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Abstract

Background: Some evidence has demonstrated that focal vibration (FV) contributes to the relief of post-stroke spasticity (PSS). Al-
though the changes of cortical activity correlating with the relief of PSS induced by FV have been explored using transcranial magnetic
stimulation, brain oscillatory activity during the above-mentioned process has not been fully understood. Objective: The main purpose
of this study is to explore the correlation between the changes in brain oscillatory activity and the relief of PSS following FV.Methods:
A clinical experiment was carried out, in which FV (87 Hz, 0.28 mm) was applied over the antagonist muscle’s belly of the spastic muscle
of ten chronic spastic stroke patients. An electroencephalogram was recorded following before-FV and three sessions of FV. Muscle
properties to assess the relief of PSS were tested before-FV and immediately after three sessions of FV.Results: EEG analysis has shown
that FV can lead to the significant decrease in the relative power at C3 and C4 in the beta1 (13, 18 Hz), as well as C3 and C4 in the beta3
band (21, 30 Hz), indicating the activation of primary sensorimotor cortex (S1-M1). Muscle properties analysis has shown that, in the
state of flexion of spastic muscle, muscle compliance and muscle displacement of the spastic muscle significantly increased right after
FV, illustrating the relief of the spasticity. Moreover, the increase of muscle compliance is positively correlated with the reduction of
difference index of the activation of bilateral S1-M1. Conclusions: This finding indicated that the relief of PSS can be associated with
the activation of bilateral S1-M1 where the activation of the ipsilesional S1-M1 was higher than that of the contralesional one. This study
showed the brain oscillatory activity in the bilateral S1-M1 correlating with the relief of PSS following FV, which could contribute to
establishing cortex oscillatory activity as a biomarker of the relief of PSS and providing a potential mechanism explanation of the relief
of PSS.
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1. Introduction

In most countries, stroke, as one of the leading causes
of adult mortality and morbidity, led to the loss of pa-
tients’ motor function and affected the activity of daily liv-
ing (ADL) [1]. Spasticity, which was characterized by a
velocity-dependent increase in tonic stretch reflexes, was a
common complication in stroke patients [2]. The incidence
rate of post-stroke spasticity (PSS) reached 17% to 42.6%
of those in the chronic phase (>3 months poststroke) [3].
The direct costs for 12-month stroke patients with spastic-
ity were four times higher than those for patients without
spasticity [4]. Therefore, it was necessary to relieve the
PSS. So far, many effective interventions for the treatment
of PSS have been reported, including pharmacological in-
terventions, non-invasive brain stimulations, sensory stim-
ulations, etc. [5].

In the past few years, more and more researchers have
focused on establishing the connection between changes in
the cerebral cortex and the relief of spasticity in order to ex-

plore a potential mechanism of the relief of spasticity at the
cortical level using some neuroimaging modalities, includ-
ing electroencephalogram (EEG) [6], functional magnetic
resonance imaging (fMRI) [7,8], and transcranial magnetic
stimulation (TMS) [9]. For example, EEG changes over
the ipsilesional sensorimotor network in the beta band were
associated with the reduction of spasticity following robot-
assisted bilateral arm training [6]. Enhanced fMRI activa-
tion in the contralesional primary motor and sensory cortex
(S1-M1), as well as associative sensory cortex, has been
correlated with greater mitigation of PSS following upper
extremity motor learning therapy [7].

Several studies have also explored the relationship be-
tween changes in the cerebral cortex and the relief of PSS
following focal vibration (FV), as one of many sensory
stimulation interventions to alleviate PSS [10–12]. Gener-
ally speaking, FV was applied over the antagonist muscle’s
belly of the spastic muscle [12,13]. The choice of stimula-
tion location was mainly based on the cortical reciprocal in-
hibition between agonist and antagonist muscle [14–16]. In
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these studies involving the cortical level, TMS was widely
used as the monitor tool and TMS-induced motor-evoked
potential (MEP) reflected the motor cortical excitability
through electrical signals recorded from the descendingmo-
tor pathways. The results from these studies have shown
that FV can enhance the amplitude of MEP (motor cortical
excitability) of the vibrated muscle whilst reducing the am-
plitude ofMEP (motor cortical excitability) of non-vibrated
antagonistic muscles in healthy subjects’ experiments [14–
16]. Based on the potential mechanism of cortical recipro-
cal inhibition, some clinical experiments’ results have also
demonstrated that muscle vibration applied over the antag-
onist muscle belly to spastic muscle can reduce spasticity
[10,12,13,17]. The clinical study has further revealed that
the differential modulation of excitability in motor cortical
circuits induced by FV over the antagonist muscle’s belly
of the spastic muscle was correlated with the reduction of
spasticity [12]. However, MEP was absent for some stroke
patients, especially for patients with large cortical lesions
involving M1[18]. Therefore, assessing the changes in mo-
tor cortex excitability using MEP was not suitable for all
stroke patients during the rehabilitation training.

Compared to other neuroimaging modalities (such as
fMRI, Magnetoencephalography), EEG, which was used to
record brain oscillatory activities simultaneously in these
frequency bands, had the advantage of higher spatial res-
olution and lower cost. The sensorimotor “mu” rhythms
and sensorimotor beta rhythms mainly originated in the so-
matosensory postcentral gyrus and precentral motor cortex,
respectively [19,20]. Some clinical studies have elucidated
that EEG brain oscillatory activities (mainly referred to
“mu” and beta rhythms) can be acted as a biomarker of mo-
tor recovery in stroke patients [21–25]. In these studies, the
event-related synchronization and event-related desynchro-
nization (ERS/ERD, referred to the increase/decrease of rel-
ative power) overlying sensorimotor cortex in the “mu” and
beta band was usually used to assess the activation of the
sensorimotor cortex. Based on our previous studies, the
beta motor-related power desynchronization (beta-MRPD)
was also considered as the activation of the sensorimotor
cortex following FV [26,27]. In addition, few studies have
so far reported brain oscillatory activities correlating with
the relief of PSS following FV.

Currently, Modified Ashworth Score (MAS) was uni-
versally accepted in the clinical scale to evaluate the relief
of spasticity. Several studies have also used the indexes
of muscle properties. These indexes, including muscle tis-
sue’s compliance and displacement, reflected the changes
in spastic muscle’s viscoelastic properties and compliance
and assessed the reduction of spasticity [28,29]. It had
been demonstrated that the changes in muscle compliance
showed a powerful correlation with MAS in patients with
spastic cerebral palsy [30] and spastic stroke [31]. In one
study, muscle tissue’s compliance and displacement were
used to evaluate the relief of SPP [29].

Based on these considerations, this study’s purpose
was to explore the brain oscillatory activity correlating with
the relief of PSS following FV by establishing the correla-
tion between the changes of beta-MRPD overlying the sen-
sorimotor cortex and the changes in muscle properties. In
the clinic experiment, FV was applied over the antagonist
muscle belly to the spastic muscle and EEG was used to
monitor the brain activity during FV. All sub-beta MRPD
at C3 and C4, including beta1 MRPD (13–18 Hz), beta2
MRPD (18–21 Hz), and beta3 MRPD (21–30 Hz), as well
as the difference index of all sub-beta MRPD between C3
and C4, was calculated to evaluate the activation patterns
of S1-M1. The relative changes of muscle displacement
between the spastic muscle and its antagonist, as well as
muscle compliance, were used to evaluate the relief of SPP.

2. Materials and methods
2.1 Subjects

Ten chronic stroke patients (50.8± 17.6 years) suffer-
ing from biceps brachii spasticity were recruited from Bei-
jing Rehabilitation Hospital Affiliated with CapitalMedical
University and Shenzhen Nanshan District People’s Hospi-
tal. The clinical features of those patients were shown in
Table 1. The inclusion criteria for those patients were in-
cluded: (1) the age ranging from 18 to 78 years; (2) to have
the ability to understand the instruction of the tester; (3)
no less than 6 months post-stroke; (4) to have no severe
impairment of vision and language; (5) to have no anti-
spastic drugs in the last 6 months. The exclusion criteria
were included: (1) to have a history of epilepsy and trau-
matic brain injury; (2) to have other concomitant neurode-
generative diseases; (3) to have serious complications of
lung, heart, kidney, and liver. Prior to participating in this
study, each subject gave written consent. This study was
approved by the Medical Ethics Committee of Beijing Re-
habilitation Hospital Affiliated with Capital Medical Uni-
versity and Shenzhen Nanshan People’s Hospital.

2.2 Experimental setup
Based on this previous study, the changes of muscle

displacement and compliance, which have been acquired by
the muscle tone intelligence measure system, were used to
assess the relief of spasticity quantitatively [29]. In this sys-
tem, the relationship between muscle tissue displacement
and the muscle tissue’s resistance to the system (ranging
between 0.25 kg and 2.0 kg at the interval of 0.25 kg) in-
duced by external perpendicular compression pressure was
established.

EEG signals were recorded using a 64-channel EEG
system (ANTNeuro, B.V., Enschede, the Netherlands) with
a commercial WaveGuard EEG cap, which was designed
according to the international 10-20 system. In this study,
the 32 Ag/AgCl electrodes were chosen (Fp1, Fpz, Fp2, F7,
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7, C3, Cz, C4,
T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, POz,
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Table 1. Patient characteristics.
Subject ID Sex Age Hemiplegic side Stroke location Time from stroke onset (months) MAS

1 Male 26 Right BG 12 1
2 Female 47 Right BG 84 2
3 Male 45 Right BG 6 2
4 Male 27 Right BG, OL, PL, FL 24 1+
5 Male 67 Right BG 48 3
6 Male 65 Left BG, CS, PV 12 1+
7 Female 64 Left BG, LC 9 1
8 Female 75 Left BG 29 1
9 Female 34 Left BG, OL 44 2
10 Female 58 Left BG 94 1
MAS, Modified Ashworth Scale; BG, Basal Ganglia; OL, Occipital lobe; PL, Parietal lobe; FL, Frontal
lobe; CS, Centrum Semioval; PV, Periventricular; LC, Lacunar.

O2, and EOG). Cpz was the reference electrode and the
ground electrode was placed between Fz and FPz. The sam-
pling rate was set at 1000 Hz and the electrode impedances
were kept below 5 KΩ. During EEG recording, all the sub-
jects were asked to be seated with upper-limb relaxed and
minimize chewing, head movement, eye movement, and
body movement.

In this experiment, FV device, in which FV produced
by vibrator was driven by air pressure, was used in this
study [29], as shown in Fig. 1A. FV at the frequency of
87 Hz and the amplitude of 0.28 mm was applied over the
muscle belly of the antagonist’s muscle to the spastic mus-
cle (referred to the triceps) for every stroke patient (see
Fig. 1B). The experiment was performed by the follow-
ing procedures: (1) Before-FV (Baseline), the resting state
EEG recording for 4 min; (2) the first FV stimulation (S1)
with EEG recording for 3 min, during which FV was ap-
plied over the muscle belly of the triceps; (3) the second
FV stimulation (S2), the same as S1; (4) the third FV stim-
ulation (S3), the same as S2. During each phase, all the pa-
tients were asked to keep their eyes closed. Each phase was
followed by a pause of about 3 min. The muscle displace-
ment of the biceps and its antagonist in the affected limb of
all the patients were measured before and immediately af-
ter three sessions of FV. The EEG recording was carried out
repeatedly for three trials for all the patients. The diagram
of the experimental process was shown in Fig. 2.

2.3 Data analysis
2.3.1 EEG analysis

The preprocessing of EEG signals was performedwith
EEGLAB toolbox 14.0.0b (http://www.sccn.ucsd.edu/eegl
ab). The EEG filter was set between 1 Hz and 45 Hz. The
common average reference was chosen and the independent
component analysis (ICA) method was used to remove the
artifacts. The EEG data were divided into segments of 2 s
and the power spectral density (PSD) of each segment was
then estimated using Welch method (pWelch algorithm, 0.5
Hz frequency resolution, an overlapping 1-second hanning

Fig. 1. The diagram of the experiment setup. FV device (A)
and clinical experiment (B).

Fig. 2. The diagram of the experimental process.

window, no phase shift). According to our previous studies
[26,27], FV led to a desynchronized power at C3 or C4 for
stroke patients in these sub-beta bands, including beta1 (13,
18 Hz), beta2 (18, 21 Hz), and beta3 (21, 30 Hz). There-
fore, these sub-beta bands above were selected to calculate
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the relative power in this study. The relative power was
estimated as follows:

RP(f1, f2) =
∫ f2
f1 PSD(f1, f2)df∫ 45

1
PSD(1, 45)df

(1)

where RP(f1, f2) standed for the relative power of the spec-
ified frequency band ([f1, f2]), in which f1 and f2 indicated
the low and high frequency band respectively. The changes
of beta power at C3 and C4 in different FV phases com-
pared to baseline were described as the motor-related power
desynchronization (MRPD), which was calculated as fol-
lows:

MRPD{S1, S2, S3} =
RP{S1, S2, S3} − RPBaseline

RPBaseline
(2)

The negative MRPD value, which was similar to the event-
related desynchronization (ERD), reflected the activation
of the sensorimotor cortex. In our study, the averaged
RP and averaged MRPD in all the FV phases were calcu-
lated. To describe the diversity of the activation between
the left and the right primary sensorimotor cortex (S1–M1),
the difference index of the activation of bilateral S1–M1
(δ{beta1,beta2,beta3}) was estimated to be:

δ{beta1 , beta2, beta3} = MRPDC4
{beta1, beta2, beta3} −MRPDC3

{beta1, beta2, beta3}

= MRPD Contra
{beta1, beta2, beta3} −MRPDIpsi

{beta1, beta2, beta3}

(3)

where MRPDIpsi
{beta1,beta2,beta3} indicated MRPD of

the ipsilesional S1-M1 (also referred to S1-M1 lo-
cated at the same side as the vibrated limb) and
MRPDContra

{beta1,beta2,beta3} indicated MRPD of the con-
tralesional S1-M1 (also referred to S1-M1 located at the
same side as the vibrated limb) in the beta1, beta2, and
beta3 band. The activation of ipsilesional S1-M1 was
higher than that of contralesional S1-M1 according to
δ > 0, whilst the activation of ipsilesional S1-M1 was
lower than that of contralesional S1-M1 according to
δ < 0.

2.3.2 Muscle displacement and compliance analysis

As is well known for us, the coordination of the ago-
nist and antagonist muscles can ensure the smoothness of
joint movement. As for patients with PSS, the impairment
of motor function was induced by the coexistence of the
weakness of the antagonist muscle and the over-activity of
spastic muscle. The persistence of this phenomenon would
exacerbate spasticity. Therefore, in our previous study, the
index, which was used to assess the relief of spasticity, was
put forward as follows [29]:

λ
AUC−muscle
{ext,fle }

=
AUC−musclebicps

{ext,fle}

AUC−musclebicps
{ext,fle} + AUC −muscletriceps

{fle,ext}

(4)

λ
Compliance
{ext,fle }

=
Compliance biceps

{ext,fle}

Compliance biceps
{ext,fle} + Compliance triceps

{fle,ext}

(5)

where λCompliance{ext,fle} , λAUC_muscle{ext,fle} represented the normalized
compliance, AUC_muscle of biceps muscle following the
elbow joint’s flexion and extension, respectively. The
AUC_muscle represented the area under the curve for mus-
cle. The muscle compliance, as well as AUC_muscle, was
estimated at the force of 1–2 kg. The changes of λCompliance{ext,fle}

and λAUC_muscle{ext,fle} induced by FV compared to before-FV
(∆λAUC_muscle{ext,fle} , ∆λCompliance{ext,fle} ) were estimated as follows:

∆λ
AUC−muscle
{ext,fle} = λ

AUC−muscle
{ext,fle}

∣∣∣∣after-FV − λ
AUC−muscle
{ext,fle}

∣∣∣∣before-FV
(6)

∆λ
Compliance
{ext,fle} = λ

Complince
{ext,fle}

∣∣∣
after-FV

− λ
Compliance
{ext,fle}

∣∣∣
before-FV

(7)

2.4 Statistical analysis

Using SPSS Statistics 20.0 (IBM Inc., NY, USA), the
whole statistical analyses were performed. Regarding the
relative power, the two-way analysis of variance (ANOVA),
in which condition factors (baseline and during-FV) and
location factors (ipsilesional S1-M1 and contralesional S1-
M1) were considered as within-subjects factors, was carried
out in all the sub-beta bands. If the assumption of sphericity
checked by the Mauchy’s test was significant, the degrees
of freedom were adjusted. When the main effect (condi-
tion and location) or their interactions (condition × loca-
tion) was significant, post hoc comparisons were carried
out to make if FV induced the significant changes in the
relative power compared to the baseline phase. The regres-
sion analysis was performed to test whether the linear rela-
tion between muscle displacement and force existed. The
paired-sample t-test (short for t-test later)was carried out to
make sure if the significant changes in the AUC_muscle
and normalized compliance after FV occurred compared
to baseline. Besides, the Pearson’s correlation was car-
ried out to determine whether the correlation between the
changes in the AUC_muscle and normalized compliance
(∆λAUC_muscle{ext,fle} , ∆λCompliance{ext,fle} ) among these indexes of the
activation of S1-M1 in all the sub-beta bands, including
the difference index of the activation of bilateral S1-M1
(δ{beta1,beta2,beta3}), the activation of contralesional S1-M1
(MRPDContra

{beta1,beta2,beta3}) and the activation of ipsilesional
S1-M1 (MRPDIpsi

{beta1,beta2,beta3}), existed. Due to the ro-
bustness of the ANOVA under application of non-normally
distributed [32,33], the Shapiro-Wilk test was used to de-
termine whether these metrics were normally distributed
when the t-test and Pearson’s correlation analysis were car-
ried out. If these metrics were not normally distributed, the
t-test and Pearson’s correlation analysis were replaced by
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Wilcoxon signed-rank test and Spearman rank correlation
analysis, respectively. The p-value’s significance was set
at 0.05.

3. Results
3.1 Relative power analysis from EEG

Regarding beta1 band, the Shapiro-Wilk test indicated
that the relative power of contralesional S1-M1 in the base-
line (p = 0.587) and during-FV (p = 0.559) phase, as well
as the relative power of ipsilesional S1-M1 during FV (p
= 0.066) was normally distributed. However, the rela-
tive power of ipsilesional S1-M1 during FV was not nor-
mally distributed (p = 0.026). Two-way ANOVA showed
that the main effect condition (F(1,9) = 5.222, p = 0.048)
was significant; the main effect location and their interac-
tions location×condition were not significant. The t-test
showed that FV led to a significant decrease in the rela-
tive power of contralesional S1-M1 compared to baseline
(p = 0.0095), while the Wilcoxon test indicated a signifi-
cant decrease in the relative power of ipsilesional S1-M1
during FV compared to baseline (p = 0.0295) (see Fig. 3).
Regarding beta3 band, the Shapiro-Wilk test indicated that
the relative power of contralesional S1-M1 in the differ-
ent phases (baseline, p = 0.587; during-FV, p = 0.367), as
well as the relative power of ipsilesional S1-M1 (baseline, p
= 0.055; during-FV, p = 0.133) were normally distributed.
Two-way ANOVA showed that the main effect condition
(F(1,9) = 7.926, p = 0.02), as well as their interactions
location×condition (F(1,9) = 5.775, p = 0.02) was signifi-
cant; the main effect location was not significant. The t-test
showed that FV led to a significant decrease in the relative
power of both contralesional S1-M1 and ipsilesional S1-
M1 compared to baseline (ipsilesional S1-M1, p = 0.0115;
Contralesional S1-M1, p = 0.0485) (see Fig. 4B). As for
beta2 band, two-way ANOVA showed that the main effect
condition (F(1,9) = 1.665, p = 0.229), the main effect lo-
cation (F(1,9) = 3.776, p = 0.084), and their interactions
location×condition (F(1,9) = 1.042, p = 0.334) was not sig-
nificant (see Fig. 4A).

3.2 Muscle compliance and displacement analysis

The results from the regression analysis showed that
the relationship between biceps’ muscle displacement and
resistance force was linear significantly following the el-
bow joint’s flexion and extension. The Shapiro-Wilk test
showed that AUC_muscle and muscle compliance follow-
ing elbow joint’s flexion and extension in the before-FV and
after-FV phases were normally distributed. The t-test indi-
cated that a significant increase in the biceps’ AUC_muscle
following elbow joint’s flexion (p = 0.0055), as well as
λCompliancefle (p = 0.0305), occurred after FV ( see Fig. 5). No
significant changes in the biceps’ λAUC_muscleext and λComplianceext
occurred after FV compared with baseline by the t-test.

Fig. 3. The relative power of ipsilesional and contralesional
S1-M1 in the beta1 band in the following two phases: before-
FV and during-FV. * indicated 0.01 < p < 0.05, ** indicated p
≤ 0.01.

3.3 The correlation analysis between the activation of
S1-M1 and, muscle displacement and compliance

The Pearson’s correlation analysis confirmed that the
difference index in the beta3 band (δbeta3) (r = 0.654, p
= 0.02, see Fig. 6), had a significantly positive correla-
tion with the changes of λCompliancefle . The Pearson’s corre-
lation analysis also confirmed that the activation of ipsile-
sional S1-M1 in the beta3 band (MRPDIpsi

beta3) had a signifi-
cantly positive correlation with the changes of λCompliance

fle
(r = 0.618, p = 0.0285) (see Fig. 7). Besides, the Shapiro-
Wilk test indicated that difference index in the beta3 band
(p = 0.061), the changes of λCompliance

fle (p = 0.198) and
MRPDIpsi

beta3 (p = 0.505) was normally distributed. No other
significant results were found while performing the Pear-
son’s correlation analysis.

4. Discussion
This study has explored the brain oscillatory activity

correlating with the relief of spasticity following FV. The
clinical experiment showed that the activation of bilateral
S1-M1, as well as the increase of AUC_muscle and muscle
compliance, was induced following FV (frequency: 87 Hz;
amplitude: 0.28 mm) over the antagonist muscle’s belly to
spastic muscle in chronic stroke patients. Importantly, the
difference index of the activation of bilateral S1-M1 has a
positive correlationwith the increase ofmuscle compliance.

4.1 The changes in brain oscillatory activities overlying
S1-M1 induced by FV

Our study has shown that FV led to the significant de-
crease of relative power at C3 and C4 in the beta1 band, as
well as C3 and C4 in the beta3 band, which has indicated the
activation of S1-M1 in several EEG-fMRI studies [19,20].
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Fig. 4. The relative power of ipsilesional and contralesional S1-M1 in the different frequency bands: beta2 (A) band and beta3
(B) band. * indicated 0.01 < p < 0.05, ** indicated p ≤ 0.01.

Fig. 5. The biceps’ λAUC_muscle and λCompliance following elbow
joint’s flexion and extension. * indicated 0.01 < p < 0.05, **
indicated p ≤ 0.01.

The result was similar to the previous studies which have
shown that FV can activate the S1-M1 in subacute stroke
patients [26,27]. Our study further demonstrated that FV
can induce the activation of bilateral sensorimotor cortex in
chronic stroke patients, which has also been observed dur-
ing the movement of affected hand or thumb-to-index tap-
ping using PET [34,35], voluntary movement of the paretic
limb using fMRI [36], knee flexion-extension using fMRI
[37], motor imagery supination movement using EEG [38],
passivemovement of the affected hand using fMRI [39], the
movement of the paretic hand using fMRI [40]. Especially
for stroke patients with spasticity, the activation of the bi-
lateral sensorimotor cortex was induced during imaginary
finger movement with the impaired hand using fMRI [41],
the passive movement of the paretic hand using EEG-fMRI
[42], sequential finger movement using fMRI [43], imagery
of finger movements using fMRI [44]. Therefore, FV, as a
sensory stimulus, was similar to the motor task. They both

Fig. 6. The correlation between the difference index of the ac-
tivation of bilateral S1-M1 (δ) and the changes of compliance
(∆λCompliance) during biceps flexion in the beta3 band.

generated a proprioceptive afferent drive to induce the ac-
tivation of the contralesional and ipsilesional sensorimotor
cortex. The latter could be caused by the recruitment of the
uncrossed corticospinal tract.

4.2 The relief of PSS caused by FV

In this study, the AUC_muscle and compliance of
spastic muscle tissue increased following FV, which indi-
cated the relief of spasticity. On one hand, non-spastic mus-
cle’s compliance and displacement were higher than that of
the contralateral spastic muscle for chronic spastic stroke
patients [28,45,46]. The increase in muscle compliance had
also been related positively to the reduction in the MAS
[30,31], which was the current standard for clinical assess-
ment of extremity spasticity. On the other hand, muscle
stiffness was the inverse of AUC_muscle and muscle com-
pliance [28,31]. Muscle stiffness showed a powerful corre-
lation with the muscle tone following upper-extremity reha-
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Fig. 7. The correlation between ipsilesional S1-M1
(MRPDIpsi) in the beta3 band and the changes of com-
pliance (∆λCompliance) during biceps flexion.

bilitation programs [46]. Therefore, it could be inferred that
the ease in themuscle compliance andAUC_musclewas as-
sociated with the reduction of spasticity, although a direct
clinical measurement of spasticity after antagonist stimula-
tion is needed in further studies.

4.3 The short-term effect of FV on the brain oscillatory
activities correlating with the relief of PSS

The difference index of the activation of bilateral S1-
M1 had a positive correlation with the changes in muscle
compliance. Therefore, the short-term relief of PSS in-
duced by FV was attributed to the cortical activation pat-
terns. The patterns referred to the activation of bilateral
S1-M1 where the activation of the ipsilesional S1-M1 was
higher than that of the contralesional one. The result corre-
sponded with one study, which showed that the increase in
the activation of the bilateral sensorimotor cortex was as-
sociated with the reduction of spasticity after repetitive arm
cycling following botulinum toxin injections [47]. Another
study also found that the activation of the bilateral cerebral
cortex for several patients was associated with the improve-
ment of spasticity after robot-assisted arm training [6]. This
further supported the viewpoint that a learning effect in bi-
lateral cortex sensorimotor representations induced by FV
contributed to improving the maladaptive cortical plastic-
ity of spasticity, thus mitigating the spasticity for chronic
stroke patients. Besides, the activation of ipsilesional S1-
M1 in the beta3 band had a positive correlation with the
increase of muscle compliance, which meant that the ac-
tivation of ipsilesional S1-M1 contributed to the relief of
spasticity. The phenomenon above also was in accord with
the result from our present study.

However, some researchers have drawn different con-
clusions. For example, several studies have confirmed that
the reduction of spasticity can be associated with the ac-
tivation of the sensorimotor cortex in an “alleviating” dif-

ference direction, including a decrease in the excitability
of contralesional sensorimotor cortex [41], an increase in
the excitability of ipsilesional sensorimotor cortex [43,48],
and a higher decrease in the excitability of contralesional
sensorimotor cortex than that of the ipsilesional sensorimo-
tor cortex [49]. The relief of spasticity could be attributed
to the rebalance of abnormal interhemispheric interaction
between contralesional and ipsilesional sensorimotor cor-
tex (e.g., the increased inhibitory effect of the unaffected
hemisphere on the affected hemisphere). This contributed
to functional recovery after stroke [50]. However, the op-
posite conclusion has also appeared: the relief of spastic-
ity correlated with the activation of sensorimotor cortex in
an “aggravating (or clear)” difference direction, including
an increase in the excitability of contralesional sensorimo-
tor cortex [7], a decrease in the excitability of ipsilesional
sensorimotor cortex [51], and the coexistence of the first
two cases [8]. This was due to the potentially supportive
evidence that increased activation in contralesional S1-M1,
as an additional source of cortical organization, has played
an important role in the recovery of motor function [52].
Our study combined the two explanations above: FV re-
balanced interhemispheric interactions (inhibition and fa-
cilitation) by inducing the activation of bilateral S1-M1 in
which the activation of ipsilesional S1-M1 was higher than
that of contralesional one. This provided a new treatment
guideline for stroke rehabilitation. Especially for TMS, fa-
cilitation of bilateral S1-M1, where the facilitation of the
ipsilesional S1-M1 was stronger than that of the contrale-
sional one, appeared a new effective option for motor re-
covery post-stroke.

The small sample size and the short duration of the
experiment were limitations of this study. A large sample
longitudinal study will be carried out to explore the brain
oscillatory activity correlating with the relief of PPS fol-
lowing FV in the future.

5. Conclusions
To summarize, this study has demonstrated that FV

over the antagonist muscle belly to the spastic mus-
cle has a short-term positive effect on the relief of the
PSS, which was evaluated by muscle properties, including
AUC_muscle and normalized compliance. These changes
in these muscle properties have been correlated positively
with the difference index of the activation of bilateral S1-
M1. The “alleviating” difference index referring to the ac-
tivation of bilateral S1-M1, where the activation of the ip-
silesional S1-M1 is higher than that of the contralesional
one, can be the potential mechanism of the short-term relief
for chronic stroke patients. This study not only demonstrate
the correlation between brain oscillatory activity and the re-
lief of PSS, but also indicate brain oscillatory activity as a
potential biomarker of the relief of PSS. The future study
will focus on investigating the changes of cerebral activity
correlating with the reduction of PSS following long-term
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FV using EEG, which can provide a new explanation of the
long-term mechanism of FV on the relief of PSS.
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