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Background: Machine learning techniques and magnetic resonance imaging methods have been widely used in computer-aided diagnosis
and prognosis of severe brain diseases such as schizophrenia, Alzheimer, etc. Methods: In this paper, a regularized multi-task learning
method for schizophrenia classification is proposed, and three MRI datasets of schizophrenia, collected from different data centers,
are investigated. Firstly, slice extraction is used in image preprocessing. Then texture features of gray-level co-occurrence matrices are

extracted from the above processed images. Finally, a p-norm regularized multi-task learning method is proposed to simultaneously learn

the site-specific and site-shared features of the multi-site data, which can effectively discriminate schizophrenia patients from normal

controls. Results: The classification error rate on 10 datasets can be reduced from 10% to 30%. Conclusions: The proposed method
obtains excellent results and provides objective evidence for clinical diagnosis and treatment of schizophrenia.
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1. Introduction

According to the quantitative evaluation of the world
health organization, brain diseases such as Alzheimer,
Parkinson, and schizophrenia, etc. account for about 28%
of all kinds of diseases in the world [1], which seriously
threatens human health. Among them, schizophrenia is
the most common psychosis. Its clinical manifestation is
a syndrome with different symptoms involving many ob-
stacles such as perception, thinking, emotion, behavior, as
well as the disharmony of mental activities [2]. The diagno-
sis of schizophrenia in traditional medicine is mostly based
on American DSM-IV, international ICD-10, and domes-
tic classification and diagnostic criteria of mental disorders
[3]. With the development of science and technology, var-
ious types of high-end medical imaging devices are devel-
oping rapidly. And medical images play an increasingly
important role for assisting doctors to diagnose diseases.
However, a large number of medical images have obviously
increased the burden of doctors. At present, as a research
hotspot in the field of medical science, image classification
task is widely completed with the help of computer-aided
means.

Among many medical images, magnetic resonance
imaging (MRI) has been widely used in the clinical diagno-
sis of brain diseases due to its advantages of non-radiation
and high resolution [4,5]. A great deal of studies on sMRI
show that abnormal gray matter located in multiple parts of
the brain such as temporal lobe, parietal lobe and frontal
lobe is the main manifestation of schizophrenia patients
[6,7]. In many papers, brain abnormalities in schizophre-

nia striatum [8,9] and hypothalamus [10] have been identi-
fied. In paper [11] the gray matter texture analysis of mag-
netic resonance images is used, and it is determined that
there is heterogeneity in the cerebral gray matter structure of
schizophrenic patients. Therefore, abnormal sMRI images
can be used to diagnose schizophrenia disease according to
biological characteristics. In paper [12], a method called
volume local binary patterns (VLBP) was used to calculate
texture features to classify fMRI images of schizophrenic
patients. In paper [13], the gray level co-occurrence matrix
texture features of sMRI images combined with XGBoost
were used to classify schizophrenia patients, which effec-
tively verified the role of computer-aided diagnosis.

At present, based on MRI images of some brain
diseases, researchers usually study image segmentation,
recognition and classification in single area. However, in
the era of internet information explosion, it is possible to ob-
tain MRI images of multiple regions of homologous brain
diseases through multiple channels. In the literature [14]
multi-site data with 900 subjects was used, and about 200
subjects from 2 sites were included in the paper [15]. Papers
[16,17] show that, compared with a small number of sam-
ples in a single area, MRI data of the same kind of brain
diseases in multiple sites can provide more sufficient statis-
tical information, so as to better explore the functional mode
of the brain structure of a patient. By studying the papers
[18-20], it can be found that compared with the patients in
a single area, the population distribution of the same dis-
ease in different regions is diverse. For example, there are
certain differences in the structure and function of different
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people’s brains. The severity of the disease and the clinical
symptoms in the population of multi-site are different. The
type of patients is more extensive, etc. Obviously, studying
the medical images of the same patients in many areas can
not only get more comprehensive image information or a
consistent pattern of abnormal pathological characteristics,
but also analyze the characteristics of medical images in a
single area. The experimental results are also more con-
vincing. With the wide cooperation between international
medical institutions and medical workers, it is an inevitable
trend to study the pathological mechanism of the disease by
using medical image data from multi-site of the sick people.

It can be seen from the above that, on the basis of
multi-site MRI image data of schizophrenia brain disease,
computer-aided diagnosis technology is used to distinguish
normal and abnormal MRI images, and finally to correctly
classify patients and normal people. The advantages are ob-
vious. However, when any classifier is trained under lim-
ited sample conditions, it is difficult to replace the infinite
sample pattern with a limited sample mode and to achieve
a high degree of conformity with the actual pattern, espe-
cially under the conditions of the small number of MRI
image sample and less diversity. Aiming at this problem,
the advantage of multi-task learning method [21] is gradu-
ally presented. Multi-task learning is an optimal learning
method by mining shared information among tasks while
training multiple related tasks. It can significantly improve
the learning effect of the algorithm, and has been applied
to many fields such as spam filtering [22], natural image
classification [23], various disease modeling, classification
and prediction [24,25] and so on. In the articles [26] and
[27], using mutual inductive bias, multi-task learning can
obtain bias information to supplement the lack of samples,
which can simultaneously learn single task’s unique fea-
ture information and feature information shared by multi-
ple tasks, and effectively improve the generalization ability
of the model. Evgeniou et al. [28] proposed a regularized
multi-task learning (rtMTL) method based on support vec-
tor machine (SVM) model. This method added regularized
penalty term which constrains the correlation parameters of
different task model, and improves the generalization abil-
ity of the model. In the paper [29], a regularized multi-task
learning method based on SVM and hybrid norm of and
was proposed for MRI image classification of depressive
disorders patients, and excellent results were obtained. The
classification error rate on 10 datasets can be reduced from
10% to 30%.

Inspired by previous research, in this paper the classi-
fication problem of schizophrenia MRI images in multi-site
data centers is regarded as a multi-task learning problem.
A regularized multi-task learning classification model with
SVM and p-norm is constructed, and the gradient descent
method is used to optimize this model. Finally, this model
is used to classify the MRI images of schizophrenic patients
and normal people.

The rest of this paper is organized as follows. In sec-
tion 2, the detail of the data is given, and the data prepro-
cessing and statistical analysis is specified. In section 3,
detailedly presents the proposed classification method is in-
troduced. The experimental results and analyses are pro-
vided to demonstrate the feasibility and effectiveness of our
method in section 4. In section 5, a conclusion is drawn.

2. Data
2.1 Database

MRI data were collected in the United States of Amer-
ica, Brazil, and China (referring as site A, site B, and site
C). 132 normal controls (NC) and 137 schizophrenia pa-
tients (SCZ) were recruited in site A, 94 NC and 62 SCZ
in site B, 181 NC and 144 SCZ in site C. All patients met
DSM-1V [30] criteria and were diagnosed as schizophrenia
by psychiatrists. All the sMRI image scans were acquired
on a GE 3-T Signa scanner (GE Medical Systems, Milwau-
kee WI, USA) with the following protocol: slice thickness
=1 mm, TE = 3.2 ms, TR = 8.2 ms, flip angle = 12°, ac-
quisition matrix = 256 x 256, FOV =25.6 cm. All partic-
ipants were remained quiet, without moving, eyes closed,
no sleeping, and no system thinking activities during func-
tional MRI scanning. None of them has any history of other
neurological diseases or serious drug diseases. Written in-
formed consent was obtained from all subjects before MRI
scanning. In order to get a balanced subject numbers of
controls and patients, 60 NC and 60 SCZ were randomly
chosen in each site.

The acquired MRI images were preprocessed using
the statistical parametric mapping software package (SPM,
Wellcome Trust Centre for Neuroimaging, Institute of Neu-
rology, London, UK, http://www fil.ion.ucl.ac.uk/spm) in
which the following steps such as skull stripping, bias cor-
rection, tissue segmentation (four types of tissue includ-
ing gray matter, white matter, cerebrospinal fluid, and
lateral ventricles), spatial registration to a Montreal neu-
rological institute (MNI) template, generation of the re-
gional analysis of volumes examined in normalized space
maps called RAVENS [31,32] of gray matter, white matter,
cerebrospinal fluid by the deformable registration package,
named DRAMMS, which is publicly available [33], and the
smoothing of RAVENS maps using a 6-mm full width at
half maximum (FWHM) Gaussian filter are included.

2.2 Statistical Analysis

To better illustrate the demographic and clinical char-
acteristics of the study groups, the Student’s 7-test of the age
means and Pearson Chi-square test for gender differences
were calculated. The statistical analysis of 200 subjects is
analyzed in the Table 1.

It can be seen from the Table | that these 200 subjects
are matched in age and gender in dataset. And no statisti-
cally significant characteristic occurs when the difference p
is smaller than 0.05.
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Table 1. Statistic analysis of the participants’ characteristics in this study.

Region Class Sample size  Gender (male/female)  Average age/years  Age range/years
SCZ 60 37/23 34.68 18~60

A NC 60 28/32 31.78 13~65
p Value - 0.092 0.22° -
SCZ 60 44/16 27.53 18~50

B NC 60 37/23 29.73 18~50
p Value - 0.172 0.13% -
SCz 60 23/37 30.85 16~54

C NC 60 28/32 33.93 20~57
p Value - 0.36% 0.11% -
SCz 180 105/75 31.39 16~60

A+B+C NC 180 89/91 30.90 15~65
p Value 0.092 0.65° -

aPearson Chi-square test. ®Two-sample t-test. A, United States of America; B, Brazil; C, China;

SCZ, Schizophrenia patients; NC, Normal Controls.

3. Methods
3.1 Image Preprocessing

Brain MRI data is typically stored in the form of three-
dimension. In our study, we investigate the gray matter im-
age of structural magnetic resonance imaging (SMRI) which
has a size 0f 96 x 113 x 94 voxel. Because dimension dis-
aster problem will happen, or the model performance will
be cut down by the large number of irrelevant and redun-
dant feature information if features are directly extracted in
the light of each voxel, a preprocessing method which in-
cludes slicing and calculating weighted sum of average gray
images is proposed in this paper. The detailed steps are as
follows:

(1) Original images are sliced. For each subject, the
size of gray matter image is 96 x 113 x 94 voxel. The
volume image is sliced in the Z-axis direction. Therefore,
94 slices can be gotten.

(2) Sliced images are selected and converted to gray
images. By removing 10 slices (the head most 5 slices and
the backmost 5 slices) which don’t include feature informa-
tion in the sliced gray matter images, and converting the re-
maining slices into gray images,the sequentially numbered
slices are obtained and denoted as (i =0, 1, 2 ... 83). The
part of sliced and grayed image slices of the first subject
numbered NCO001 are shown in Fig. 1.

(3) The gray images are weighted and averaged. Ac-
cording to the structural integrity of the cerebral gray matter
in each slice, the 84 slices were divided into three groups in
sequence among which slices from 1st to 28th are a group.
Similarly, slices from 29th to 56th and slices from 57th to
84th are respectively a group. Because the slices closer to
the middle reflect more complete structure on the gray mat-
ter of the brain, they contain more feature information. And
then the greater weight are given when calculating the aver-
age grayscale image. The equations for these three groups

&% IMR Press

of images are described by
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Imgl, Img2, and Img3 are calculated using sMRI data
of each subject after sMRI data is preprocessed, which puts
a good way for the subsequent feature extraction.

3.2 Feature Extraction

Image feature extraction is a fundamental and critical
step in medical image processing whose purpose is to show
the characteristics or attributes of the samples in the form
of numerical values, symbols and feature vectors. The re-
sults of feature extraction directly affect the classification
accuracy. Because the texture information in the image is
not sensitive to noise, light and color, the texture feature is
chosen to use in this paper.

3.2.1 Texture Features Based on Gray-level
Co-Occurrence Matrix

There is no universally mathematical model for
texture feature extraction. Because the gray-level co-
occurrence matrix (GLCM) model method is not restricted
by the analysis object, it can well reflect the spatial gray dis-
tribution of the image and the texture features of the image,
and has been widely used [34]. GLCM which describes the
grayscale of adjacent pixels (or within a certain distance)
is a statistical matrix, and reflects the comprehensive in-
formation which consists of the image gray change in the
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Fig. 1. Some examples of sliced gray matter images. From (a) to (h) they are respectively the 13th, 20th, 34th, 48th, 62nd, 69th, 76th,

83rd slices.

direction, interval, and amplitude. Assume the gray level
of a digital image is N, p (i, j) represents the possibility (or
frequency) of the appearance of grayscale j under the condi-
tion that the starting grayscale is i, where it is assumed that
j is along the direction # of i and the space distance is d.
GLCM shows statistical information, and can be calculated
using the following equations.
(1) Mean:

N N
Mean = T = ZZp(i,j) X1 “4)

1=C

j=0

The mean reflects the regularity of texture. The
smaller the mean is, the more disorganized the texture is.
(2) Variance:

N N
Variance = Z Zp(i,j) x (i — )2 Q)

i=0 j=0

The variance measures the deviation of the pixel value
from the mean. The larger the variance is, the more the
change of gray scale is.

(3) Entropy:

N N
Entropy = —» > p(i,j) x Inp(i,j)  (6)

i=0 j=0

Entropy is the measurement of information contained
in an image. The greater the value of entropy is, the more
complex the texture is.

(4) Contrast:

N N
Contrast = ZZp(i,j) x (i —j)? (7

i=0 j=0

Contrast reflects the total amount of local gray scale
changes in an image. The greater the contrast of an image
is, the clearer the visual effect of this image is.

(5) Correlation:

N N . ) .
. (i — Mean ) x (j — Mean ) x p(i, j)?
Correlation = E E - (®)
=020 Variance

The correlation is a measure of the linear relationship
of the gray scale. The longer the extension of the gray value
in a certain direction is, the greater the correlation is.

(6) Homogeneity:
N N 1
Homogeneity = 0h,j) X ———— 9
geneity ;;p( N ©

Homogeneity is used to measure the uniformity of the
local gray level of an image. The more homogeneous the
local gray scale is, the greater the value is.

(7) Energy:

N N
Energy =Y ) p(i,j)’ (10)

i=0 j=0
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Energy is the measurement of uniformity of gray dis-
tribution in the image.

Using the above 7 kinds of texture features, a texture
vector representing an image can be obtained.

3.2.2 Normalization

The feature vectors need to be normalized so that any
feature does not dominate among all of these features. All
the feature vectors are normalized to contain zero mean and
unit variance. The normalization is done by using the equa-
tion:

Ty — W
Ox

(11)

Xr; =

where p and are respectively the mean and standard devia-
tion of all the features x;.

In summary, for each of these three weighted and aver-
aged gray images (Img1, Img2, Img3), the above 7 statistics
are calculated and normalized. Thus every subject can be
represented using a vector containing 21 features.

3.3 Classification Algorithm
3.3.1 Multi-Task Learning and Single Task Learning

Machine learning algorithm usually learns a task every
time, and decomposes the complex problem into the the-
oretically independent sub-problems. Then it learns each
sub-problem separately. Finally, it constructs the math-
ematical model of complex problems by combining the
learning results of the sub-problems, namely single task
learning [35,36]. Multi-task learning is a machine learning
method relative to single task learning. It uses information
shared by multiple tasks to learn multiple tasks simultane-
ously, and solves multiple problems simultaneously. The
obtained results interact with each other. Sharing informa-
tion between tasks is the prerequisite for multi-task learn-
ing. On this basis, the training of multiple tasks can improve
the overall generalization performance of the model. The
main difference between multi-task learning and single task
learning is that the training process of the model is different
[31,32]. In the training process of single task learning, each
task is independent and does not affect each other. Its disad-
vantage is that it ignores the information contained in other
tasks during the process of single task training. To some ex-
tent, the loss of relevant training information is caused, and
this part of the lost information may be very useful for the
training process. Nevertheless, the training of multi-task
learning takes into account the correlation and useful infor-
mation shared between tasks. At the same time it learns
multiple tasks in parallel. The difference between the two
training model is shown in the Fig. 2 below.

3.3.2 Support Vector Machine Classification Algorithm
with Multi-Task p-norm

The most important issue of multi-task learning is how
to build the model of relationship between tasks, and to
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make the relevant tasks share information. Finally, the goal
of using the correlation between different tasks to improve
the learning performance of the algorithm is achieved. We
expect that the model fits the training data as much as pos-
sible, and is not too complicated at the same time. There-
fore, the support vector machine algorithm with regular-
ized multi-task is adopted to solve MRI image classification
problems of mental illness in multi-site data centers.

Assuming that there are t supervised learning tasks in
a multi-task learning problem, for each task i, the learning
function is assumed to be f; : R? — R. Training set is
Xi = [1'173727 ce ,xn] € Rdxn(i = 172, e ,t), where n
is the number of input sample, and d is the dimension of
the sample feature vector. Y; = [y1,¥2,...,yn] € R*(i =
1,2,...,t),and y; € {+1, —1} is the label of each sample
in the i-th task. The weight coefficient matrix of #-th super-
vised learning tasks is W = [wy, wo, ..., w;] € R¥*. The
goal of multi-task learning is to get ¢ related tasks’ regres-
sion or classification function f;(z) by learning the train-
ing data. In order to accurately find out the f;(x) function,
the multi-task objective function should be determined first.
Assuming that f; (w!'z;,Y;) is the loss function of the 7-th
task, in the classification problem, the classical loss func-
tion includes log-likelihood function, exponential function
and hinge function. Support vector machine model with
regularized multi-task learning and a least empirical error
can be expressed by [28].

1 n
min — ; f (wl X3,Y:) + QW) (12)

where the first item is the empirical loss function on training
data. f(w! X;,Y;) uses hinge loss function. The second
one is the regularized term which can encode correlation
between tasks. A is the parameter of the regularized term,
and A > 0.

The optimal solution for a single ¢ task is equivalent
to the global problem of solving the target function of the
joint ¢ task, and is described by

t n t
naivnz % S F(wl XY +A> QW) (13)
t=1 =1

t=1

The norm of the model parameter vector is usually
used as regularized term in machine learning. The regular-
ization order needs to be set in advance. g, {; and l5 norms
are commonly used. In our experiments, we found that dif-
ferent regularization order can improve the classification
accuracy of different data. So SVM classification algorithm
with p-norm regularized multi-task learning is proposed in
this paper. p-norm is not only effective during processing
image data, but also easy to optimize. And it can reduce
the computational complexity of the model. The formula is
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Fig. 2. The comparison of training process of single task learning model and multi-task learning model.

described by [29]

h(w) = [wll, = (Dwiv’) (14)
=1

where z = {z1,...,z,} isavector. p-norm is a measure of
the sparsity of the vector. The desirable range of the order
pis 0 < p <2, and the choice of p depends on the related
degree between the tasks. The more correlation and shared
information between the tasks is, the larger the p value is.
Let k(w) = hP(w), when 0 < p < 2. Its derivative equation
is shown by

Ok (w)

Ao = Plwdl” X sgn (wi) (15)
7
where sgn (w;) = r4. So the Eqn. 15 can be written by
Ok(w _
afu_) = plwi"™* x w; (16)

Finally, the objective function of multi-task learning
SVM with p-norm regularization is shown by

t n t
. 1
L = n}})n E - g max (0, 1-— yz’szccz) + A E Hwin 17
t=1 =1 t=1

According to the different situation, the derivation of
the Eqn. 17 is as follows.

If 1 — y;w;2; <0, then

0L

=0 18
8wt,i ( )
If 1 — y;wf;z; > 0, then
oL _
9 = —Yt,iTt; + P |wt,z‘|p ? x Wt 4 (19)
Wt 4

The gradient descent method is used to update the

weight coefficient matrix Wy ; = {wy1,wi2,...,we i} of
t-th task, i.e., the following equation
Wii=Wi_1,+r-VL(Wi_1,) (20)

4. Results

The experiments are elaborately designed and carried
out using PC with Intel Core i5 (Intel Inc., CA, USA),
CPU@2.40Ghz, speed 800 MHz, and 32G RAM. The com-
piling environments are Matlab2013a (American Math-
Works company, MA, USA) and Python2.7 (Python Soft-
ware Foundation, DE, USA).

4.1 Experimental Settings

In order to verify the effectiveness and robustness of
the proposed method, comparative experiments are per-
formed. (I) Single-site classification, i.c., that SVM classi-
fication algorithm was used to learn features of each single-
site data separately for classification. (II) Pooling classifi-
cation, i.e., that the three sites data were pooled together
as a larger dataset regardless of the site differences. And
SVM classifier was used to classify the remaining sam-
ples. (IIT) Multi-site classification, i.e., that SVM classi-
fication model with p-norm regularized multi-task learning
was used to learn the site-specific and site-shared features
simultaneously in the three data sites, and the two kinds of
features were combined to classify the data corresponding
to the data site.

In experiment (I), 72 cases were selected as training
set from each site A, B, C, and the remaining samples serve
as test sets. The feature vectors were input into the SVM
classifier with the sigmoid kernel function. The main pa-
rameters include that penalty factor-c is 0.05, the fold of
cross validation -v is selected 5 and 10, and the coefficient
of'kernel function -g is 0.05. The algorithm can be achieved
through LIBSVM tools, and the performance of the classi-
fier was evaluated by cross-validation. The classification
accuracy was obtained at last. In experiment (II), 72 cases
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Table 2. Comparision of experimental results.

. A Site B Site C Site
Experimental method
ACC AUC ACC AUC ACC AUC
GLCM + 5 folds 56.52%  0.58 5897% 0.60 60.26%  0.56
O GLCM + 10 folds 57.02% - 59.14% - 60.22% -
GLCM + LBP + 5 folds 5833% 059 60.42% 0.65 62.50%  0.58
GLCM + LBP + 10 folds  57.69% - 60.46% - 61.84% -
GLCM + 5 folds 60.00%  0.65 67.60% 070 69.00%  0.62
a GLCM + 10 folds 60.21% - 67.64% - 68.79% -
GLCM + LBP + 5 folds 60.83%  0.67 66.67% 0.71  69.17%  0.62
GLCM +LBP + 10 folds  60.65% - 68.17% - 68.75% -
GLCM + 5 folds 66.67%  0.73  75.00% 072  70.83%  0.67
am GLCM + 10 folds 68.70% - 76.30% - 72.83% -
GLCM + LBP + 5 folds 68.75%  0.76  77.08%  0.73  72.92%  0.70
GLCM +LBP + 10 folds  68.55% - 77.25% - 72.67% -

GLCM, Gray-level Co-occurrence Matrix; LBP, Local Binary Pattern; ACC, Accuracy;
AUC, Area Under Curv; A, United States of America; B, Brazil; C, China.

from each site A, B, C were selected for fusion, so a total of
216 cases are used as training set. The remaining samples of
A, B, and C data centers were classified after the model was
trained. Other experimental conditions were set in accor-
dance with the experiment (I). In experiment (I11), 72 cases
were selected as training set from each site A, B, C, and
the remaining samples serve as test sets. The feature vec-
tors were input into the proposed support vector machine
classifier with p-norm multi-task. Hinge function was se-
lected as loss function of the model, and gradient descent
method was used to solve optimization of objective func-
tion (15). The optimal value of each parameter was based
on the principle in which only one variable is changed.In the
experiment, Gaussian kernel function [37] was selected as
the SVM kernel function. In the SVM classifier the penalty
coefficient ¢ is 20 and rbf [37] kernel parameter g is 1.2.
For verifying the role of multiple texture features, local bi-
nary pattern (LBP) [38] features are used to fuse in series
GLCM ones because of the their advantages such as sim-
pleness, validity, and spectrum form.

4.2 Experimental Results

The multi-task learning method was proposed
to simultaneously learn the site-specific and site-
shared features of the multi-site data. According to
Eqns. 11,12,13,14,15,16,17 the gradient descent method
is used to optimize the hinge loss function, and to verify
the convergence of the proposed algorithm. As the number
of iteration increases, the value of loss function shows a
decreasing trend as shown in Fig. 3. It can be seen that the
algorithm has good convergence property.

The best classification accuracy (ACC) and area under
receiver operating characteristics curves (AUC) obtained
by each experiment are shown in the Table 2.
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Fig. 3. The proof of algorithm convergence.

5. Discussion

It can be seen from Table 2 that, under the premise
of using 5-fold cross-validation, the classification accurate
rates of the three data centers (A, B, C) are 56.52%, 58.97%,
and 60.26% respectively in the experiment of single task
learning algorithm. In joint classification experiment, the
classification accurate rates of the three data centers (A, B,
C) are 60.00%, 67.60%, and 69.00% respectively. How-
ever, in multi-task learning classification experiment, the
classification accuracy rates of the three data centers (A, B,
C) can reach 66.67%, 75.00%, and 70.83% respectively.
The AUC of the three data centers (A, B, C) are 0.73,
0.72, and 0.67 respectively. The results of joint classifica-
tion have increased to some extent compared to single-task
learning classification. But multi-task learning is clearly
superior to single task learning classification results. The
classification performance of the multi-task learning algo-
rithm is better than single-task learning system in this ex-
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periment, because the multi-task learning process considers
the association of multiple tasks. The model uses the shared
information between tasks to enhance the inductive bias of
the system, when training multiple tasks at the same time.
Because the p-norm regularized term is added, the redun-
dant features are effectively removed and the computational
complexity of the model is reduced.

Furthermore, in order to verify the effectiveness of
various features, we conduct experiments by merging LBP
(Local Binary Pattern) and GLCM features in series. The
experimental results show that effective fusion of multiple
features such as LBP and GLCM can improve the classifi-
cation accuracy to a certain extent.

Under the premise of using 10-fold cross-validation,
the experimental results did not show a significant improve-
ment on accuracy. Sometimes the mean accuracy even
lower than the results of 5-fold cross validation. Actually,
in cross-validation, the choice of k value can refer to the em-
pirical formula which is k= In(n) and n/k>3d [39], where
n represents the amount of data and d represents the char-
acteristic number. For the data settings of the experiments
in this paper, the above theories explain why the accuracy
drops sometimes.

6. Conclusions

In this paper, for discriminating schizophrenia patients
from healthy controls, image processing and machine learn-
ing are introduced into the aided diagnosis and analysis of
schizophrenia disease based on SMRI. Firstly, for achiev-
ing the effect of reducing dimension, the gray matter im-
age is sliced, weighted and averaged preprocessing. Then
GLCM texture features are extracted and normalized. Be-
sides, the experimental samples are analyzed from the sta-
tistical point of view, excluding the influence of sex, age
factors on the experimental results. At last, the main contri-
bution of this work is that a support vector machine method
with p-norm regularized multi-task learning is proposed and
used to train and to establish the binary classification model.
The experimental results show that multi-task learning ap-
proach has a superior performance compared with the sin-
gle task learning method. It provides new ideas for studying
multi-regional data and disease analysis. Furthermore, this
experiment also provides guidance for computer-aided di-
agnosis and prognosis of mental illness. In the future work,
more features will be considered to fuse, and the methods
for mining deeper features of schizophrenia will be found,
which can better improve the classification accuracy and
assist doctors to diagnose schizophrenia disease.
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