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Abstract

Background: The goal of the brain is to provide right on time a suitable earlier-acquired model for the future behavior. How a complex
structure of neuronal activity underlying a suitable model is selected or fixated is not well understood. Here we propose the integrated
information Φ as a possible metric for such complexity of neuronal groups. It quantifies the degree of information integration between
different parts of the brain and is lowered when there is a lack of connectivity between different subsets in a system. Methods: We
calculated integrated information coefficient (Φ) for activity of hippocampal and amygdala neurons in rats during acquisition of two
tasks: spatial task followed by spatial aversive task. An Autoregressive Φ algorithm was used for time-series spike data. Results: We
showed that integrated information coefficientΦ is positively correlated with a metric of learning success (a relative number of rewards).
Φ for hippocampal neurons was positively correlated with Φ for amygdalar neurons during the learning requiring the cooperative work
of hippocampus and amygdala. Conclusions: This result suggests that integrated information coefficient Φ may be used as a prediction
tool for the suitable level of complexity of neuronal activity and the future success in learning and adaptation and a tool for estimation
of interactions between different brain regions during learning.
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1. Introduction
A currently discussed hypothesis is that the brain func-

tions as a past experience-based predictor of future actions
in the environment ([1–5], and this idea has a long history
[6–11]). This predictive function is possible due to adapted
activity of a huge number of neurons.

It is well known that the brain neurons have complex
connectivity of two types: some neurons are mostly lo-
cally interconnected, some have additionally wide-spread
connections — the principle known as “small-world” orga-
nization ([12]). The latter ones belong to so called “Rich
club” forming a global hub, which interconnects diverse
parts of the whole brain [13,14]. Such organization is not
limited by morphological connections between neurons but
also revealed in functional connectivity. Functional con-
nectivity related to the ability to integrate different parts
of the brain into the whole is often analyzed in terms of
the information theory [15,16] and, in particular, by the in-
tegrated information theory (IIT) proposed by Tononi and
his colleagues [17–22], which quantifies an advantage of
a cooperative work of brain parts. Φ might be considered
as a metric capturing an interior view of a system (“what
the system is”) instead of describing external characteristics
(“what the system does”) [23]. IIT was successfully used

in many non-biological complicated systems as a metric of
a success [24,25], but was not used to analyze dynamics
of neuronal activity in a brain during the period of learn-
ing. A resembling approach for functional magnetic reso-
nance imaging data in humans showed an increase of inter-
regional activity correlations between brain regions in con-
trast with correlations inside regions during different task
performance [26].

Integrated information coefficient Φ is calculated us-
ing a definition given by authors [19]:

Φ =

r∑
k=1

H (Mt,k | Mt+∆t,k)−H (Xt | Xt+∆t) (1)

whereH(A|B) is the conditional entropy of variable Awith
given knowledge of variable B,X0 andX1 are the system
state vectors at time moments t and t + ∆t (see below);
Mt, k andMt+∆t, k are the state vectors of system subsets
at timemoments t and t+∆t; and r is the number of subsets.
The time here is discrete, it is a set of sequential system
states really taken at the same time intervals. Partition by
subsets, so-called minimum information partition (MIP), is
performed in such a way that subsets must be maximally
independent, i.e., the information reduction after a system
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splitting must be minimal [19].

This approach has some limitations in application to
brain neurons. First, due to the computation complexity,
the coefficient Φ cannot be precisely estimated for large
neuron groups, and it is a discussable question does the
approximate value reflect the functional connectivity of a
brain. When the state vectors are considered, an informa-
tion may be lost while converting a complex dynamic of
spikes and field potentials into a system state vectors. Fi-
nally, this approach does not consider systems with mem-
ory, handling an information processing only for a single
time step [19,27]. Thus, it is required to check whether the
coefficient Φ describe the behavior of a brain.

In this work we used information integration coeffi-
cient (Φ) to quantify changes in neuronal activity during
learning. Φwas estimated based on two sets of neuronal ac-
tivity data from hippocampus and amygdala in rats acquir-
ing a spatial aversive task in a linear maze. We showed that
Φ for the two structures increased as learning progressed.

2. Materials and Methods

2.1 Calculation of Φ

Φ was calculated with autoregressive Φ algorithm
(ΦAR) [28]. This approach was developed for performing
calculations on time-series data, because the estimation of
entropies in the definition (1) requires to estimate the whole
distribution of data, to gather statistics about 2N states of a
system of Nneurons. For real time-series data, this distri-
bution is often underestimated and yields to instability of
Φ [28]. To build binary time-series data for calculations, a
timeline was divided into equal bins. If there was a spike in
the bin, this bin has value 1, and in other case it has value
0. A bin size is used as a compromise, in order to keep all
patterns of neuron spiking and avoid excessive information.
Such binning method was used for calculation of entropies,
for example in [29].

This algorithm has a parameter∆t, which means how
much of sequential states are considered (for how many
steps the information is generated). This is a temporal scale
for a system, it shows a degree to which an information in a
network predicts a future network state given an earlier state
separated in time by a lag ∆t [30]. So, ∆t was determined
experimentally by calculatingΦwith different values of∆t

and finding such ∆t which gives a maximal average value
of Φ for all learning days.

This classical definition (1) cannot be used for calcu-
lation ofΦ. It is based on estimation of a partition minimiz-
ing Φ , which can only be found by a brute-force search. A
number of possible ways to partition a system of N elements
is the Bell number BN [31]. As a system size N increases,
this number grows faster than a factorial. Thus, another
calculation method, so-called autoregressive Φ (ΦAR) was

used [28]:

ΦAR =

min
M

(
1
2 ln

det(Σ(X))
det(Σ(EX))

−
∑2

k=1
1
2 ln

det(Σ(Mk))

det(Σ(EMk))

)
1
2 ln

[
min
k

{
(2πe)|Mk| det (Σ (Mk))

}]
(2)

whereΣ(X) is the covariation matrix of variableX;EX is
the autoregression residuals (errors of regression that pre-
dicts value of X at time moment t + ∆t based on value
of X at time moment t; Mk, k ∈ {0, 1} are the two sys-
tem subsets, and |Mk| is a size of a subset Mk. Subsets
are selected in a way to minimize the resulting ΦAR value.
Only two subsets are selected in this method, the number
of candidate partitions is defined by a Stirling number of
the second kind and grows exponentially. But for a large
number of neurons a calculation in a considerable time is
still impossible. Thus, an approximation was applied. Ex-
perimentally we found that the limit of 15 neurons is the
point when computations become intractable. To perform
calculations, at each session we selected 15 neurons with
the most variance of activity, as it was done in [26]. In
previous works, other approximations based on simplified
partition were used [32].

In some cases, this algorithm could not return a value.
It is known [26], that it happens when some neurons had
little or no variance in their activities — bins were almost
always on or almost always off. In this case, the one neu-
ron with the least variance was excluded from analysis and
calculation was performed again, and so on. If an algorithm
was unable to calculateΦAR on any neurons in some period,
this period was excluded from statistical analysis. Each ob-
tained ΦAR value was normalized by a number of neurons
used in this calculation to make it possible to compare ob-
tained values and investigate its dynamics through each an-
imal learning sessions.

To achieve a higher time resolution, each ses-
sion was divided into 8 equal periods and informa-
tion integration coefficient ΦAR was also calculated
for each period. Calculations were performed in
MATLAB. Neural and behavioral data manipulations
were performed with FMAToolbox open-source library
(http://fmatoolbox.sourceforge.net) [33].

2.2 Behavioral Paradigm

We used an open dataset [34,35] in order to analyze
behavior and neuronal activity during learning, so details
of the experimental design may be found in [35]. Ani-
mal experiments were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at New York Uni-
versity Medical Center, as it was mentioned in an original
manuscript [35]. In short, male Long-Evans rats (N = 3,
300 g, 3 months) were initially trained a simple spatial task
in a linear track. During behavior sessions the animals ran
from one end of the track to the other to get water from a
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Fig. 1. Integrated information coefficient ΦAR for all animals in hippocampus and amygdala vs. number of rewards in corre-
sponding periods. X axis: ΦAR, Y axis: relative number of rewards, each point represents 1/8 length period in each session. Left: for
hippocampal neurons; right: for amygdala neurons. Statistical significance is given taking into account the Bonferroni correction.

water well. After shaping or initial training sessions, micro-
electrode arrays were implanted into the amygdala and the
dorsal hippocampus. After a rehabilitation period of 5 days,
animals started learning the second procedure. Two air-puff
sites were located at the equal distance from the middle of
the track and applied at one of two sites when the rat moved
in a particular direction. The direction and the site varied
pseudorandomly across training days.

2.3 Data Analysis
Along with information integration coefficient we

quantified learning success for every period of each session.
Learning success was assessed as a number of rewards in
a period divided by a length of a period. Correlations be-
tween the two variables in each period were calculated us-
ing Spearman’s correlation; we also calculated Spearman’s
ρ using Student’s t test. The Bonferroni correction for mul-
tiple comparisons was performed.

3. Results
Two animals acquired the complete task and showed

learning progress, and the third did not exhibit significant
progress and its performance decreased at the beginning of
the second half of a learning process. At most each of them
performed about 100–150 rewarded trials per day (session).
The number of learning days for each rat was different, but
enough to estimate the presence or lack of a progress.

An integrated information coefficient was calculated
for each day and each period. A bin size was selected as
0.2 seconds (see Materials and method section). The char-
acteristic temporal scales ∆t for all animals and the brain
regions were determined (Table 1).

We found a positive correlation between the integrated
information coefficient ΦAR for the neural activity in the
brain areas and the number of rewards obtained by ani-

Table 1. Number of steps for information generation used to
calculate an integration information coefficient ΦAR for each

animal and brain area.
Brain regions Animal 1 Animal 2 Animal 3

Hippocampus ∆t = 8 ∆t = 10 ∆t = 11

Amygdala ∆t = 8 ∆t = 12 ∆t = 9

mals. Such positive correlations were evident in both hip-
pocampus (r = 0.3792, p = 0.0001, ***), and amygdala (r
= 0.3592, p = 0.0001, ***) (Fig. 1).

We reasoned that those behavioral adaptations were
the function of the whole brain activity and estimated mu-
tual relationships between the two brain areas calculat-
ing correlations between integrated information coefficient
ΦAR for neuronal activity in the hippocampus and inte-
grated information coefficient ΦAR for neuronal activity in
the amygdala. ΦAR in the hippocampus and the amygdala
were significantly correlated for two animals exhibited a
steady learning progress: Spearman r = 0.4299, p = 0.0001
for the first animal, and Spearman r = 0.4206, p = 0.0001
for the second animal (Fig. 2).

We also found that ΦAR for the hippocampal neurons
correlated with ΦAR for the amygdala neurons the day the
maximal number of rewards occurred (maximal learning
progression) and the day before but not the day after it (r
= 0.7678, p< 0.0001, ****; r = 0.5520, p< 0.0001, ****;
r = 0.1343, p = 0.2608, ns; correspondingly) (Fig. 3). Max-
imal learning progression occurred on the 10-th day for the
first rat, on the 10-th day for the second rat and on the 12th
day for the third rat. We also figure out a correlation be-
tween ΦAR and number of rewards on the day before and
after this point, separately. ΦAR for the amygdala and the
hippocampus neurons were significantly correlated with a
relative number of rewards only before the maximal pro-
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Fig. 2. Learning progress and integrated information coefficient ΦAR for each animal in hippocampus and amygdala. Top:
learning progress of animals. X axis: day of learning, Y axis: number of rewards. Bottom: Correlation of ΦAR values for hippocampus
and amygdala in the periods. X axis: ΦAR for neural activity in hippocampus, Y axis: ΦAR for neural activity in amygdala, each point
represents 1/8 length period of each session. Statistical levels are calculated taking into account the Bonferroni correction for multiple
comparisons.

Fig. 3. Information coefficient ΦAR for all animals in hippocampus and amygdala before a day of maximal learning progression.
Top row: days before a day of maximal learning progression and at such day; bottom row: days after a day of maximal learning pro-
gression. X axis: ΦAR for neural activity in hippocampus, Y axis: ΦAR for neural activity in amygdala, each point represents 1/8 length
period of each session. Statistical levels are calculated taking into account the Bonferroni correction for multiple comparisons. Statistical
significance was found only for days before a day of maximal learning progression and at this day.

gression day, but not after it. For the hippocampus, the
values were Spearman r = 0.4268, p = 0.0001 (before) and
Spearman r = 0.09521, p = 0.4263 (after). For the amygdala
the values were Spearman r = 0.3933, p = 0.0001 (before)
and Spearman r = 0.2372, p = 0.0118 (after).

4. Discussion

Our results suggest that the concept of integrated
information, as formalized by the integrated information
coefficient Φ, can be usefully applied to assess learning
progress. Unlike conventional assessment tools based on

observable values with limitations of being environment-
specific and task-specific [24] the integrated information
measure might be used as a predictor of near future suc-
cess in learning or as an indicator of the optimal brain
functioning during adaptation. Getting to the point of de-
sired outcome by a particular neuronal pattern is selected
and fixated. Given that the integrated information met-
ric was originally proposed for consciousness level assess-
ments [21,36,37], these results open a question what is as-
sessed by this measure.

The metric of integrated information may also be used
for establishing interactions among various brain regions
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during learning. Similar estimations were quantified as an
“information flow” earlier [15,16,38]. In this study, we
showed a degree of joint regional contribution underly-
ing behavioral adaptations to the environmental demands.
Behavioral paradigm applied in this study consists of two
parts: simple spatial task in the linear track mostly based on
hippocampal place neurons and spatial aversive task pre-
sumably subserved by the amygdala neurons. Our results
suggest that neurons of both regions participate in the inte-
gration needed for successful learning of the second skill.
These results are also in accordance with reconsolidation
research findings that indicated that any learning is based
on the earlier acquired experience which is required to re-
consolidate again [39–41]. The integrated information ap-
proach opens a newway for investigation of reconsolidation
processes and suggests a possibility to find if reconsolida-
tion processes are regionally restricted to any brain zones
under any given learning.

Another possibility is to assess functional connectivity
using this approach. As we showed correlated complexity
of activity varied through learning progress and dropped on
the day after the maximal progression, which might be re-
lated to consolidation/reconsolidation during sleep [34,42].

In this study we proposed a new approximation of Φ
calculation. As mentioned in Materials and Methods sec-
tion, we used an approximation preserving the algorithm
of selection of a minimum information partition, but sac-
rificing the coverage of all neurons. We supposed that if
neurons have a multi-level organization [43], then impor-
tant structural changes can be detected even in small groups
of neurons, and these changes can approximately reflect
changes of a whole anatomical region. This approxima-
tion successfully demonstrated a correlation with a clas-
sical success metric in 48 days of learning. Thus, a 15-
neuron approximation is acceptable for performing calcu-
lations of Φ. More investigations are required to compare
Φ calculated with the proposed approximation and Φ cal-
culated with known approximations. It is necessary to note
that given technical advances for large neuronal population
registration, it will be a challenging task to track the evolu-
tion of Φ of a bigger number of neurons in the same way.
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