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Major depression disorder is one of the diseases with the highest rate
of disability and morbidity and is associated with numerous struc-
tural and functional differences in neural systems. However, it is dif-
ficult to analyze digital medical imaging data without computational
intervention. A voxel-wise densely connected convolutional neural
network, Three-dimensional Densenet (3D-DenseNet), is proposed
to mine the feature differences. In addition, a novel transfer learning
method, called Alzheimer's Disease Neuroimaging Initiative Trans-
fer (ADNI-Transfer), is designed and combined with the proposed
3D-DenseNet. The experimental results on a database that contains
174 subjects, including 99 patients with major depression disorder
and 75 healthy controls, show that large changes in brain structures
between major depressive disorder patients and healthy controls
mainly are located in the regions including superior frontal gyrus,
dorsolateral, middle temporal gyrus, middle frontal gyrus, postcen-
tral gyrus, inferior temporal gyrus. In addition, the proposed deep
learning network can better extract different features of brain struc-
tures between major depressive disorder patients and healthy con-
trols and achieve excellent classification results of major depressive
disorder. At the same time, the designed transfer learning method
can further improve classification performance. These results verify
that our proposed method is feasible and valid for diagnosing and an-
alyzing major depression disorder.
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1. Introduction
Major depression disorder (MDD) is one of themost com-

monmental disorders whose causes and pathological mecha-
nism are the most complicated and is seriously harmful to so-
ciety today. Therefore, accurate and rapid diagnosis of MDD
is extremely important for patients. However, in affective
disorders, the intrinsic complexity of brain neuroanatomy
and its functional connectivity is further complicated by the
considerable heterogeneity of these conditions and the effects
of treatment on the brain, which makes making and analy-
sis of MDD particularly challenging [1]. Neuroimaging, like
structural magnetic resonance imaging (sMRI), is a popu-
lar medical imaging method nowadays which has many ad-

vantages such as non-invasiveness and high contrast and is
widely used in the diagnosis and research of depression [2–
4]. So far, researchers have found that the brain differences in
functions and structures between MDD patients and healthy
people exist [4]. In particular, the connectivity between brain
areas such as the hippocampus, frontal lobe, cerebellum, and
other parts is changed.

Machine learningmethods are used to diagnosemental ill-
ness [5]. However, with the arrival of deep learning [6] in
the field of image processing [7–9], the application of deep
learning methods in the medical images field [10, 11] led to
the convolutional neural networks (CNN) is a common deep
learning algorithm, in which the backpropagation algorithm
is used to adjust its internal parameters and stack multiple
layers of neurons to find deeper features on large data sets.
Previous research [12] evidenced that the depth of the net-
work had a crucial impact on the final performance of net-
works. It is supposed that the deeper the network is, the
better its generalization ability tends to be. With this basic
criterion, CNN [7] has developed from 7 layers to 16 lay-
ers, even 19 layers of Visual Geometry Group (VGG) [13].
With the increase in layers, the computing power and time
cost required for network training also increase. However,
the results are not always improved only by simply increas-
ing the depth of the network. When the number of layers of
the network reaches a certain amount, the network will con-
verge more slowly, and classification accuracy will gradually
saturate. And if the network continues to go deeper, the ac-
curacy will even decrease. This phenomenon is known as the
degradation problem. He et al. [14] proposed deep residual
networks (ResNet) to solve this problem. Using skip connec-
tions and after-addition activation, ResNet allows signals to
be directly propagated from one block to other blocks, which
is beneficial to the backpropagation of gradients during train-
ing. Thus, the depth of ResNet can be above 152 or more,
which solves the problems of gradient disappearance and net-
work degradation to a certain extent. Subsequently, Huang et
al. [15] proposed a densely connected network (DenseNet)
whose basic idea is the same as ResNet’s. Still, it establishes
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connections between layers in one block to achieve feature
reuse. In this case, the number of parameters and the calcu-
lation cost of DenseNet are less than those of ResNet. And
DenseNet shows better performance on many public large
data sets [16].

However, most current deep learning networks can only
process two-dimensional (2D) natural image data and rarely
deal with three-dimensional (3D) data. Especially in 3D
sMRI data of depression, deep learning-related research has
not appeared at present [17]. Nevertheless, several studies
have shown that using 3D networks to process 3D data can
get better results than using 2Dnetworks. For instance, Chen
et al. [18] extended the 2DResNet into a 3D variant to auto-
matically segment brain structures from 3DMR images. This
3D method achieved much better performance compared to
the 2D CNNs method. Hosseini-Asl et al. [19] proposed a
3D-CNN classifier, which can predict Alzheimer’s disease on
sMRI datamore accurately than several other state-of-the-art
2D networks. Thus, using 3D networks to classify depres-
sions MRI data has great potential.

Moreover, training a deep learning network usually re-
quires a huge amount of annotated data which is hard to
achieve in medical imaging, where data is often expensive
and protected. CNN’s are trained using a backpropagation
algorithm in which the unknown weights of each layer are
continuously updated during iterations to minimize specific
loss functions. Normally, those weights are initialized with
random values before training. However, the increase of net-
work layerswill increase network parameters, which requires
more training data to make the backpropagation algorithm
converge better. A limited amount of data is easy to cause
the problem of overfitting, which makes the algorithm get
stuck at a local minimum value. Then suboptimal classifi-
cation performance will happen. To solve this problem, a
feasible way is transfer learning in which the initial values of
network weights are not random but copied from a network
that has been trained and fine-tuned on a larger data set.

Tajbakhsh et al. [20] discussed and compared the results
of training from scratch and transfer learning in the field of
medical imaging. It shows that transfer learning and fine-
tuning are better than training networks from scratch inmost
cases. So far, transfer learning has been applied to medi-
cal image classification or segmentation of diseases such as
Alzheimer’s disease [21], brain tumors [22], and pulmonary
nodules [23] and has shown excellent results. Chen et al.
[24] collected 8 different datasets of 3D medical image seg-
mentation tasks, including liver, heart, etc., 8 datasets shared
one encoder during the training process, and 8 decoders were
used, respectively. Finally, only the common encoder part is
transferred for the next segmentation and classification tasks.

A novel method based on deep learning, called 3D-
DenseNet, is proposed for classifying and predicting MDD
in terms of sMRI. A transfer learning method, called ADNI-
Transfer, is designed and combined with the proposed 3D-
DenseNet to improve the classification results. Our main

contributions are as follows: (1) a three-dimensional (3D)
densely connected convolutional network is proposed, which
borrows the spirit of a two-dimensional (2D) densely con-
nected convolutional network, and extends the 2D network
into a 3D form. The proposed deep learning network can
fully mine the spatial information in the 3D sMRI data.
Finally, accurate classification of patients with MDD and
healthy controls (HC) is obtained; (2) a novel transfer learn-
ing workflow is designed. The networks are initialized with
pre-trainedweights from a similar larger dataset and are fine-
tuned to solve the problem of overfitting caused by insuffi-
cient data; (3) comparative experiments withmultiple groups
of advanced 2D and 3D networks have been done to prove
the superiority and effectiveness of the proposed method for
the classification task of MDD based on magnetic resonance
imaging.

2. Data
2.1 Database

There are 174 subjects, including 99 patients with MDD
and 75 age-, sex-, and education-matched healthy controls
(HC). Patients are recruited fromBeijingAndingHospital Af-
filiated with Capital Medical University, and the HC group
is recruited through newspaper advertisements. All the pa-
tients in MDD met the DSM-IV diagnostic criteria of de-
pression, and all the HC were interviewed using the non-
patient edition of DSM-IV. Before the experiment, all of the
subjects signed informed consent. The clinical characteris-
tics of MDD and HC are shown in Table 1. p-value stands
for the two-sample t-test of MDD and HC, HAMD denotes
the Hanilton depression rating scale, and HAMA expresses
for the Hanilton anxiety rating scale. The data we used and
the data Zheng et al. [25] used were collected from the same
group of subjects.

Table 1. Demographic and clinical characteristics of subjects.
Variables MDD HC p-value

Gender (M:F) 43:56 33:42 0.941
Age (years) 34.57± 12.18 35.65± 12.63 0.57
Education level (years) 13.75± 3.01 12.93± 2.40 0.61
Age range 18–65 19–60 -
Duration of illness (years) 7.88± 7.87 - -
Number of depressive episodes 2.63± 1.26 - -
HAMD 21.44± 3.97 - -
HAMA 16.00± 9.61 - -

HAMD, hamilton depression; HAMA, hamilton anxiety.

Using SPM software (version 12, University of London,
London, UK), two-sample t-tests (p = 0.05) were performed
on brain sMRI of 99 MDD patients and 75 HC normal. The
significance level of tissue voxel values difference can be ob-
served. Therefore, MDD’s lesion areas can be obtained, and
the disease reasons can be explored. To display the lesion
areas more intuitively, all images were activated. The le-
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Fig. 1. Activation slices in thewholebrain. By analysis of FDR (false discovery rate), it can be found that the common brain lesion areas of theMDDpatients
where the changes of brain structure are large include the Superior frontal gyrus, dorsolateral (SFGdor), Middle temporal gyrus (MTG), Middle frontal gyrus
(MFG), Postcentral gyrus (PoCG), inferior temporal gyrus (ITG), Precuneus (PCUN), Precentral gyrus (PreCG), Middle occipital gyrus (MOG), Temporal
pole: superior temporal gyrus (TPOsup) and Superior frontal gyrus, medial (SFGmed) according to the extent of pathological injury of brain structures.

sion areas were stratified, as shown in Fig. 1. The red parts
meant that large changes in brain structures happened be-
tween MDD patients and HC.
2.2 sMRI data acquisition

All the sMRI scans were acquired using a MAGNETOM
Trio, A TimSystem3.0-Tesla scanner (Siemens, Erlangen,
Germany) in the National Key Laboratory for Cognitive
Neuroscience and Learning, Beijing Normal University, us-
ing magnetization prepared rapid gradient echo (MPRAGE).
The scanning parameters are as follows: repetition time (TR)
= 2530 ms, echo time (TE) = 3.39 ms, flip angle (FA) = 7◦,
field of view (FOV) = 256 mm× 256 mm, voxel size = 1 mm
× 1mm× 1.33mm, slice thickness = 1.33mm, slices number
= 128.
2.3 Data preprocessing

The data preprocessing is realized using SPM121 toolkit
based on MATLAB R2013b. Considering the important in-
fluence of the graymatter area on the diagnosis ofMDD [26],
only the gray matter (GM) part is used for the next experi-
ments.

The specific preprocessing steps are shown in Fig. 2. The
size of each subject’s sMRI data after preprocessing is 121 ×
145× 121 pixels.

3. Methods
3.1 3D-DenseNet for 3D image

Although 2D DenseNet has achieved remarkable results
on many 2D natural image datasets, it has few achievements
in medical image analysis. The reason is that the convolution

1 Available: https://www.fil.ion.ucl.ac.uk/spm/software/spm12.

Fig. 2. Data preprocessing flowchart. The interference of non-brain tis-
suewas removed by overall cleaning. GM segmentation is registered by non-
linear warping toMontreal neurological institute (MNI) template generated
using diffeomorphic anatomical registration through exponentiated lie alge-
bra (DARTEL) which can obtain a high-dimensional normalization includ-
ing 60 mm full bias width at half maximum (FWHM) cut-off, warping regu-
larization of 4, spatial-adaptive non-local means (SANLM) denoising filter,
and Markov random field (MRF) weighting of 0.15. The voxel size of sMRI
data after normalization is 1.5× 1.5× 1.5. A Gaussian kernel smoothed all
the data with the size 8× 8× 8 mm and 3 FWHM.

kernel and pooling kernel in 2D networks like DenseNet are
two-dimensional matrices, which can only move in two di-
rections of image height and width of the 2D images. Thus,
only two-dimensional features can be extracted. However,
most medical image data such as sMRI are 3D data, which
can only be input into 2D networks hierarchically, or one of
the dimensions must be regarded as channel dimension. And
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neither of the two methods can make good use of the spa-
tial information between slices of the sMRI data. We added
a depth dimension to filters such as convolution kernel and
pooling kernel, which extended these kernels to the 3D ma-
trix. In this way, the filters can move in all three directions of
sMRI data, and the spatial information of data is fully mined.
The output of each filter is also 3D data. If the size of one
of the 3D convolution kernels is k × k × k × channel, the
number is n, and the input data size is h × w × d. Because
the sMRI data used in this paper is similar to the grayscale
image and the channel dimension is 1, the output size of the
convolution kernel is described by

(h− k + 1)× (w − k + 1)× (d− k + 1)× n (1)

Similar methods can extend the pooling layer and batch
normalization layer in DenseNet. The 3D-DenseNet is con-
structed, which can better extract representative features
from 3D sMRI data and improve the classification accuracy
of MDD-HC MRI data. A 121-layer 3D-DenseNet structure
is shown in Fig. 3.

Fig. 3. The structure of 3D-DenseNet121. 3D-DenseBlock (1) contains 6
layers. 3D-DenseBlock (2) contains 12 layers. 3D-DenseBlock (3) contains
24 layers, and 3D-DenseBlock (4) contains 16 layers.

Each of these layers includes a 1 × 1 × 1 convolutional
layer, a 3× 3× 3 convolutional layer, two batch normaliza-
tion (BN) [27] layers, and two rectified linear unit (ReLU)
[28] layers. The structure of a 6-layer 3D-DenseBlock is
shown in Fig. 4.

The dense connectivity of each of these layers can be ex-
pressed as follows.

xl = Hl ([x0, x1, . . . , xl−1]) , (2)

where xl refers to the feature map received by layer l, and
[x0, x1, ..., xl−1] denotes the concatenation of the feature
maps produced in layers. 0, ..., l − 1 Hl(·) is defined as a
composite function of three consecutive operations includ-
ing a BN, a ReLU, and a 3 × 3 × 3 convolution (3D-Conv).
If each Hl(·) produces k feature maps, the total number of
input feature maps of the l-th layer is k0+k× (l−1), where
k0 represents the number of channels in the input layer.

The dense connection operation in Eqn. 2 is not feasible
when the size of the feature maps is inconsistent, so a 3D-
Transition module is added between each 3D dense block.
Each 3D-Transition module contains a BN layer, a ReLU

Fig. 4. The structureof a 6-layer 3D-Denseblock inwhicheacharrow
junction represents dense connectivity. For each layer, the featuremaps
of all previous layers are used as input of this layer, and the feature map of
this layer is used as input of all subsequent layers.

layer, a 1 × 1 × 1 convolutional layer, and an average pool-
ing layer (AvgPool) for reducing the dimension of the feature
maps. The last 3D-Dense Block is connected with a ReLU
layer, an AvgPool layer, a fully connected layer (FC), and a
Softmax layer for implementing the final feature reduction
and classification. The specific parameters and architecture
of a 121-layer 3D-DenseNet are shown in Table 2, in which
each conv represents a BN-ReLU-Conv sequence, and (⋇)
denotes different part of 3D-DenseNet as shown in Fig. 3,5.

3.2 Transfer learning for 3D data

In the medical field, the amount of data is often limited,
leading to bad results. Themotivation of using transfer learn-
ing is to train a model with a relatively large 3D medical
dataset, which can be used as the backbone pre-trainedmodel
to boost the target task with insufficient training data. In this
way, we can mine more knowledge and information of the
small sample data by using the related other data and trans-
fer learning. Inspired by Chen et al. [24], we designed a
novel transfer learning framework for 3D sMRI data. When
it comes to the data selection, only the same part (brain)
and the same type (sMRI) are collected for pre-training, and
only classification tasks are considered. Because it is par-
ticularly challenging to get MDD and HC data from hospi-
tals or labs due to privacy and there’s no open-source MDD-
HC dataset on the internet, we chose to use the Alzheimer’s
disease dataset (ADNI, https://ida.loni.usc.edu) as the pre-
training dataset. A four-step processingworkflow is designed
to achieve our transfer learning model, as shown in Fig. 5.

The reason why we only select data from brain sMRI
datasets for classification is that if the similarity between the
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Table 2. The parameters and architecture of 3D-DenseNet121.

Layers Output size Parameters

Input layer 1× 121× 145× 121 -

3D-Conv 64× 121× 73× 61 kernel size: (7, 7, 7), stride: (1, 2, 2)

3D-BN 64× 121× 73× 61 eps: 1e-5, momentum: 0.1

ReLU 64× 121× 73× 61 -

3D-MaxPool 64× 61× 37× 31 kernel size: (3, 3, 3), stride: (1, 1, 1)

Dense Block (1) 256× 61× 37× 31

 1× 1× 1 conv

3× 3× 3 conv

× 6

3D-Transition
128× 61× 37× 31 1× 1× 1 conv

128× 30× 18× 15 2× 2× 2 average pool, stride: 2

Dense Block (2) 512× 30× 18× 15

 1× 1× 1 conv

3× 3× 3 conv

× 12

3D-Transition
256× 30× 18× 15 1× 1× 1 conv

256× 15× 9× 7 2× 2× 2 average pool, stride: 2

Dense Block (3) 1024× 15× 9× 7

 1× 1× 1 conv

3× 3× 3 conv

× 24

3D-Transition
512× 15× 9× 7 1× 1× 1 conv

512× 7× 4× 3 2× 2× 2 average pool, stride: 2

Dense Block (4) 1024× 7× 4× 3

 1× 1× 1 conv

3× 3× 3 conv

× 16

ReLU 1024× 7× 4× 3 -

3D-AvgPool 1024× 1× 1× 1 kernel size: (7, 4, 3), stride: (1, 1, 1)

Fully Connected & Softmax Layer 2 -

selected source domain and the target domain is too small, it
is likely to cause negative transfer, which will lead to worse
performance, i.e., not increase but decrease of classification
accuracy rate. On the contrary, the more similar the two
data sets are, the more similar the high-level features of the
two datasets will be, which will result in better representa-
tive features and a more suitable pre-training model for the
target domain to improve classification performance. A 3D-
ResNet is also trained with the same process and the same
data in the third step for doing a contrast experiment. We
use a small learning rate to fine-tune the backbone and a rel-
atively large learning rate to train the classification layer. The
transferred network extracts new features from our MDD
data and boosts the classification performance.

4. Results
4.1 Evaluation metrics

The classification in this paper is a binary classification
problem, that is, samples are divided into two categories, in-
cluding MDD patients and HC. We specify that MDD pa-

tients are considered as positive and HC as negative. So the
classification algorithmhas the right orwrong predictions for
the test data set, including the prediction of positive classes
as positive ones (true positive, TP), the prediction of positive
classes as negative ones (false negative, FN), the prediction
of negative classes as positive ones (false positive, FP), and
the prediction of negative classes as negative ones (true neg-
ative, TN). We select accuracy and recall as metrics to evalu-
ate the model’s classification performance. The accuracy rate
is defined as Accuracy = (TP + TN)/(TP + FN + FP + TN),
which reflects the ability of the classifier to judge all samples.
The recall rate is defined as Recall = TP/(TP + FN), reflecting
the proportion of MDD patients correctly judged in the total
number of patients. The AUC is defined as the value of the
area under the receiver operating characteristic (ROC) curve.

4.2 Training configuration

All the networks are trained using the Adam optimiza-
tion algorithm [29] with a weight decay of 0.001 and cross-
entropy loss function. All the data is divided into training-
validation-test sets according to the 80%–10%–10% ratio, and
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Fig. 5. The processing workflow of the proposed transfer learning
model. The proposed transfer learning method includes the following four
steps. Firstly, appropriate sMRI data from the ADNI database is selected,
including Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
healthy control (HC), a total of 656 subjects. Secondly, these data are pre-
processed using the same preprocessing steps as in section 2.3. Then a 3D-
DenseNet is trained with the preprocessed ADNI dataset to let the network
learn the features of the sMRI data. Finally, the trained network’s backbone
(the red box part) is transferred to the classification task of MDD sMRI data,
and a classification layer (includes a ReLU, a 3D-AvgPool, an FC, and a Soft-
max) is added.

5-fold cross-validation is used for 100 epochs. The data are
randomly selected according to the proportion of MDD:HC
in the original data set. Due to the limited memory capacity
of GPU, the batch size is set to 64 when training 2D networks
and to 8 when training 3D networks. When transfer learn-
ing is not used, the learning rate is set to 0.01 initially. When
transfer learning is used, the initial learning rate of the non-
transferred part remains the original parameter 0.01, and the
learning rate for the transferred part is 0.001 times that of
the original one. The learning rate will be lowered 10 times
when the loss value of the validation set does not decrease for
10 consecutive epochs. All training is performed on a server
with an NVIDIA TITAN Xp GPU.

4.3 Comparison experiments of 2D networks with different depths
During the 2D network experiments, traditional 2D

DenseNet [15] is compared with 2D AlexNet [7], 2D VGG
[13], and 2D ResNet [14]. The preprocessed sMRI data were
hierarchically inputted into the network with an input size
of 121 × 145, and a voting algorithm was used. That is, for
each subject, if more than half of its layers’ test results are pos-
itive, it will be determined as a positive class. Otherwise, it
will be judged as a negative class. The experimental results
are shown in Table 3.

It is observed that with the increase of network layers, the
classification accuracy and recall rate of the networks increase
gradually, which shows that the deepening of the network
can provide better non-linear expression ability, can enable
the network to learn more complex knowledge, and can fit
more complex input feature. Also, DenseNet performs bet-

Table 3. Experiment results of 2D networks.
Method Accuracy (%) Recall (%) AUC

2D AlexNet 58.45 65.68 0.63
2D VGG19 60.32 67.39 0.64
2D ResNet34 63.33 68.26 0.66
2D ResNet50 63.88 69.34 0.66
2D ResNet101 65.59 72.23 0.69
2D ResNet152 66.06 72.09 0.69
2D ResNet200 67.94 74.82 0.70
2D DenseNet121 67.38 74.65 0.71
2D DenseNet169 68.20 74.91 0.71
2D DenseNet201 68.84 75.35 0.72
2D DenseNet264 69.96 76.32 0.73

ter than other convolutional networks such as ResNet when
the number of layers is approximately the same, which shows
that Densenet’s dense connection idea is better than ResNet’s
residual learning idea in this task. Therefore, the subsequent
experiments are mainly based on DenseNet.

4.3 Comparison experiments of 2D networks and 3D networks

For proving the superiority of the 3D network, our pro-
posed 3D DenseNet is compared with 2D DensNet [15], 2D
ResNet [14], 3D ResNet [18] with different layers, and the
channel dimension method. We also compare our method
with some traditionalmachine learningmethods like local bi-
nary pattern (LBP) combined with support vector machine
SVM (LBP + SVM) method in which the neighbor is 8 and
radius is 1, and radial basis kernel function is selected. The
experimental results are shown in Table 4.

Table 4. Comparison of experiment results between 2D and
3D networks.

Method Accuracy (%) Recall (%) AUC

LBP + SVM 65.67 68.67 0.70
Channel dimension 62.50 65.88 0.68
2D ResNet101 65.59 72.23 0.69
3D ResNet101 73.26 78.46 0.75
2D ResNet152 66.06 72.09 0.69
3D ResNet152 73.47 79.33 0.75
2D ResNet200 67.94 74.82 0.70
3D ResNet200 74.81 80.66 0.76
2D DenseNet121 67.38 74.65 0.71
3D DenseNet121 74.26 80.20 0.76
2D DenseNet169 68.20 74.91 0.71
3D DenseNet169 75.38 81.26 0.77
2D DenseNet201 68.84 75.35 0.72
3D DenseNet201 76.53 82.59 0.79
2D DenseNet264 69.96 76.32 0.73
3D DenseNet264 77.42 83.72 0.80

From the data in Table 4, it can be seen that the classifica-
tion accuracy, the recall rate and the AUC have been signifi-
cantly improved after the network is expanded to 3D (e.g., the
classification accuracy of 3D-DenseNet264 is 77.42%which is
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higher than that ofDenseNet264 69.96%). And 3D-DenseNet
with a similar number of layers performs better than 3D-
ResNet (e.g., the classification accuracy of 3D-DenseNet201
is 76.53%, and that of 3D-ResNet200 is 74.81%). This re-
sult indicates that the hierarchical information ofMDD-MRI
data is very rich, and the 3D network can mine this infor-
mation effectively and provide more useful features than the
2D network. Therefore, the classification performance is im-
proved. In addition, experimental results onAccuracy, Recall
and AUC show that our proposed deep learning method can
mine more rich, robust and complete features on data. It is
superior to the channel dimension and traditional machine
learning methods such as LBP + SVM.

4.4 Comparison experiments of transfer learning

For proving the positive role of transfer learning, we pre-
trained the best performance on our 3D DenseNet264 model
using the ADNI database and performed transfer learning
(denoted by ADNI-Transfer) compared with training from
scratch with MDD data, i.e., no transfer learning involved
(denoted by None). Because the transfer learning method
used by Chen et al. [24] (denoted by Med3D-Transfer)
has only been performed on 3D ResNet series networks,
and only the pre-trained model is opened. At the same
time, training data cannot be provided. Therefore, to prove
the superiority of our ADNI-Transfer method, we also per-
formed the ADNI-Transfer on 3D ResNet200 [18] (denoted
by None), denoted by ADNI-Transfer, and compared it with
the 3D ResNet200 network with Med3D-Transfer (denoted
by Med3D-Transfer). Please see the results of Table 5.

Table 5. Comparison of experimental results of transfer
learning.

Method Pretrain Accuracy (%) Recall (%) AUC

3D ResNet200
None 74.81 80.66 0.76
Med3D-Transfer 78.62 84.37 0.81
ADNI-Transfer 81.45 86.52 0.84

3D DenseNet264
None 77.42 83.72 0.80
ADNI-Transfer 84.37 87.26 0.86

It can be seen from the data in Table 5 that the clas-
sification performance of the networks has been improved
significantly after transfer learning is used (e.g., after 3D-
DenseNet264 has undergone ADNI-Transfer, the classifica-
tion accuracy has been increased by 6.95%). It proves that
transfer learning can introduce knowledge from other fields
into the classification task of MDD and HC sMRI data. To
some extent, it can solve the problem of insufficient samples.
At the same time, the efficiency of model training is speeded
up, and the final generalization ability of the model is im-
proved. Compared with the Med3D-Transfer method, our
proposed ADNI-Transfer method has better performance,
which indicates that the information extracted from source
domain data with the same position and the same type as

the target domain data is more valuable for the target task.
Therefore, our method can improve the classification accu-
racy and recall rate of MDD and HC sMRI data.

The above results indicate that the classification perfor-
mances are not good using 2D networks because these 2D
methods ignore the information between sMRI layers. Af-
ter the networks are extended to 3D, the classification ac-
curacies are improved from 6.87% to 7.69%. And our pro-
posed 3D-DenseNet achieved a very competitive accuracy of
77.42%. Compared to training from scratch, our proposed
transfer learning method ADNI-Transfer improves the ac-
curacy by 9.95%, which is also 2.83% higher than the exist-
ingMed3D-Transfer method. Consequently, we believe that
transfer learning is of great significance inmedical image clas-
sification due to the general lack of data. And it seems that the
more similar the pre-training data to the target domain data
is, the higher the improvement of classification performance
is.

5. Conclusions
MDD is a highly prevalent psychiatric disorder that can

cause a persistent feeling of sadness and loss of interest and se-
riously affect life quality. To early diagnose and treatMDD, a
3D deep learning network, called 3D-DenseNet, is proposed
and first applied to the classification task for MDD and HC
based on sMRI data in this paper. Our method extends the
2D densely connected network to a 3D version for fully min-
ing the feature differences of brain structure between MDD
patients and HC. Furthermore, a transfer learning workflow,
called ADNI-Transfer, is designed to solve the problem of in-
sufficient data. Experimental results show that the common
brain lesion areas of the MDD patients where brain struc-
ture changes are large include SFGdor, MTG, MFG, PoCG,
ITG etc. And our network performs better than many other
advanced ones. In addition, our proposed transfer learning
method can also further improve the generalization ability
of the proposed network and achieve superior results. The
classification accuracy and recall for MDD patients and HC
can reach 84.37% and 87.26%, respectively, which verifies our
method has feasibility and validity.
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