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Abstract

Background: The cerebellum integrates a multitude of motor and cognitive processes through ample spinal and supratentorial projec-
tions. Despite emerging evidence of adaptive neuroplasticity, cerebellar reorganisation in response to severe spinal insult early in life
is poorly characterised. The objective of this study is the systematic characterisation of cerebellar integrity metrics in a cohort of adult
poliomyelitis survivors as a template condition for longstanding lower motor neuron injury. Methods: A total of 143 participants, com-
prising 43 adult poliomyelitis survivors and 100 age- and sex-matched healthy controls were recruited in a prospective, single-centre
neuroimaging study with a uniform structural and diffusion imaging protocol. First, standard voxelwise grey and white matter analyses
were performed. Then, the cerebellum was anatomically segmented into lobules, and cortical thickness and grey matter volumes were
evaluated in each lobule. The integrity of cerebellar peduncles was also assessed based on their diffusivity profiles. Results: Compared
to healthy controls, poliomyelitis survivors exhibited greater cortical thickness in lobules I, II, and III in the right hemisphere and in
lobules VIIIA and VIIIB bilaterally. A trend of higher cortical thickness was also detected lobules I, II and III in the left hemisphere.
Enhanced cerebellar peduncle organisation was detected, particularly within the middle cerebellar peduncles. Conclusions: Increased
cerebellar integrity measures in poliomyelitis survivors are primarily identified in lobules associated with sensorimotor functions. The
identified pattern of cerebellar reorganisation may represent compensatory changes in response to severe lower motor neuron injury in
childhood and ensuing motor disability.
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1. Introduction
Poliomyelitis reached epidemic proportions in the

early 20th century and is still endemic today in some parts
of Asia [1]. It predominantly affected young children un-
der the age of five, induced asymmetrical flaccid paralysis
and carried a mortality rate of 5–10% owing to respiratory
failure and vasomotor complications [2]. Today, there is an
estimated 15–20 million polio survivors across the globe
who are living with the lasting effects of the original in-
fection [3], of which 20–85% meet the March of Dimes
criteria for post-polio syndrome (PPS) [4,5]. The ‘late ef-
fects of polio’ (LEoP) is a broad term that refers to new
symptoms due to motor-unit dysfunction or biomechanical
sequelae from polio-related surgeries, musculoskeletal de-
formities and long-term muscle weakness and atrophy [6].
The term post-polio syndrome (PPS) denotes persistent and
progressive motor decline, but other symptoms such as gen-
eralised fatigue, chronic pain, cold intolerance, sleep dis-
turbances, neuropsychological deficits and sensory impair-
ments are also recognised features [3,7].

Despite a predilection for the spinal anterior horns,
supraspinal involvement, including cerebellar pathology,
has been described in the literature. Previous post-mortem
studies revealed polio-induced lesions affecting subcortical

regions such as the substantia reticularis [8–10], putamen,
caudate, locus coeruleus, substantia nigra [9], vestibular nu-
clei [10,11], hypothalamus and thalamus [8,9,12,13]. Re-
ports of cortical involvement are inconsistent; it is thought
to be limited to motor and pre-motor areas [9] and the cere-
bellar pathology limited to the vermis and deep cerebellar
nuclei. Accounts of involvement of cerebellar cortical lay-
ers are strikingly conflicting [9,10,14,15]. Sporadic cere-
bellar manifestations, such as ataxia, nystagmus, vertigo
and intention tremor had been linked to poliovirus type 1
[16–18]. The rarity of frank cerebellar findings was hypoth-
esised to be due to limited cerebellar degeneration and the
challenge of ascertaining cerebellar signs in the presence of
widespread lower motor neuron degeneration [15]. More
recent functional [19,20] and structural [21] studies specu-
late that supraspinal alterations may represent adaptive pro-
cesses in response to longstanding lower motor neuron loss.

The cerebellum is implicated in a multitude of motor
and cognitive functions spanning from motor control, co-
ordination, maintenance of balance, posture, motor learn-
ing, to higher cognitive and affective regulatory processes
[22]. Each cerebellar hemisphere can be subdivided into
3 lobes and further delineated into 10 smaller lobules (I–
X); anterior lobe (lobules I–V), posterior lobe (lobules VI–
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Fig. 1. Morphometric patterns of increased cerebellar grey matter partial volumes in poliomyelitis survivors indicated in red-
yellow at p < 0.05 FWE TFCE corrected for age, gender and total intracranial volumes (TIV). The labels of the Diedrichsen
probabilistic cerebellar atlas are shown as underlay to aid localisation. Radiological convention is used, first column presents sagittal
views, second column shows coronal views and last column depicts axial views. Lt, Left; Rt, Right; A, Anterior; P, Posterior.

IX) and flocculonodular lobe (lobule X) [23]. The grey
matter of the cerebellar cortex is arranged into three lay-
ers (from outer to inner; molecular, Purkinje and granular)
which contains both excitatory and inhibitory neurons inte-
grating cerebellar inputs and modulating cerebellar outputs.

Deeply embedded within the cerebellar white matter are the
deep cerebellar nuclei (dentate, emboliform, globose and
fastigial) which are the sole output structures of the cere-
bellum. Climbing fibres, originating from the contralateral
inferior olivary nucleus, and mossy fibres, largely via the
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Table 1. The demographic profile of study participants.
Healthy controls Poliomyelitis survivors

p value
(n = 100) (n = 43)

Age (years), mean (SD) 66.13 (6.472) 66.14 (6.707) 0.994
Gender (male) 52 (52%) 18 (41.9%) 0.266
Age at acute poliomyelitis (years), mean (SD) - 2.60 (2.991) -
ALSFRS-r total (max. 48), mean (SD) - 39.65 (7.368) -
SD, standard deviation.

pontocerebellar tract, are the two main input routes to the
cerebellar cortex and provide excitatory signals to Purkinje
fibres. Functionally, the cerebellum has been suggested to
be topographically organised. The ‘motor cerebellum’ is
thought to primarily include the anterior lobe and lobule
VIII of posterior lobe. Lobules VI and VII constitute the
‘cognitive cerebellum’ and posterior vermis is generally re-
garded as the ‘limbic cerebellum’ [23,24].

The majority of quantitative imaging studies in motor
neuron diseases focus either on amyotrophic lateral sclero-
sis [25,26] or on primary lateral sclerosis [27,28]. Cerebel-
lar degeneration in motor neuron disorders has been linked
to a multitude of manifestations including eye-movement
abnormalities, bulbar dysfunction, pseudobulbar affect and
deficits in social cognition [29–34]. Cerebral studies of
lower motor neuron predominant conditions and in po-
liomyelitis survivors are scarce. With the striking paucity of
neuroimaging studies and conflicting accounts of cerebellar
involvement in poliomyelitis survivors, our primary objec-
tive is the comprehensive, multiparametric characterisation
of cerebellar involvement in vivo. An additional aim of our
study is the evaluation of cerebro-cerebellar connectivity
via the targeted assessment of cerebellar peduncles. Based
on recent studies of long-term poliomyelitis survivors, we
hypothesize that focal cerebellar changes may be detected
confined to lobules that mediate sensorimotor processes in-
stead of global cerebellar degeneration.

2. Methods
2.1 Ethics statement

The study was approved by the institutional ethics
committee (Beaumont Hospital, Dublin Ireland) and all par-
ticipants provided written informed consent.

2.2 Participants

Forty-three adult poliomyelitis survivors and 100
healthy controls (HC) enrolled in a prospective, cross-
sectional neuroimaging study. All participating adult po-
liomyelitis survivors had a verified diagnosis of poliomyeli-
tis in infancy/childhood supported by clinical and elec-
tromyographic findings. Inclusion criteria included the
ability to tolerate the duration of MR imaging and exclu-
sion criteria included comorbid neuro-inflammatory, neu-
rovascular, neoplastic, psychiatric conditions or prior head
or spinal cord injuries. Healthy controls were unrelated to

participating patients and had no known neurological diag-
noses or previous head injury. Demographic and clinical
details were carefully recorded for polio survivors includ-
ing age at acute poliomyelitis infection. Functional dis-
ability was appraised using the revised ALS rating scale
(ALSFRS-r) [35]. The age profiles of the two groups were
contrasted by ANOVA and chi-squared test was utilised for
the comparison of sex ratios in controls and poliomyelitis
survivors.

2.3 Magnetic resonance imaging
MRI data were acquired on a 3 Tesla Philips Achieva

Magnetic resonance (MR) platform. A 3D Inversion
Recovery prepared Spoiled Gradient Recalled echo (IR-
SPGR) sequence was implemented to acquire T1-weighted
(T1w) images with the following parameters; spatial res-
olution of 1 × 1 × 1 mm, field-of-view (FOV) of 256
× 256 × 160 mm, flip angle = 8◦, SENSE factor = 1.5,
TR/TE = 8.5/3.9 ms, TI = 1060 ms. A spin-echo echo pla-
nar imaging (SE-EPI) pulse sequence was used to acquire
diffusion tensor images (DTI) with a 32-direction Stejskal-
Tanner diffusion encoding scheme; 60 slices without inter-
slice gaps, FOV = 245× 245× 150 mm, TR/TE = 7639/59
ms, SENSE factor = 2.5, b-values = 0, 1100 s/mm2, dy-
namic stabilisation and spectral presaturation with inver-
sion recovery (SPIR) fat suppression. FLAIR images were
reviewed to assess for comorbid inflammatory and vascu-
lar. FLAIR images were acquired in axial orientation us-
ing an Inversion Recovery Turbo Spin Echo (IR-TSE) se-
quence: spatial resolution = 0.65× 0.87× 4 mm, 30 slices
with 1 mm gap, FOV = 230 × 183 × 150 mm, TR/TE =
11000/125 ms, TI = 2800 ms, 120◦ refocusing pulse, with
flow compensation and motion smoothing and a saturation
slab covering the neck region.

2.4 Cortical thickness and volume analyses
A validated segmentation algorithm [21] was imple-

mented to estimate cerebellar cortical thickness and lobu-
lar volumes. Pre-processing steps included the ‘denoising’
of raw structural data in native space, inhomogeneity cor-
rections, affine registration to the Montreal Neurological
Institute (MNI) space, inhomogeneity corrections in MNI
space, cerebellar cropping, low dimensional non-linear reg-
istration estimation, and intensity normalization. Cerebel-
lar volume metrics were generated for each lobule using a
patch-based segmentation algorithm [22] separately in the
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Fig. 2. Voxelwise patterns of increased fractional anisotropy (FA) and reduced axial diffusivity (AD) in poliomyelitis survivors as
identified by tract-based spatial statistics at p< 0.05 TFCE adjusted for age and gender. The labels of the Diedrichsen probabilistic
cerebellar atlas are shown as underlay to aid localisation. Radiological convention is used, first column presents sagittal views, second
column shows coronal views and last column depicts axial views. Lt, Left; Rt, Right; A, Anterior; P, Posterior.
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Fig. 3. Voxelwise patterns of reduced mean diffusivity (MD) and reduced radial diffusivity (RD) in poliomyelitis survivors as
identified by tract-based spatial statistics at p< 0.05 TFCE adjusted for age and gender. The labels of the Diedrichsen probabilistic
cerebellar atlas are shown as underlay to aid localisation. Radiological convention is used, first column presents sagittal views, second
column shows coronal views and last column depicts axial views. Lt, Left; Rt, Right; A, Anterior; P, Posterior.
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Table 2. Cerebellar cortical thickness in poliomyelitis
survivors and healthy controls.

Cerebellar region Study group EMM Standard error ANCOVA
Sig. (p)

Lobules I–II (right) HC 1.345115 0.031503 0.038*
Polio 1.465976 0.048126

Lobules I–II (left) HC 1.396892 0.034921 0.067t
Polio 1.514657 0.053347

Lobule III (right) HC 3.065033 0.031523 0.010*
Polio 3.215933 0.048156

Lobule III (left) HC 3.187530 0.034797 0.065t
Polio 3.305935 0.053157

Lobule IV (right) HC 4.755922 0.017989 0.126
Polio 4.806548 0.027480

Lobule IV (left) HC 4.904537 0.014732 0.709
Polio 4.894459 0.022506

Lobule V (right) HC 4.737028 0.018026 0.915
Polio 4.733494 0.027538

Lobule V (left) HC 4.898671 0.015243 0.891
Polio 4.894833 0.023287

Lobule VI (right) HC 4.924036 0.011482 0.389
Polio 4.905869 0.017540

Lobule VI (left) HC 4.974966 0.011298 0.319
Polio 4.954307 0.017259

Crus I (right) HC 4.640872 0.024112 0.307
Polio 4.595695 0.036835

Crus I (left) HC 4.581111 0.021624 0.076t
Polio 4.510507 0.033034

Crus II (right) HC 4.571318 0.025911 0.077t
Polio 4.486973 0.039582

Crus II (left) HC 4.375609 0.026474 0.853
Polio 4.366600 0.040442

Lobule VIIB (right) HC 4.786736 0.017746 0.143
Polio 4.738892 0.027109

Lobule VIIB (left) HC 4.612632 0.021329 0.518
Polio 4.637905 0.032584

Lobule VIIIA (right) HC 4.635282 0.016534 0.046*
Polio 4.696278 0.025258

Lobule VIIIA (left) HC 4.654906 0.017625 0.003*
Polio 4.753642 0.026924

Lobule VIIIB (right) HC 4.557164 0.026441 0.001*
Polio 4.726895 0.040393

Lobule VIIIB (left) HC 4.513289 0.03345 0.003*
Polio 4.696155 0.051100

Lobule IX (right) HC 3.771612 0.039352 0.225
Polio 3.859370 0.060116

Lobule IX (left) HC 3.588834 0.043782 0.866
Polio 3.575345 0.066883

Lobule X (right) HC 2.244308 0.040101 0.938
Polio 2.238572 0.061261

Lobule X (left) HC 2.479459 0.046601 0.402
Polio 2.551171 0.071189

Statistical comparisons are corrected for age and gender. Significant dif-
ferences are flagged with *, statistical trends with t. Polio, poliomyelitis
survivors; HC, healthy controls; EMM, Estimated marginal means; AN-
COVA, analysis of covariance.

right and left cerebellar hemispheres. As a quality control
step, the accuracy of tissue-type segmentation and anatom-
ical parcellation were individually reviewed for each sub-
ject. Cortical volume and thickness values were retrieved
from lobules I–II, III, IV, V, VI, VIIB, VIIIA, VIIIB, IX,
X, Crus I and Crus II.

Table 3. Cerebellar cortical volumes in poliomyelitis
survivors and healthy controls.

Cerebellar region Study group EMM Standard error ANCOVA
Sig. (p)

Lobules I–II (right) HC 0.034213 0.001009 0.474
Polio 0.035546 0.001547

Lobules I–II (left) HC 0.029124 0.001016 0.457
Polio 0.027728 0.001558

Lobule III (right) HC 0.488477 0.009796 0.612
Polio 0.497645 0.015020

Lobule III (left) HC 0.499655 0.010724 0.912
Polio 0.497474 0.016443

Lobule IV (right) HC 1.928698 0.031254 0.550
Polio 1.963218 0.047923

Lobule IV (left) HC 2.078443 0.032415 0.416
Polio 2.029758 0.049704

Lobule V (right) HC 3.279021 0.045692 0.852
Polio 3.263248 0.070061

Lobule V (left) HC 3.564292 0.044253 0.518
Polio 3.511443 0.067855

Lobule VI (right) HC 7.870917 0.107912 0.890
Polio 7.843433 7.516257

Lobule VI (left) HC 7.861064 0.106252 0.531
Polio 7.983838 0.162921

Crus I (right) HC 11.118685 0.159449 0.531
Polio 10.934478 0.244491

Crus I (left) HC 11.127808 0.165490 0.609
Polio 10.971721 0.253753

Crus II (right) HC 7.018721 0.105569 0.344
Polio 6.834148 0.161873

Crus II (left) HC 6.842425 0.099249 0.628
Polio 6.753806 0.152183

Lobule VIIB (right) HC 4.179157 0.058421 0.132
Polio 4.016144 0.089580

Lobule VIIB (left) HC 3.983546 0.060471 0.793
Polio 3.954225 0.092722

Lobule VIIIA (right) HC 4.792981 0.066827 0.743
Polio 4.752624 0.102469

Lobule VIIIA (left) HC 4.921682 0.068260 0.581
Polio 4.991243 0.104667

Lobule VIIIB (right) HC 3.409387 0.059077 0.088
Polio 3.596341 0.090585

Lobule VIIIB (left) HC 3.330394 0.051710 0.016*
Polio 3.563492 0.079289

Lobule IX (right) HC 2.858097 0.042857 0.688
Polio 2.889833 0.065714

Lobule IX (left) HC 2.698948 0.041592 0.818
Polio 2.681282 0.063775

Lobule X (right) HC 0.574727 0.007499 0.519
Polio 0.583663 0.011498

Lobule X (left) HC 0.575363 0.007213 0.060t
Polio 0.600540 0.011060

Statistical comparisons are corrected for age, sex and intracranial vol-
umes. Significant differences are flagged with *, statistical trends with
t. Polio, poliomyelitis survivors; HC, healthy controls; EMM, Estimated
marginal means; ANCOVA, analysis of covariance.

2.5 Morphometry

Voxelwise grey matter changes were explored using
region-of–interest morphometry in FMRIB’s FSL suite.
First, total intracranial volumes (TIV) were calculated for
each participant, which was subsequently used as a covari-
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Table 4. Diffusivity alterations in cerebellar peduncles
correcting for age and sex.

Region Study group EMM Standard error ANCOVA
Sig. (p)

Fractional Anisotropy (FA)
Superior peduncle (left) HC 0.625407 0.004077 0.651

Polio 0.621869 0.006394
Superior peduncle (right) HC 0.619614 0.004211 0.316

Polio 0.611502 0.006603
Middle peduncle HC 0.520931 0.003512 0.001*

Polio 0.543068 0.005507
Inferior peduncle (left) HC 0.516051 0.004326 0.045*

Polio 0.499289 0.006784
Inferior peduncle (right) HC 0.512402 0.004462 0.061

Polio 0.496299 0.006997
Axial Diffusivity (AD)
Superior peduncle (left) HC 0.001380 0.000009 <0.001*

Polio 0.001453 0.000014
Superior peduncle (right) HC 0.001398 0.000009 <0.001*

Polio 0.001465 0.000014
Middle peduncle HC 0.001046 0.000005 0.774

Polio 0.001043 0.000008
Inferior peduncle (left) HC 0.001081 0.000007 0.002*

Polio 0.001122 0.000011
Inferior peduncle (right) HC 0.001092 0.000007 0.097

Polio 0.001114 0.000011
Radial Diffusivity (RD)
Superior peduncle (left) HC 0.000447 0.000006 0.016*

Polio 0.000474 0.000009
Superior peduncle (right) HC 0.000464 0.000006 0.015*

Polio 0.000492 0.000009
Middle peduncle HC 0.000433 0.000004 0.002*

Polio 0.000410 0.000006
Inferior peduncle (left) HC 0.000460 0.000005 <0.001*

Polio 0.000501 0.000007
Inferior peduncle (right) HC 0.000464 0.000005 0.001*

Polio 0.000495 0.000007
Mean Diffusivity (MD)
Superior peduncle (left) HC 0.000758 0.000006 <0.001*

Polio 0.000800 0.000009
Superior peduncle (right) HC 0.000775 0.000006 <0.001*

Polio 0.000817 0.000009
Middle peduncle HC 0.000638 0.000004 0.031*

Polio 0.000621 0.000006
Inferior peduncle (left) HC 0.000667 0.000005 <0.001*

Polio 0.000708 0.000007
Inferior peduncle (right) HC 0.000673 0.000005 0.002*

Polio 0.000701 0.000007
Significant differences are flagged with asterisk *. Polio, poliomyelitis
survivors; HC, healthy controls; EMM, Estimated marginal means; AN-
COVA, analysis of covariance.

ate in the morphometric analyses and for the interpreta-
tion of lobular volumes. TIV calculations have been pre-
viously described [36,37], briefly, each participant’s brain
image was aligned to the MNI152 standard, and the in-
verse of the determinant of the affine registration matrix
was calculated and multiplied by the size of the template.
For spatial registration, FMRIB’s FSL-FLIRT and for tis-
sue type segmentation, FSL-FAST was utilised. Output
partial grey matter, white matter and CSF volumes were
added to determine TIV. Raw T1w data underwent skull-

removal (BET), motion-corrections and tissue-type seg-
mentation. The accuracy of skull removal and segmenta-
tion was visually inspected in each subject for quality con-
trol. Individual grey-matter partial volume images were
aligned to the MNI152 standard space using affine regis-
tration. Permutation-based non-parametric inference was
for the voxelwise analyses implementing the threshold-free
cluster enhancement (TFCE) method. Design matrices in-
cluded group membership, age, sex and TIV. Voxelwise
statistics were run in the cerebellarmask derived from ‘label
1’ of the MNI structural atlas [38]. Output statistical maps
were thresholded at p< 0.05 FWE TFCE and the Diedrich-
sen probabilistic atlas was used as underlay to help the lo-
calisation of statistically significant clusters.

2.6 Voxelwise white matter analyses
Subsequent to eddy current corrections and skull re-

moval; a tensor model was then fitted to the raw diffusion
data in FSL to generate maps of axial diffusivity (AD), frac-
tional anisotropy (FA), mean diffusivity (MD) and radial
diffusivity (RD). For non-linear registration and skeleton-
isation of individual images, FMRIB’s software library’s
tract-based statistics module was utilised. For the two-way,
voxelwise comparison of diffusivity parameters between
poliomyelitis survivors and healthy controls permutation-
based non-parametric inference was used restricting the
analyses the cerebellar portion of the study-specific white
matter skeleton. The design matrix used for permutation in-
cluded group-membership, and age and sex as covariates.
The threshold-free cluster enhancement (TFCE) method
was applied and results considered significant at a p< 0.01
TFCE family-wise error (FWE).

2.7 Cerebellar peduncle assessments
The labels (1, 11, 12, 13, 14) of the JHU-ICBM atlas

was utilised to generate masks for the left and right infe-
rior cerebellar peduncles, the middle cerebellar peduncle,
and the left and right superior cerebellar peduncles Aver-
age FA, AD, MD and RD values were retrieved from the
merged skeletonised diffusion data using these masks from
each subject for subsequent group comparisons.

3. Results
The demographic profile of healthy controls and po-

lio survivors are summarised in Table 1. While the healthy
controls were age- and gender- matched, they were also in-
cluded as covariates in our analyses.

3.1 Cortical thickness analyses
Compared to healthy controls, polio survivors exhib-

ited increased cortical thickness in lobules I–II, and lobule
III in the right hemisphere, and in lobules VIIIA and VIIIB
bilaterally controlling for age and sex (Table 2). A trend in
increased cortical thickness was also detected in lobules I–
II and III in the left hemisphere. No frank cortical thinning
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was identified, but a trend of cortical thinning was noted in
the left Crus I and right Crus II in poliomyelitis survivors.

3.2 Grey matter volumes
Increased grey matter volume was detected in the left

lobule VIIIB of poliomyelitis survivors. A trend for in-
creased grey matter volume was also observed in lobule X
of the left cerebellar hemisphere (Table 3).

3.3 Cerebellar peduncles analyses
Diffusivity alterations in the cerebellar peduncles are

presented in Table 4.
Higher fractional anisotropy was detected in middle

cerebellar peduncle and lower FA in the left inferior pedun-
cle. In the superior cerebellar peduncles, higher AD, RD
and MD were identified.

3.4 Voxel-wise analyses
No foci of cerebellar atrophy were identified in po-

liomyelitis survivors. Voxel-wise grey matter analyses re-
vealed increased grey matter partial volumes in lobules VI-
IIb and IX bilaterally, and in lobules VI, VIIIa and crus I
in the left cerebellar hemisphere in poliomyelitis survivors
in contrast to healthy controls adjusting for age, sex and
TIV (Fig. 1). On voxel-wise analyses of white matter mi-
crostructure, higher FA and lower AD, RD and MD were
detected in lobules VI and IX and crus I bilaterally in adult
poliomyelitis survivors with reference to healthy controls
(Figs. 2,3). Polio survivors also exhibited higher FA in lob-
ule V and lower AD, RD andMD in crus II bilaterally com-
pared to healthy individuals. Lastly, compared to healthy
controls, higher FA with lower AD was detected bilaterally
in the middle cerebellar peduncles of adult polio survivors.

4. Discussion
Our study provides compelling in vivo evidence of

cerebellar changes in adult poliomyelitis survivors with ref-
erence to healthy controls. In contrast to previous post-
mortem studies [9,14,15] and sporadic clinical reports [16–
18], the cohort of adult poliomyelitis survivors evaluated in
this study did not exhibit cerebellar atrophy. On the con-
trary, polio survivors exhibited hypertrophic changes in the
cerebellum. The changes were focal and relatively sym-
metrical, affecting selective cerebellar lobules as opposed
to the entire cerebellum. Increased cortical thickness was
detected in lobules I–III, VIIIa andVIIIb and increased grey
matter volume was found in lobules VIIIb. In addition to
the higher cerebellar cortical thickness, our data also re-
vealed increased white matter organisation in the cerebellar
peduncles, in particular in the middle and inferior cerebel-
lar peduncles. Anatomical patterns of increased grey matter
metrics were relatively concordant across retrieved corti-
cal thickness, cortical volume and morphometric analyses
and the three analyses have unanimously demonstrated the
lack of atrophic changes. The interpretation of increased
grey matter thickness in an adult disease-cohort requires the

careful review of the literature as the vast majority of imag-
ing studies report disease-associated patterns of atrophy in-
stead of increased volumes [39–41]. It is conceivable that
a reporting bias exists for neurodegenerative changes and
also that one-way contrasts may sometimes be performed
assuming that a given patient cohort exhibit atrophy with
respect of demographically-matched healthy controls. In-
creased grey matter metrics, such as volumes, partial vol-
umes, thickness etc. are often explored from an adaptive re-
modelling perspective, especially if the identified anatom-
ical patterns of hypertrophy are congruent with function-
specific cortical areas [42,43]. Adaptive cerebral reorgani-
sation due to longstanding insult or slowly progressive neu-
rodegenerative change is often described based on func-
tional MRI observations, but rarely captured on structural
imaging [43–46].

Given the striking disparity between the few post
mortem studies in the 1940s describing degenerative
changes soon after the acute infection, and our imaging
study evaluating brain changes many decades after the in-
fection, it is very conceivable that initial inflammatory
changes gradually give way to cerebellar remodelling. This
may reconcile the seemingly contradictory findings of post
mortem descriptions following fulminant infection and our
imaging findings many decades after the acute infection.
Neuroplasticity refers to the unique ability for the nervous
system to modify and reorganise itself both structurally
and functionally in a dynamic manner in response to in-
jury [47]. This process is well-recognised to be more ef-
ficient in children [48], especially during the first few years
of life, when neurogenesis, synaptogenesis, synaptic prun-
ing and myelin formation and remodelling is heightened
[49]. This is supported by superior functional outcomes
following CNS insult in young children compared to adults
and has been demonstrated by functional recovery of lan-
guage centres [50], visual systems [51,52] and sensorimo-
tor networks [53,54]. Remarkable cerebellar recovery has
been described in young patients with traumatic brain in-
jury [55] and other forms of cerebellar degeneration [56].
Neuroplasticity is a particularly well-recognised trait of the
cerebellum which plays a pivotal role in motor learning and
adaptation of movement to environmental demands [57].
The term ‘cerebellar reserve’ has been coined for the struc-
ture’s unparalleled ability to recover from lesions and re-
spond to supratentorial pathology [58]. In animal studies,
motor training has led to glial hypertrophy, thickening of
the molecular layer, synaptogenesis, and increased dendrite
numbers in stellate cells [59–61]. Unique cerebellar plastic-
ity has also been demonstrated in healthy populations such
as musicians [62,63], athletes [64,65] and other perform-
ers [66] following motor training. Given the young age at
which spinal cord insult occurred in our cohort, it is con-
ceivable that cerebellar remodelling was particularly effi-
cient during these critical years of motor control develop-
ment.
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The detected patterns of increased cerebellar metrics
suggest function-specific foci. Lobules I–III of anterior
lobe, and lobules VI, VIIIa and VIIIb of posterior lobe
primarily mediate sensorimotor processes [23,67]. The
somatotopic architecture of the cerebellum has been ex-
tensively investigated [24,68]. Paradigm-based functional
neuroimaging studies suggest that lobules II–III represent
the legs and toes with respect to both tactile stimulation
and during motor tasks [69,70]. Injury of these lobules
is thought to result in gait and posture ataxia or lower
limb ataxia (lobules I–III, VIII and IX) [71,72]. These
are the same lobules which exhibited hypertrophic alter-
ations in our cohort of poliomyelitis survivors. Our vox-
elwise analyses also indicate increased lobule VI and lob-
ule IX volumes. Lobule IX is considered essential for vi-
sually guided movement [73], while lobules VI has been
implicated in motor learning [74]. Poliomyelitis survivors
are predominantly affected in their lower extremities due to
residual polio-induced musculoskeletal deformities such as
leg-length discrepancy, asymmetrical muscle weakness and
joint arthrodesis for which they have learned to compensate
for with altered gait patterns, posture and balance [75] all of
which are adaptive processes mediated by cerebellar motor
learning.

Our diffusivity findings also indicate enhanced
cerebellar peduncles integrity in poliomyelitis survivors
decades after their infection, particularly in the middle
(MCPs) and inferior cerebellar peduncles (ICPs). The su-
perior cerebellar peduncles (SCPs) are the main cerebellar
output projections from the deep cerebellar nuclei to the
contralateral cerebral cortex via the thalamus, known as
cerebello-thalamo-cortical (CTC) projections. The MCPs
constitute entirely of afferent fibres from the contralat-
eral cerebral cortex via the pontine nuclei, known as the
cortico-ponto-cerebellar (CPC) tract. These two tracts form
a closed feed-forward and feed-back loop that enables the
cerebellum to modulate both motor and non-motor pro-
cesses [76,77]. Anatomically, the ICP consists of both
cerebellar efferent and afferent fibres integrating informa-
tion from the vestibular nuclei, mediating eye movements
and head positioning. The ICP also encompasses afferent
spinal fibres carrying proprioceptive and cutaneous infor-
mation from the limbs to the cerebellum, which are crucial
for posture, locomotion andmuscle control [78]. Higher FA
and lower RD in middle cerebellar peduncles may be inter-
preted as fibre reorganisation and suggests well myelinated
cortico-ponto-cerebellar tracts. MCP alterations have been
described in musicians [79] and are thought to represent
adaptive change to repetitive sensorimotor and cognitive
demands. The progressive recruitment of the cerebellum to
carry out motor tasks has been observed in several neurode-
generative conditions such as amyotrophic lateral sclerosis
(ALS) [34,42,44], Parkinson’s disease (PD) [80] and Hunt-
ington’s disease (HD) [81]. However, it is more commonly
detected as increased activation or increased metabolism on

functional imaging, and only rarely appreciated on struc-
tural imaging [82].

In motor neuron disorders there is a disproportionate
emphasis on wet biomarkers [83,84], and existing imaging
studies primarily focus on the description of atrophy pat-
terns [85] and connectivity changes [86,87] underpinning
specific clinical phenotypes [88,89]. The targeted charac-
terisation of compensatory changes is seldom specifically
pursued and adaptive structural alterations in particular are
rarely evaluated [90]. Our observations may have impli-
cations for other cohorts with acute anterior horn injury,
such as patients with spinal cord infarction or spinal cord
injuries [91]. Depending on the anatomical extent and age
at the primary insult, adaptive process may take place to im-
prove functional outcomes, which provides a very strong ra-
tionale for meticulous multidisciplinary interventions such
as individualised physiotherapy and occupation therapy.
Our findings may also be of relevance for non-traumatic,
non-vascular, lower motor neuron conditions, such as pro-
gressive muscular atrophy (PMA), spinal muscular atro-
phy (SMA), spinal-bulbar muscular atrophy (SBMA) or pa-
tients with LMN-predominant ALS [92–95]. Depending
on the rate of progression of the underlying neurodegener-
ative process, attempted compensatory processes may be at
play to mitigate or slow down functional decline. This fur-
ther highlights that rehabilitation efforts are also very im-
portant in progressive neurodegenerative diseases, and not
just in acute neurovascular conditions and following CNS
trauma [96]. The presence of compensatory mechanisms
may also explain the apparent divergence between disease
burden and the functional profile in someMND phenotypes
[97]. Compensatory processes may also delay symptom
manifestation despite considerable presymptomatic pathol-
ogy [98–100]. Beyond the academic interest of describing
adaptive processes, the demonstration of marked cerebel-
lar neuroplasticity highlights the pivotal role of multidis-
ciplinary interventions, individualised physiotherapy, and
exercise-based strategies such as postural control [56], sit-
ting balance and walking exercises [101]. Our findings
may also support the rationale for non-invasive plasticity-
inducing electrostimulation as part of multidisciplinary re-
habilitation strategies [102,103].

The juxtaposition of several imaging analyses permits
a nuanced characterisation of grey and white matter remod-
elling. Multiple cerebellar lobules exhibited increased cor-
tical thickness in poliomyelitis survivors, while increased
grey matter volume was only detected in lobules VIIIB and
X. This mirrors supratentorial observations in other condi-
tions where cortical thickness measurements are often more
sensitive to structural alterations than volume variables.
Another benefit of appraising cortical thickness measures is
that they don’t require adjustments for TIV. The differing
detection sensitivity of imaging indices highlight the im-
portance of evaluating multiple parameters (thickness, vol-
umes, voxelwise partial-volumes) to comprehensively eval-
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uate grey matter changes. Similarly, the evaluation of mul-
tiple diffusivity indices provides indirect insights into the
cellular underpinnings of white matter alterations. Diffu-
sivity metrics are derived from main eigenvalues (λ1, λ2,
λ3) and reflect on restriction characteristics of water move-
ment along the length of the axon and perpendicular to the
axon. FA and MD ((λ1 + λ2 + λ3)/3) are generic, compos-
ite markers of white matter microstructural integrity. Axial
diffusivity (λ1) is commonly regarded as amarker of axonal
integrity while radial diffusivity ((λ2 + λ3)/2) is often seen
as a proxy of myelin integrity [104,105]. While these asso-
ciations are likely to be simplistic, in the absence of robust
post mortem studies in poliomyelitis survivors, the assess-
ment of multiple diffusivity metrics is particularly valuable.

This study is not without limitations. Our study has a
cross-sectional design and included a relatively small sam-
ple of poliomyelitis survivors which precluded further strat-
ification for age at initial infection or disability severity.
We have only evaluated cerebral changes in this study,
even though quantitative spinal protocols are increasingly
available [106,107] and combined cord-brain studies are
likely to elucidate proposed compensatory processes fur-
ther. We also acknowledge the inherent inclusion bias to
patients with less severe disability; the presented cohort of
poliomyelitis survivors had minimal respiratory compro-
mise and did not have severe scoliosis. Patients with se-
vere polio-induced deformities were less likely to attend our
research facility or tolerate the duration of the MRI proto-
col. Furthermore, our observations are mere snapshots of
cerebellar architecture many decades after the original ill-
ness. The longitudinal trajectory of putative compensatory
processes could not be explicitly demonstrated due to the
cross-sectional design of the study. Notwithstanding these
limitations, our findings suggest radiological evidence of
cerebellar reorganisation decades after severe lower motor
neuron injury. We hypothesise that similar compensatory
process may occur in other spinal conditions and that the
younger the age at initial injury, the more successful these
processes may be. While these hypotheses remain to be
confirmed in purpose-designed longitudinal protocols, our
findings highlight the importance of specifically evaluat-
ing hypertrophic changes in neuroimaging studies instead
of solely characterising patterns of atrophy.

5. Conclusions
The widespread cerebral changes described in the post

mortem literature of poliomyelitis represent the acute se-
quelae of the infection. Pathological changes in the chronic
phase, long after the infection, are poorly characterised.
Our neuroimaging findings indicate considerable cerebellar
reorganisation decades after poliomyelitis infection which
may be interpreted as compensation to anterior horn insult
in infancy. Similar processes may take place in other spinal
cord conditions and in particular, in motor neuron disor-
ders. Instead of exclusively focusing on neurodegenerative

changes, academic neuroimaging studies should also eval-
uate evidence for neuroplasticity and compensatory pro-
cesses.
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