w and
o+ Search
‘¥
[ @
Nonspecific — — Matchin
inhibitory STM F, < criteriong:'
gain control ‘+ +“ vigilance
parameter
INPUT

Fig. 25. Macrocircuit of the ART 1 model for learning to classify and
stably remember arbitrarily many binary input patterns of an arbi-
trarily large finite dimension. [Adapted with permission from [193]. A

closely related circuit appears in [71] published in Elsevier.]

3.10 The ART hypothesis testing and learning cycle

Fig. 26 describes how the ART hypothesis testing and
learning cycle works that is triggered by a reset. In Fig. 26a,
a bottom-up input feature pattern, or vector, I (represented
by the upward facing green arrow to the first level F;), acti-
vates a pattern X of activity across the feature detectors of
Fi. For example, a visual scene may be represented by its
boundary and surface representations [111, 151]. This fea-
ture pattern (in yellow at F;) represents the relative impor-
tance of different features in I Pattern peaks represent more
active feature detector cells. This feature pattern activates
bottom-up signals S through an adaptive filter to the second
level Fo at which a recognition category Y (or compressed
representation of the input) is activated in response to the
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Fig.26. The ART hypothesis testing and category learning cycle. [Adapted with permission from [193]. A closely related figure appears in [71] published

in Elsevier.]

input pattern T. Input T is computed by multiplying the sig-
nal vector S by a matrix of adaptive weights, or long-term
memory traces, that can be altered through learning to bet-
ter activate familiar recognition categories. Recurrent com-
petitive interactions across Fo—notably, recurrent shunting
lateral inhibitory signals—allow only a small subset of the
most strongly activated cells to remain active in response to
T. These active cells are the recognition category Y that rep-
resents the pattern of distributed features across level Fj.

The active category cells, in turn, send top-down signals U
back to F; (Fig. 26b). This signal vector U is converted into
a top-down learned expectation V by being multiplied by an-
other matrix of adaptive weights. Expectation V is delivered
to F} via a circuit that obeys the ART Matching Rule.

The first time that a recognition category is activated in
Fs, it needs to resonate with its feature pattern in F; in or-
der to be learned. But how does a new category in F» know
what features are currently active in F; in order to be able to
match and resonate with them? This is achieved by choos-
ing all initial top-down adaptive weights to be large and uni-
formly distributed across the features with which they inter-
act. These initial top-down weights can match any feature
pattern. Learning prunes these initial weights to converge
upon the correct critical feature pattern with which to code
each category.

With this caveat in mind, it follows that, on every learning
trial, matching between the input vector I and V selects that
subset X* of F; features that were “expected” by the active Fy
category Y. All of the selected features lie within the modula-
tory on-center of the ART Matching Rule circuit. These are
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the critical features within the learned prototype of category
Y.
3.11 Syndhronous binding of features and categories during a
conscious feature-category resonance

If the top-down expectation matches the bottom-up in-
put pattern well enough, then the pattern X* of attended fea-
tures reactivates the category Y which, in turn, reactivates
X*. The network hereby locks into a resonant state through
a positive feedback loop that dynamically links, or binds, the
attended features across X* with their category, or symbol,
Y. A feature-category resonance (Table 1) results that syn-
chronizes, gain amplifies, and prolongs the activities of the
critical features and the category to which they are bound
(Fig. 5), triggers learning of the critical features within both
the bottom-up adaptive filter and the top-down learned ex-
pectation, and supports conscious recognition of the attended
visual object or event.

3.12 Resonant bound states overcome two kinds of local ignorance

Individual features at F1have no meaning on their own,
just as individual pixels in a picture are meaningless. The
category Y in Fy responds selectively to the global pattern-
ing of these features, but it does not know what they rep-
resent, because it is a compressed, or “symbolic,” representa-
tion. Resonance converts the pattern of attended features into
a coherent, context-sensitive, state that is bound to its cate-
gory through feedback. This bound state simultaneously rep-
resents both the critical features and the category that sym-
bolizes them.
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The next few sections describe the implications of the
ART hypothesis testing and learning cycle in greater detail
to clarify several basic issues about how ART benefits from
Complementary Computing.

3.13 Complementary roles of the attentional and orienting systems

The attentional and orienting systems in an ART net-
work play complementary roles during category learning and
search for new categories. I will explain below that these
complementary roles derive from computationally comple-
mentary laws that are obeyed by the ART attentional and ori-
enting systems, in addition to the complementary laws that
are summarized in Table 3, and the four of these that have
already been discussed above.

The reason for this complementary relationship is as fol-
lows: When there is a good enough match in the atten-
tional system, the bound state between critical features and
their active category embodies information about the features
that are currently being processed. However, at the moment
when a predictive error occurs, the network does not know
why the currently active category has failed to predict the
correct outcome. Furthermore, when such a predictive mis-
match in the attentional system activates the orienting sys-
tem, the orienting system has no knowledge about what went
wrong in the attentional system, just that something went
wrong.

Thus, the attentional system has information about how
inputs are categorized, but not whether the categorization is
correct, whereas the orienting system has information about
whether the categorization is correct, but not about what is
being categorized. Given that neither system knows at the
time of mismatch what went wrong, how does an ART mem-
ory search discover a more predictive outcome?

3.14 Novelty-sensitive nonspecific arousal: Novel events are
arousing!

Because the orienting system does not know what cate-
gory in the attentional system caused the predictive error,
its activation needs to equally influence all cells in the cate-
gory level. That is why a big enough mismatch in the orient-
ing system triggers a burst of nonspecific arousal that equally
activates all cells in the attentional system. In other words:
Novel events are arousing! As shown in Fig. 26c, such an
arousal burst selectively resets category cells that caused the
mismatch, thereby initiating memory search, or hypothesis
testing, to discover a more predictive category (Fig. 26d).
Such a memory search shifts prototype attention from one
category to another.

3.15 Medium-term memory: Habituative transmitters and limited
capacity during hypothesis testing

How does a burst of nonspecific arousal selectively reset ac-
tive category cells? Why do not the winning category cells
remain winners after arousal acts?

Arousal-mediated category reset is selective because sig-
nals within the category level are multiplied, or gated, by ha-
bituative chemical transmitters, or MTM traces (see Eqn. 2).
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Due to habituative gating, recently activate category cells
are more habituated than inactive cells. The habituated cat-
egory cells compete with other cells at the category level
to determine which cells will be chosen next. This is a
self-normalizing competition that is carried out by recurrent
shunting on-center off-surround interactions across the cat-
egory level (see Eqn. 1). Self-normalization interacts with
habituation to suppress the habituated category cells, even
though they were the most active cells when the arousal burst
is received. This self-normalization property is also a compu-
tational basis of the limited capacity of attention (e.g., [87,215-
217]).

Mathematical proofs of how reset, or antagonistic rebound,
happens can be found in [12] (Appendices A and E) and
[14] (Appendix).
suppressed by a combination of habituation and competi-
tion during the search cycle, cells that initially got smaller
inputs than the original winning cells can inherit the self-
normalizing network activity that the winning cells no longer
take up, and thereby become more active in the next time in-
terval. This cycle of mismatch-arousal-reset continues until

Once the maximally activated cells are

resonance can again occur.

Because the total activity of the category cell network is
self-normalizing, the category level activations can be in-
terpreted as a kind of “real-time probability distribution”,
and the ART memory search cycle can be interpreted as a
kind of probabilistic hypothesis testing and decision mak-
ing that is competent in response to arbitrarily complicated
non-stationary time series of input patterns. These proper-
ties are what makes ART a self-organizing production system
in a changing world [42].

3.16 Processing Negativity in the attentional system is
complementary to N200 in the orienting system

Psychological and neurobiological data have supported
ART predictions about how the memory search process
works. A particularly compelling kind of data have been
derived from experiments using event-related potentials, or
ERPs, that are measured from a human subject using arrays
of scalp potentials.

For example, the predicted sequence of mismatch, arousal,
and category reset operations during an ART search have
been experimentally predicted, recorded, and modeled by
Banquet and Grossberg [3] as sequences of P120, N200, and
P300 ERPs during oddball experiments. During such an ex-
periment, a human subject is primed to detect rare targets
within sequences of more frequent distractors (Fig. 27).

In addition to ERP events that occur during search, the
Processing Negativity, or PN, ERP has been recorded dur-
ing sustained prototype attention [218, 219] while an ART
feature-category resonance occurs.

The N200 ERP that is triggered by mismatch-mediated
activation of the orienting system [220-222] has properties
that are computationally complementary to those of PN, as
summarized in Fig. 28. The complementary properties of
PN (within the attentional system) and N200 (within the ori-
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ERP SUPPORT FOR MISMATCH-MEDIATED RESET
Event-Related Potentials: Human Scalp Potentials

ART predicted correlated sequences of P120-N200-P300
Event Related Potentials during oddball learning
P120 - mismatch; N200 - arousal/novelty; P300 - STM reset
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Fig.27. Event Related Potential, or ERP, experimental support for the
ART hypothesis testing cycle from [3]. [Reprinted with permission from
[1] published in Oxford University Press.]

enting system) make precise the sense in which the ART at-
tentional and orienting systems are computationally comple-
mentary.

COMPLEMENTARY COMPUTING IN ART

Complementary Event-Related Potentials

PN AND N200 ARE COMPLEMENTARY WAVES

MATCH MISMATCH

| l\
NG |e  [500d
; i

PN N200
Top-Down Bottom-Up
Conditionable Unconditionable
Specific Nonspecific ;
Match Mismatch

Fig. 28. The processing negativity (PN) and N200 ERPs illustrate the
fact that the ART attentional and orienting systems are computa-
tionally complementary. [Adapted with permission from [19] published

in Elsevier.]

3.17 Neurophysiological data about attentional and orienting
systems from multielectrode experiments

ERP data have been supplemented by neurophysiological
data about attentional and orienting system interactions. For
example, Brincat and Miller ([223], p. 576) have reported
neurophysiological data from prefrontal cortex (PFC) and
hippocampus (HPC) in monkeys learning object-pair associ-
ations: “PFC spiking activity reflected learning in parallel with be-
havioral performance, while HPC neurons reflected feedback about
whether trial-and-error guesses were correct or incorrect. Rapid ob-

Volume 20, Number1, 2021

ject associative learning may occur in PFC, while HPC may guide
neocortical plasticity by signaling success or failure via oscillatory
syndhrony in different frequency bands’.

PFC is a projection area of the inferotemporal, or IT, cor-
tex where categories begin to be learned. These data thus
add to a substantial experimental literature that have impli-
cated the hippocampus as part of the orienting system for
match/mismatch processing. See [19] for additional discus-
sion of this literature.

3.18 Vigilance: A criterion for resonance vs. reset that determines
category generality

How specific and concrete, or general and abstract, will
learned ART categories be? On what combination of critical
features will categories learn to focus prototype attention?

This is determined by how good a match is needed in or-
der for resonance, attention, learning, and consciousness to
occur. The matching criterion is determined by the size of
a vigilance parameter p that is computed within the orienting
system (Fig. 26b; [71]). If vigilance is chosen high, then even
small mismatches can trigger search. As a result, only very
good matches can resonate with a given category, so only
a specific or concrete category prototype is learned, such as
one that recognizes a frontal view of your mother’s face. If
vigilance is low, then even poor matches can resonate with
a given category, so that multiple exemplars can be incor-
porated into the learned prototype, which hereby learns an
abstract or general category, such as one that recognizes any
face.

VIGILANCE CONTROL
X
plii-xiso p<i

1X]

I-X|>0 P>
plr|-|xX| 1]

resonate and learn

reset and search

p is a sensitivity or gain parameter

Fig. 29. How vigilance determines whether the attentional system
will resonate and learn, or the orienting system will be activated to
drive memory search and hypothesis testing. [Adapted with permission

from [1] published in Oxford University Press.]

The vigilance parameter p multiplies the bottom-up ex-
citatory inputs I to the orienting system. Vigilance is thus
the gain of these excitatory inputs. The orienting system is
activated when the total excitatory input pl is greater than the
total inhibition from the attended critical features X* across
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F; that survive top-down matching. This occurs when p|I| -
|X*| > 0 (Fig. 29), where |.| denotes the number of positive
inputs p|I| or matched critical features | X*|. Rewriting this
inequality as p > | X*||I|~! shows that the orienting system
is activated when p is larger than the ratio of the number | X*|
of critical features in F; to the total number |I| of features in L.
If p < | X*||I| 7}, then the orienting system remains quiet, so
that resonance and category learning can proceed. Vigilance
hereby controls how bad a match can be before reset of the
current category, and search for a new category, is initiated.

Vigilance is typically chosen as low as possible to learn the
most general possible categories, and thereby conserve mem-
ory resources, but without causing a reduction in predictive
success. The baseline vigilance level is therefore set initially
at the lowest level that has led to predictive success in the past.
When a given task requires finer discriminations, vigilance is
raised.

Extend UNSUPERVISED ART to
SUPERVISED or UNSUPERVISED ARTMAP

FUZZY ARTMAP

map field Fa®

MATCH

TRACKING

MATCH TRACKING realizes Minimax Learning Principle:
Vigilance increases to just above the match ratio of
prototype / exemplar, thereby triggering search

Fig. 30. ARTMAP systems can carry out arbitrary combinations of
unsupervised or supervised learning during learning trials. During
supervised learning, two unsupervised ART systems, ARTa and ARTb, are
linked by a learned associative map which enables learning a map from ar-
bitrarily large databases of m-dimensional vectors to n-dimensional vectors,
where m and n can also be chosen arbitrarily large. [Adapted with permis-

sion from [75] published in Frontiers.]

3.19 From ART unsupervised category learning to ARTMAP
supervised or unsupervised map learning

Predictive successes and failures can be computed in an
ARTMAP system that is capable of learning to predict any
number of arbitrarily large output vectors in response to
any number of arbitrarily large input vectors ([75, 77]). An
ARTMAP system is composed of two unsupervised ART sys-
tems, ARTaand ARTD, thatare linked by associative learning
in a map field (Fig. 30). By pairing an input vector a with an
output vector b, an ARTMAP system can learn to associate
input vector a with output vector b, thereby becoming a su-
pervised mapping system. Input vector a can learn to predict
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Fig. 31. ARTMAP systems can learn both many-to-one maps and one-
to-many maps. Learning of a many-to-one map is illustrated in this figure.
ARTa is trained to classify combinations of symptoms, tests, and treatments
of medical disorders. ARTD is trained to classify properties of hospital care.
Predictive errors in ARTD can drive memory searches in ARTa to focus at-
tention upon, and learn to classify, predictive combinations of critical fea-
tures about disease measurements with which to learn correct predictions
about hospital care. [Reprinted with permission from [1] published in Ox-
ford University Press.]

output vector b because of the reciprocal bottom-up and top-
down learned connections in both ARTa and ARTb.
ARTMAP clarifies how many-to-one maps and one-to-
many maps are learned. Figs. 31 and 32 show one example
of each. In the many-to-one example in Fig. 31, arbitrarily
many, arbitrarily large vectors of medical symptoms, tests,
and treatments can learn to predict multiple different medical
outcomes of these combined constraints, including the esti-
mated length of stay in the hospital. Fig. 32 illustrates how
ARTMAP can learn a one-to-many map. For example, after
learning to predict that the image on the bottom left is a dog,
seeing that image leads to the response “dog”. However, if
instead the answer “Rover” is given, then the mismatch be-
tween “dog” and “Rover” triggers an ART search in which
prototype attention shifts to focus on that combination of fea-
tures in the image that predicts the particular dog “Rover”.

3.20 Minimax learning by Match Tracking: Learning the most
general predictive categories

Vigilance it typically raised in response to a predictive fail-
ure, or disconfirmation, because it must have been lower than
the previously computed match value |X*| |I| ! in order to
make the incorrect prediction in the first place (Fig. 29 and
Fig. 33a). Increasing vigilance until it just exceeds the match
value triggers a memory search for a better-matching cate-
gory (Fig. 33b). Such an increase sacrifices that minimum
amount of generalization in order to correct the predictive
error. This operation is called matd: tracking.
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Fig. 32.
ARTMAP: After the association between the image and the name “dog” has

An example of how a one-to-many map is learned by

been learned, showing the image on a subsequent trial with the teaching sig-
nal “Rover” causes a predictive mismatch between “dog” and “Rover” that
drives a memory search which ends by focusing prototype attention upon a
combination of critical features that is sufficient to recognize “Rover”. These
critical features drive learning of a new category that is associated with the
name “Rover”. An arbitrarily number of such associations can be learned in
response to the image. These learned links can then be organized by higher
categories that code all of this knowledge about the image. [Reprinted with

permission from [1] published in Oxford University Press.]

MATCH TRACKING realizes MINIMAX LEARNING PRINCIPLE
Given a predictive error, vigilance increases just enough to trigger search
and thus sacrifices the minimum generalization to correct the error

(a)

—>
PREDICTION

ORIENTING
SUBSYSTEM ...and enables

s ANALOG MATCH expert knowledge
— V| GIL.
GILANCE to be

incrementally learned
(b)
ORIENTING
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MATCH
2 |G MISMATCH
ANALOG MATCH TRACKING

Fig. 33. Minimax learning by matching tracking minimizes predic-
tive error while conjointly maximizing category generality. See the
text for details. [Reprinted with permission from [42] published in Fron-

tiers.]

Match tracking helps to explain how one-to-many maps
are learned. It also helps to explain how predictive errors
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are corrected. For example, a predictive error could occur
if a viewer classifies an object as a dog, whereas it is really a
wolf. Within ART, such a predictive disconfirmation causes
an increase in vigilance that triggers a memory search. The
memory search causes a shift in prototype attention to focus
on a different combination of features that can successfully
be used to recognize a wolf, and perhaps to recognize other
similar looking wolves as well.

The vigilance increase in Fig. 33b is called match track-
ing because vigilance tracks the match | X*| |I| ~! between the
input pattern I and the attended feature pattern X*. Match
tracking us a form of minimax learning, or learning that min-
imizes predictive errors while it maximizes category general-
ity. In this way, match tracking uses the minimum memory
resources that can correct predictive errors. Because match
tracking may change vigilance on each trial in order to main-
tain predictive success, ARTMAP can learn databases whose
recognition categories differ greatly in their specificity or
generality.

4. Laminar computing and the LAMINART
model: Attention in laminar neocortical
circuits

All the neurons in cerebral cortex are organized using a
shared design of layered circuits whose specializations carry
out all forms of higher-order biological intelligence [224,
225]. As noted in [192], this design realizes a revolution-
ary computational synthesis of the best properties of feed-
forward and feedback processing, digital and analog process-
ing, and data-driven bottom-up processing and hypothesis-
driven top-down processing. Top-down processing includ-
ing the focusing of attention.

TOP-DOWN ATTENTION AND FOLDED FEEDBACK

Attentional signals feed back
into 6-to-4 on-center off-surround
V2 6 ﬂ via a layer 1-to-5-to-6 feedback path

Gilbert and Wiesel (1979)
Lund and Boothe (1975)

This V2-to-V1 feedback affects
layer 6 of V1 the most; that is,
® ® [ ] modulates layer 4
Bullier et al. (1996)
I Sandell and Schiller (1982)

F =Y

Attended stimuli are enhanced
Ignored stimuli are suppressed

[3)]

T This circuit supports the

LGN ART MATCHING RULE

Fig. 34. Laminar circuit that carries prototype attention from layer 6
of cortical area V2 to layer 4 of cortical area V1 via a top-down, mod-
ulatory on-center, off-surround network that embodies the ART
Matching Rule using a folded feedback circuit from layer 6 in V2 to
layers 5-to-6-to-4 in V1. [Reprinted with permission from [1] published in
Oxford University Press.]
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The understanding of ART, and attention, incrementally
developed until Grossberg [226] introduced the LAMINART
model to show how bottom-up adaptive filtering, horizon-
tal grouping, and top-down attentional interactions may be
combined in the laminar circuits of neocortex. This article
introduced the computational paradigm of Laminar Comput-
ing, which shows how predicted ART mechanisms may be
embodied within known laminar cortical circuits, and solves
along-standing open problem, called the attention-preattention
interface problem, thereby enabling the explanation and pre-
diction of much more cognitive and brain data than be-
fore. More about the attention-preattention interface prob-
lem will be described in the next section.

This laminar synthesis combined ART as a theory of cat-
egory learning and prediction—which emphasized bottom-
up and top-down interactions within higher cortical areas
such as V4, inferotemporal cortex, and prefrontal cortex—
with the FACADE (Form-And-Color-And-DEpth) theory of
3D vision and figure-ground perception—which emphasized
bottom-up and horizontal interactions for sensory filtering,
followed by completion of boundaries and filling-in of surface
brightness and color, within lower cortical processing areas
such as V1, V2, and V4.

The unification of these two research streams in LAMI-
NART proposed how all cortical areas combine bottom-up,
horizontal, and top-down interactions, thereby beginning to
functionally clarify why all granular neocortex has a charac-
teristic architecture with six main cell layers [175]. In par-
ticular, this unification led to laminar neural models within
variations of a shared canonical cortical design could be used
to explain psychological and neurobiological data about vi-
sion, speech, and cognition. See [17] for a review.

4.1 Prototype attention, folded feedback, and multiplexed filtering,
grouping, and attention

Fig. 34 shows the cortical circuit that realizes prototype
attention within the visual cortex. Note that a top-down sig-
nal from layer 6 of a higher cortical area like V2 feeds topo-
graphically down to layer 6 of V1, either directly or via apical
dendrites of layer 5 cells (as shown), before folding back up
to layer 4 as a modulatory on-center, off-surround network.
Prototype attention in visual cortex is thus realized by a folded
feedback circuit.

Fig. 34 also shows that bottom-up filtering signals from
the lateral geniculate nucleus, or LGN, to V1 and top-down
attention from V2 to V1 share the modulatory on-center, off-
surround decision circuit between layers 6 and 4. In this way,
bottom-up input patterns can have critical features selected
by top-down prototype attention in layer 4 of V1.

Fig. 35 shows that, in addition, long-range horizontal in-
teractions in layer 2/3 (shown in black), which carry out
boundary completion and perceptual grouping, also share the
same decision circuit between layers 6 and 4. See, in particu-
lar, the excitatory pathway from layer 2/3 to layer 6.

Thus all the constraints of bottom-up adaptive filtering,
horizontal grouping, and top-down attentive expectations
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GROUPING AND ATTENTION SHARE
THE SAME MODULATORY DECISION CIRCUIT

Layer 6-6-4-2/3 pathway shown; also a layer 6-1-2/3 path

/ Intercortical attention

BOTH act via a MODULATORY
'ON-CENTER OFF-SURROUND
decision circuit

Intracortical feedback
from groupings

Fig. 35. Laminar circuit that joins the prototype attention circuit
with a boundary completion circuit: Both boundary grouping and pro-
totype attention share the same layer 6-to-4 decision circuit that uses modu-
latory on-center, off-surround interactions to choose the grouping that best
balances between grouping and attentional constraints. The horizontal con-
nections in layer 2/3 that complete boundary groupings use signals from
layer 2/3-to-6-to-4, where they interaction with prototype attentional sig-
nals. [Reprinted with permission from [1] published in Oxford University

Press.]

share the same decision circuit between layers 6 to 4, thereby
multiplexing all of their constraints before the best atten-
tional focus and perceptual grouping is chosen in the cur-
rent informational context. I therefore call this circuit the
attention-preattention interface.

4.2 SMART: Resonance vs. reset lead to gamma vs. beta
oscillations

The Synchronous Matching ART, or SMART, model
[214] extends the LAMINART model to include hierarchies
of laminar neocortical circuits that use spiking neurons to in-
teract within and between each other, and with specific and
nonspecific thalamic nuclei (Fig. 36). SMART explains and
predicts the functional meaning of a larger body of anatomi-
cal data, of synchronized cortical interactions, and of the bio-
chemical substrates of vigilance control. One anatomical re-
finement in Fig. 36 models different roles for cortical layers
6" and 6!/ in the laminar cortical circuit for prototype atten-
tion.

SMART simulations of synchronized cortical oscillations
show how a good enough top-down attentive match may lead
to fast gamma oscillations that support prototype attention
and spike-timing dependent plasticity (STDP). In contrast, a
big enough mismatch may generate slower beta oscillations.
This match-mismatch gamma-beta story seems to occur in
quite a few brain systems, with data supporting this predic-
tion having recently been reported in V1, frontal eye fields,
and hippocampus, as reviewed in [17].

4.3 Vigilance control by nucleus basalis acetyldholine release in
health and disease

Of particular interest is the SMART prediction about how
vigilance is controlled in our brains. As shown in Fig. 37, a
big enough mismatch in the nonspecific thalamus activates
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VIGILANCE CONTROL:
MISMATCH-MEDIATED ACETYLCHOLINE RELEASE

Acetylcholine (ACh) regulation by
NONSPECIFIC THALAMIC NUCLEI

via NUCLEUS BASALIS OF NUCLEUS BASALIS

MEYNERT reduces AHP in layer 5 OF MEYNERT

and causes a mismatch/reset

thereby increasing vigilance 5 . ACh
———

Reduces AHP "
HIGH Vigilance ~ Sharp Code :
LOW Vigilance ~ Coarse Code

NONSPECIFIC
THALAMIC NUCLEUS

Fig. 37. Circuit showing how a big enough mismatch activates the
nonspecific thalamus, which activates the nucleus basalis of Meyn-
ert, which releases acetylcholine, or ACh, in layer 5 of multiple cor-
tical areas. The ACh reduces afterhyperpolarization, or AHP, currents and
thereby causes an increase in vigilance. [Adapted with permission from
[214] published in Elsevier.]

the nucleus basalis of Meynert [120], which, in turn, broadly
releases acetylcholine, or ACh, in layer 5 of multiple corti-
cal areas. ACh release reduces after-hyperpolarization (AHP)
currents, which cause a transient increase in vigilance. If this
increase is large enough (see Fig. 29), then it can disrupt an
ongoing resonance to trigger a memory search, ending in se-
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lection or learning of a category with a new focus of proto-
type attention. Many data about the role of ACh in vigilance
control and reset are summarized and modeled in [227].

In normal individuals, this vigilance circuit controls pro-
cesses like match tracking. In various mental disorders-
such as Alzheimer’s disease, autism, amnesia, and disordered
sleep-the circuit can break down in different ways, leading to
behavioral symptoms of each disorder. Grossberg [18] de-
scribes what these symptoms are and how they may arise due
to ACh malfunctions.

44 SACCART: Laminar circuits in SC dhoose spatial attentional
targets for saccadic eye movements

After spatial attention orients to the position of a desired
goal object, movements must follow to acquire it. One of the
most important kinds of movements are saccadic, or ballistic,
eye movements to foveate the target, followed by leg move-
ments to navigate towards it, and arm movements to reach
1t.

The superior colliculus, or SC, contains a map of possi-
ble target positions. It is a multimodal map in which visual,
auditory, and planned movement inputs compete for atten-
tion, leading to selection of a winning position that controls
where the next saccadic eye movement will go. Visual and au-
ditory signals are computed in different coordinates: Visual
targets are registered on the retina, so are initially computed
in retinotopic coordinates. The position in space that this
retinal activation represents depends upon where the eyes are
looking when they receive this retinal input. Both the posi-
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the cerebellum, or adaptive gain (AG) stage. (b) When the SG fires, it generates both a signal to move the eye and a parallel corollary discharge signal that
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centered spatial map of the target. (c) The head-centered representation of target position is converted into an error vector that is coded in motor coordinates
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position of the target using inputs from the peak decay layer as teaching signals. The learned transformation from reactive target position to commanded SC

saccadic eye movement is then complete. [Reprinted with permission from [228] published in Wiley.]

tion on the retina of the target, and the position of the eyes in
their orbit, thus combine to compute target position. Audi-
tory signals are computed in head-centered coordinates, since
the ears move with the head.

Learning within the deeper layers of the SC converts these
different coordinates into a shared coordinate system using
visual inputs as a teaching signal. That is why both auditory
and planned inputs get converted into a retinotopic coordi-
nate system, that also codes a motor error map because each
of its positions codes the direction and distance that a saccade
must move in order to foveate a target a target at that position
(Fig. 38). This learning process ensures that auditory, visual,
and prefrontal planning inputs that represent the same posi-
tion in space activate the same SC map position with which to
select the target position of the next saccade. Multiple audi-
tory, visual, and cognitive inputs to the SC compete through
time to determine this winning target position. As in the
case of cognitive category attention, learning, and choice, this
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competition is realized by a recurrent on-center off-surround
network.

The SACCART model [228] models multimodal map
learning and choice within the deeper layers of the SC. Model
interactions quantitatively simulate the temporal dynamics
of SC burst and buildup cells under a variety of experimen-
tal conditions (Fig. 39). Burst cells respond with bursts that
decay as the next saccadic position is chosen and performed.
Buildup cells generate a spatially distributed pattern of activity
that begins at the chosen position and then spreads towards
the fovea as they command the eye to foveate.

This SC model is called SACCART because it is a special-
ized ART circuit whose map learning may be viewed as a
kind of attentive motor category learning that takes place us-
ing bottom-up and top-down interactions between burst and
buildup cells (Fig. 40). These ART dynamics also allow res-
onance to occur between burst and buildup cells when they
choose the same target position (Fig. 40a), and reset within
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Fig. 39. Comparison of model processes with anatomical and neuro-
physiological correlates. (a) Schematic representation of model interac-
tions. (b) Data correlates of the model depicted in (a). SNr: substantia nigra
pars reticulata; PPRF: peripontine reticular formation; MRF: mesencephalic
reticular formation; peak decay cells: burst, or T, cells; spreading wave cells:
buildup, or X, cells. [Reprinted with permission from [228] published in
Wiley.]

burst cells when a planned and reactive cue represent differ-
ent possible saccadic targets (Fig. 40b).

This map enables visual, auditory, and planned movement
commands to compete for attention, leading to selection of a
winning position that controls where the next saccadic eye
movement will go. Such map learning may be viewed as a
kind of attentive motor category learning.

Grossberg, Palma, and Versace [227] extend this analysis
to model how acetylcholine plays a role in SC map learning
that is homologous to its role in regulating vigilance control
during the learning of ART recognition categories, thereby
establishing a mechanistic link between attention, learning,
and cholinergic modulation during decision making within
both cognitive and motor systems. The article also explains
mechanistic homologs between the mammalian superior col-
liculus and the avian optic tectum [234-236], leading to pre-
dictions about how multimodal map learning may occur in
the mammalian and avian brain and how such learning may
be modulated by acetycholine.

These results show how ART dynamics help to carry out
self-stabilizing category learning, modulated by acetylcholine
vigilance control, in all neocortical regions as well as in sub-
cortical circuits devoted to movement control.
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Fig. 40. (a) Topographically organized excitatory feedback between the
spreading wave and peak decay layers triggers a resonance that drives the SC
map learning process. A nonspecific inhibitory gain signal from the spread-
ing wave layer reaches all target positions in the peak decay layer via the
mesencephalic reticular formation [229-231]. Together these excitatory and
inhibitory interactions embody the ART Matching Rule, thereby supporting
the SACCART model name. An attended target position is chosen by com-
petitive interactions within these layers, while also suppressing positions of
irrelevant targets, thereby stabilizing map learning by preventing irrelevant
targets from being learned. (b) Auditory, planned, and visual targets com-
pete for attention in the deeper layers of the SC [232, 233]. Auditory or
planned targets are received in the SC deeper layers, whereas reactive target
signals are received by the superficial layers which then project them topo-
graphically to the deeper layers. The chosen target position blocks interrup-
tions from other targets during its execution. When auditory or planned
target positions and visually reactive target positions agree, then map learn-
ing is reinforced. When the auditory or planned target positions and visually
reactive target positions disagree, then learning between these different rep-
resentations is suppressed, and the distracting target is prevented from inter-
rupting the saccade. Open circles are sources of inhibition from the substan-
tia nigra pars reticulata, or SNr, of the basal ganglia which opens gates in the
SC to enable targets at those positions to be performed. Rostral migration of
activity in the spreading wave layer from its original position erodes feedback
excitation to the burst cell layer at which visually reactive targets are stored,
thereby leading to decay of activity at the peak decay layer, and justifying its
name. [Reprinted with permission from [228] published in Wiley.]

5. All conscious states are attentive resonant
states, but not conversely: the role of qualia

Many different behaviors have been linked to attentive
resonances in specific parts of the brain, as reviewed in [17,
18]. Several of these resonances and their attentional sub-
strates are summarized in Table 1, as part of the general pre-

diction that “all conscious states are resonant states”. Given

225



Visual
Cortex

i

PFC

“What”

TELOS Model
TElencephalic
Laminar

Warking
Memory

Motivation

BrS ™

g

Nigro- thalamic

mmp Dopamine

Objective

Selector

The model learns
and remembers
IF-THEN rules for
voluntary
movement in five
simulated
primate tasks

Nigro-collicular

Fig. 41. The TELOS, or Telencephalic, Laminar, Objective, Selector, model is a laminar model that simulates interactions of the basal ganglia,
or BG, with the frontal eye fields, or FEF, prefrontal cortex, or PFC, and superior colliculus, or SC. Separate gray-shaded blocks highlight the major
anatomical regions whose roles in planned and reactive saccade generation are explained and simulated in the model. Excitatory links are shown as arrowheads,
inhibitory as filled-in disks. Filled semi-circles terminate corticostriatal and corticocortical pathways that can adapt due to learning, which is modulated by
reinforcement-related dopaminergic signals (green arrows). In the FEF block, Roman numerals I-VIlabel cortical layers; Vaand Vb, respectively, are superficial
and deep layer V. The BG decide which plan to execute and send a disinhibitory gating signal that allows thalamic activation V, which excites FEF layer Vb
output cell activities F(©) zyi to execute the plan. The model distinguishes a thalamus-controlling BG pathway, whose variables are symbolized by B, and a

colliculus-controlling pathway, whose variables are symbolized by G [237]. See the original article for further details. [Adapted with permission from [238]

published in Elsevier.]

that each kind of resonance activates some form of top-down
attention and learning, a fundamental link is hereby shown
between the CLEARS processes of Consciousness, Learning,
Expectation, Attention, Resonance, and Synchrony.

The resonances in Table 1 may all be described using fa-
miliar words from daily language. That s true because each of
them includes internal representations of external qualia, like
brightness and color, or internal qualia, like hunger and pain,
which become conscious during the resonance. Some func-
tionally important resonances do not include internal repre-
sentations of qualia, are not conscious, and thus do not have
readily available names from day-to-day language.

For example, parietal-prefrontal resonances are predicted
to trigger the selective opening of basal ganglia gates to enable
the read out of context-appropriate actions [238, 240, 241].
Entorhinal-hippocampal resonances are predicted to dynam-
ically stabilize the learning of entorhinal grid cells and hip-
pocampal place cells that represent an animal’s current posi-
tion during spatial navigation [242-245].

For example, the TELOS model in Fig. 41 includes a
parietal-prefrontal feedback loop between the frontal eye
fields, or FEF, and the posterior parietal cortex, or PPC, that
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focuses spatial attention within the PPC on target positions
in space to which saccadic eye movements will be directed.
Additional interactions between the FEF and the basal gan-
glia, or BG, regulate the opening of gates in brain regions like
the superior colliculus, or SC, that code these positions, and
thereby release saccadic eye movements to foveate them.

The GridPlaceMap model in Fig. 42 includes an
entorhinal-hippocampal feedback loop that dynamically sta-
bilizes the learning of entorhinal grid cells and hippocampal
place cells, while focusing attention upon the stripe cells,
grid cells, and place cells that represent an animal’s current
position in space. This loop provides a computational expla-
nation of the hypothesis in the title of [243] that “Increased
attention to spatial context increases both place field stability
and spatial memory”.

Because each of these resonances does not include qualia,
even though they do include resonant feedback loops that fo-
cus attention upon their respective representations, they do
not support a reportable conscious state. That is why, al-
though it is predicted that “all conscious states are resonant
states”, it is not predicted that “all resonant states are con-
scious states”.
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Fig. 42. Macrocircuit of GridPlaceMap model interactions within
and between the entorhinal cortex (EC) and hippocampal cortex
(DG/CA3 and CA1) to show how entorhinal grid cells and hippocam-
pal place cells can be learned via a hierarchy of self-organizing maps
in response to angular head velocity and linear velocity path integra-
tion signals while an animal navigates an environment. A resonant
feedback loop between stripe cells, grid cells, and place cells is closed by top-
down attentive feedback signals (red descending arrows) that dynamically
stabilizes learning while focusing attention upon an animal’s current posi-
tional representation. [Adapted from with permission from [239] published
in Wiley.]

6. Concluding remarks

This article shows how multiple types of attention are
incorporated into the CLEARS processes of Conscious-
ness, Learning, Expectation, Attention, Resonance, and Syn-
chrony that take place in perceptual, cognitive, affective, and
motor systems throughout our brains. These processes en-
able us to continue learning about our unique and always
changing experiences throughout life, while incorporating
them into an emerging sense of self that defines our identi-
ties as human beings and supports all of our interactions with
other individuals and the societies in which we live.
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