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Abstract

Here we present a complex hypothesis about the psychosomatic mechanism of serotonergic psychedelics. Serotonergic psychedelics af-
fect gut microbes that produce a temporary increase of 5S-HT by their host enterochromaffin cells (ECs). This increased 5-HT production—

which is taken up and distributed by platelets—may work as a hormone-like regulatory signal that could influence membrane permeability
in the host organs and tissues and in the brain. Increased plasma 5-HT levels could enhance permeability of the blood-brain barrier (BBB).
Transiently increased permeability of the BBB allows for plasma 5-HT to enter the central nervous system (CNS) and be distributed by

the volume transmission. Next, this gut-derived 5-HT could modulate excitatory and inhibitory neurotransmission and produce special

network disintegration in the CNS. This transient perturbation of the normal neural hierarchy allows patients access to suppressed fear

information and perform an emotional reset, in which the amygdale may have a key role.
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1. Introduction

Serotonergic psychedelics (serotonergic hallucino-
gens) are a subclass of psychedelic drugs that bind and acti-
vate serotonin 5-HT2A receptors. Various studies have sug-
gested that activation of the 5-HT2A receptor (a G-protein
coupled receptor, coded by the HTR2A gene) has a key role
in the effects of hallucinogenic drugs. 5-HT2A receptors
are widely expressed in the human body, including in the
gastrointestinal tract, platelets, and the nervous system [1].
There is growing evidence that serotonergic psychedelics
can have important therapeutic effects on psychiatric disor-
ders, but the underlying neurobiology and pharmacology of
serotonergic psychedelics are currently not well understood
[2-6].

Recently, we suggested that intestinal 5-HT, produced
by enterochromaffin cells (ECs) and picked up by circulat-
ing platelets, may work as a hormone-like regulator and has
a significant function in the regulation of membrane perme-
ability in the intestine, brain, and other organs [7]. This no-
tion may in part elucidate how gut dysbiosis could be linked
to mental disorders.

After a brief review of the relevant literature about
serotonin, classic psychedelics, gut-brain axis, platelets,
blood-brain barrier (BBB) and volume transmission, and
based on our previous articles’ conception [7,8], we
present a hypothesis about a possible mechanism for sero-
tonergic psychedelics. We also point out briefly that the

psychedelic-induced state bears similarities to the sleep-like
state that may also contribute to a better understanding of
the neuromolecular processes of psychedelics [9,10].

2. Serotonin as a Versatile Signal Molecule
with Diverse Functions

Serotonin is an evolutionarily ancient molecule that
can be found from nematodes to humans [11]. Serotonin
(5-hydroxytryptamine, 5-HT) is a monoamine synthesized
from tryptophan in two steps by tryptophan hydroxylase
(TPH) and aromatic L-amino acid decarboxylase (AADC).
TPH is a rate-limiting enzyme of 5-HT synthesis. There
are two isoforms of TPH in vertebrates. TPH1 is primar-
ily expressed in peripheral tissues mainly in intestinal en-
terochromaffin cells (ECs) and the pineal gland. TPH2 is
expressed in peripheral myenteric neurons in the gut and in
the neurons of raphe nuclei in the brainstem [12].

5-HT is not only known as a neurotransmitter, but it
can also regulate nerve activity and various neuropsycho-
logical processes [13]. 5-HT also has hormonal, autocrine,
and paracrine actions and can act as a growth factor [13].
About 95% of the body’s 5-HT is produced in the gut. In the
gastrointestinal (GI) tract, 5-HT is produced by endocrine
cells, called enterochromaffin cells (ECs), as well as mu-
cosal mast cells and myenteric neurons [13,14]. However,
the most of the body’s 5-HT is produced by ECs in the gut.
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5-HT, released in the gut from ECs, can regulate sev-
eral gastrointestinal functions such as vasodilation, secre-
tion, peristalsis, pain perception, nausea, etc. by activat-
ing 5-HT receptors on intrinsic and extrinsic afferent nerve
fibers [15]. Much of the serotonin from the ECs is taken
up by platelets and stored in their dense bodies (together
with ATP, ADP, and Ca2+) and distributed throughout the
body, similar to a hormone and released upon their activa-
tion, which is involved in diverse physiological functions
[16-18].

5-HT has key roles in diverse normal physiological
conditions and in pathological processes such as aggres-
sion; depression; schizophrenia and anxiety; sexual behav-
ior and mood; cognitive functions; memory and learning;
sleep; appetite; body temperature regulation; gastrointesti-
nal regulations; glucose homeostasis and lipid metabolism;
bone metabolism; vascular and immune processes includ-
ing chemotaxis, leukocyte activation, proliferation, and cy-
tokine secretion; hematological diseases; energy and apop-
tosis; age-related processes; among others [12,17,19-27].

5-HT has a surprisingly strong lipid membrane affinity
[28]. Recently, Dey et al. [29] found that when 5-HT binds
to the membrane, it can directly change membrane proper-
ties and cellular function, which is independent of 5-HT re-
ceptors. Other studies have also shown that 5-HT can mod-
ulate vascular permeability [30,31]. In addition, Engberg et
al. [32] found that small membrane-binding molecules as
neurotransmitters can influence essential membrane prop-
erties. The authors found that 5-HT can bind to biologically
relevant membrane models that induce a significant struc-
tural change in its domain size. As a result, the conforma-
tion of membrane proteins can be changed by altered mem-
brane properties that modify membrane signaling processes
(for example, via modification of the secondary structure of
G protein-coupled receptors).

3. Platelets

There are approximately one trillion anucleated
platelet cells derived from megakaryocytes in the blood.
Platelets are not only mediators of homostasis and thrombin
generation, but also have essential roles in various physio-
logical and pathophysiological processes such as homeosta-
sis, inflammation, innate and adaptive immunity, angiogen-
esis and tissue repair, cardiovascular disease, and cancer,
among others [33,34]. It is currently accepted that platelets
work as immune cells with an incredible number of func-
tional roles [35,36].

The major granule types of platelets are a-granules,
dense (or J-granules) granules, and lysosomes [28,37,
38]. «-granules include various proteins, chemokines
(CXCL1 and interleukin-8), cytokines, and growth factors
like fibroblast growth factor (FGF). Dense d-granules con-
tain Adenosine diphosphate (ADP), polyphosphates, py-
rophosphates, glutamate, serotonin, histamine, and cal-
cium. Platelet lysosomes contain acid enzymes such as gly-
cohydrolases and enzymes that degrade glycoproteins, gly-

colipids, and glycosaminoglycans.

Several ATP-binding cassette (ABC) transporters
and solute carriers (SLCs) have been found in platelets
[39]. The platelet agonists, like thrombin, ADP, PAF,
epinephrine, and 5-HT, interact with their 5-HT2A recep-
tors on platelets [40]. On the platelet surface, there are
serotonin transporters (SERT) and 5-HT2A receptors [41—
44]. SERT is an important mechanism that regulates plasma
SHT levels [45]. Platelet SERTs can quickly re-uptake se-
creted 5-HT from dense granules and contribute to 5-HT
release during platelet activation [46].

Platelets express various CXC chemokine receptors
and pattern recognition receptors (PRRs) such as Toll-like
receptors (TLRs) that detect pathogen associated molecu-
lar patterns (PAMPs) from pathogens. TLRs on circulat-
ing platelets permit platelets to bind pathogens [47]. This
allows platelets to efficaciously kill pathogens or present
them to cells of the immune system. Platelet-derived CXC
chemokines are important mediators of inflammation, im-
mune defense, and repair processes following vascular or
tissue damage [48,49].

Platelets can communicate with other cells in different
ways, such as direct cell-cell interactions by membrane re-
ceptors or indirectly through the release of various soluble
factors from their granules, and the release of microparti-
cles. Microparticles are enriched in non-coding microRNAs
(miRNAs) that suppress mRNA translation through multi-
ple mechanisms and are potent regulators of gene expres-
sion [50,51].

Activated platelets can also release some of their mi-
tochondria, and these extracellular mitochondria can in-
duce paracrine or endocrine responses, interact with neu-
trophils, and trigger neutrophil adhesion to the endothelial
wall [52,53].

Activated platelets can mediate T-cell functions (by
platelet factor 4 (PF4, CXCL4)-RANTES or serotonin.)
and can also activate peripheral blood B cells and increase
production of immunoglobulins [33,54,55].

4. Platelets as Peripheral Models for
Neuronal 5-HT Dynamics

Platelets also serve as peripheral models for neu-
ronal 5-HT dynamics [56,57]. Several proteins have been
identified in both neurons and platelets, such as serotonin
transporters and receptors, reelin, amyloid-beta precur-
sor protein (APP), and brain-derived neurotrophic factor
(BDNF), among others. Platelets also contain chemokines
and cytokines, and neurotransmitters (5-HT, dopamine,
epinephrine, histamine, and gamma-aminobutyric acid
(GABA)) [58,59]. Platelets and neurons have similar secre-
tory vesicles that store gamma-aminobutyric acid (GABA),
glutamate, dopamine, 5-HT, epinephrine, calcium, adeno-
sine 5'-diphosphate (ADP), and adenosine 5’-triphosphate
(ATP). These are released during platelet activation or from
neurons subsequent to an action potential [59].

&% IMR Press


https://www.imrpress.com

Activated platelets can synthesize pro-inflammatory
mediators such as platelet-activating factor (PAF),
prostaglandins (PGs), and thromboxanes.  Activated
platelets release 5-HT and PAF that have important func-
tions in the regulation of neuroinflammation, hemorrhage,
and neuronal plasticity after traumatic brain injury [60].

In platelets and in the brain cortex, significant simi-
larities were revealed between the characteristics of the 5-
HT2A receptor or SERT structure [61-63]. Since selec-
tive serotonin reuptake inhibitors (SSRIs) block the reup-
take of 5-HT into neurons as well as the uptake of 5-HT
into platelets, various researchers use platelets as peripheral
models for neuronal 5-HT dynamics, mainly in depression
and schizophrenia, and for monitoring the effect of antide-
pressants [59,64—66].

5. Gut-Brain Axis

In recent decades, it has become increasingly evident
that the gastrointestinal microbiota and the genome of the
gut microbiota (microbiome) play essential roles in main-
taining health (homeostasis). The gut-brain axis (GBA)
provides, as a continuous bi-directional communication
system, the flow of information between the gastrointesti-
nal tract and the brain. Bidirectional communication within
the GBA can be mediated through the vagus nerve, via the
systemic nervous system by the release of hormones, mi-
crobial metabolites (short-chain fatty acids, amino acids),
and neurotransmitters, and through the immune system by
the production of cytokines [67,68].

Recently, Spencer et al. [69] found that large popu-
lations of excitatory and inhibitory neurons in the enteric
nervous system (ENS) produce temporally synchronized
bursts of activity that are independent of the central nervous
system. Nowadays, the ENS is considered as the “second
brain” because it can work independently of the brain. In a
new research, Morarach et al. [70] have defined 12 dif-
ferent kinds of neurons in the ENS of mice. Wei et al.
[71] demonstrated that indole, a tryptophan metabolite, pro-
duced by tryptophanase-expressing intestinal microbes, in-
duced neurogenic effects in the adult mouse hippocampus.
This result provides a possible elucidation of how gut-brain
communication is translated into brain cell renewal through
molecules produced by gut microbes that stimulate neuro-
genesis in the adult brain.

Diverse psychological and environmental stresses can
perturb the healthy functioning of the gastrointestinal mi-
crobiota system that causes dysbiosis. Dysbiosis has been
associated with various diseases such as irritable bowel syn-
drome (IBS), cardiovascular diseases, obesity, arthritis, dia-
betes, kidney disease, allergy, asthma, metabolic syndrome,
among others [72—78]. Antidepressants can also disturb
the gut microbiome and intestinal microbial 5-HT synthesis
and cause dysbiosis [15,79-86]. Relatively rarely, antide-
pressants can also induce visual and auditory hallucinations
[87-90].
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Dysbiosis also has a key role in the development
of neuropsychiatric, neurodevelopmental, and neurode-
generative disorders such as schizophrenia, depression,
autism, attention deficit-hyperactivity disorder (ADHD),
and Parkinson’s disease, among others [91-95]. In mice,
commensal microbiota can influence the levels of brain-
derived neurotrophic factor expression in the cortex and
hippocampus, as well as the postnatal development of the
hypothalamic-pituitary-adrenal (HPA) stress response [96].
In addition, perturbed gut microbiota can change neuro-
transmitter modulation in the brain and, as a consequence,
can also alter mood, cognition, behavior, and memory
mechanisms [97-100].

We should consider that in evolution, the ENS evolved
before the central nervous system (CNS) and is considered a
“second brain” that can operate independently of the brain
and spinal cord [101]. ENS may perform implicit learn-
ing and memorization, so it may work like a little brain in
the gut [101]. Gut microbes are part of our non-conscious
system that can regulate behavior [102]. Post-natal gut mi-
crobial colonization takes place in parallel with cognitive
development that lasts throughout our entire lives [102].

6. The Gut Microbiota Regulate S-HT
Production of Enterochromaffin Cells

There is a continuous dynamic interaction between the
microbiome and the GI system in which 5-HT is a key sig-
naling molecule [103]. The microbiota is required for the
maturation and modulation of the ENS in a 5-HT-dependent
manner [104,105]. Various studies suggested a key role of
intestinal bacteria in the regulation of 5-HT within the gut
[18,106—108]. Wikoff et al. [109] revealed that the plasma
5-HT levels were 2.8-fold higher in conventionalized mice
compared with their germ-free (GF) counterparts. Mandi¢
et al. [107] found that Clostridium ramosum promoted 5-
HT secretion from ECs. In experiments by Reigstad et al.
[110], short-chain fatty acids produced by gut microbes pro-
moted colonic 5-HT production through an effect on ECs.
Yano et al. [18] found that the gut microbiota has a cen-
tral function in promoting levels of colon and blood 5-HT,
basically by increasing the 5-HT synthesis of host ECs. Ex-
plicitly, the authors found that the microbiota can modulate
high levels of peripheral 5-HT, 64% of colonic and 49%
of serum concentrations. These results support the concept
that the microbiota can regulate 5-HT metabolism mostly
by affecting host colonic ECs. The synthesis of gut-derived
5-HT in ECs is controlled by indigenous spore-forming bac-
teria, mainly Turicibacter sanguinis and Clostridial species
that are present in the human microbiota [18]. The indige-
nous microbiota modulates hippocampal levels of 5-HT,
supporting the role of the microbiota in regulation of the
brain’s serotonergic system [111].
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7. Temporarily and Reversibly Increases of
the BBB Permeability: S-HT could be
Transported from the Bloodstream to the
CNS by Various Proposed Mechanisms

The BBB is a complicated network of vasculature
comprising microvessel endothelial cells with various en-
zymes, efflux pumps, and transporters [112]. Although the
BBB is referred to as a “barrier”, the term is misleading be-
cause it allows for bidirectional cell and substance exchange
[113].

Platelet activating factor (PAF) is a G-protein coupled
receptor that is a ubiquitous phospholipid inflammatory
mediator that performs autocrine and paracrine functions
[114]. PAF is released by various cells, like platelets, mono-
cytes/macrophages, neutrophils, and endothelial cells. PAF
can modulate the function of the brain microvascular en-
dothelial cells and temporarily and reversibly increase the
permeability of the BBB [115].

Under physiological conditions, the concentration of
PAF is very low in the circulation. In contrast, under inflam-
mation, the concentration of circulating PAF essentially in-
creases, which contributes to inflammation-mediated tissue
injury, including BBB breakdown [116]. PAF binds to its
receptor that mobilizes Ca2+ that activates cellular signal-
ing pathways such as phospholipase-C-mediated signaling
and induces platelet arachidonic-acid release and 5-HT se-
cretion, which transiently increases the permeability of the
BBB [116-119].

In experiments by Bulat and Supek [120,121], rats
were injected intravenously with 5-HT that produced a con-
spicuous increase in 5-HT in the brain. Nakatani et al. [122]
demonstrated that augmented brain serotonin could cross
the BBB through the 5-HT transporter from the brain to the
circulating blood. Recently, Young et al. [123] reported
that SERT is present in the BBB of the rat, suggesting that
5-HT can enter into the CNS. Young et al. [123] empha-
sized that because the SERT can function bidirectionally,
we must consider whether 5-HT could be transported from
the bloodstream to the CNS.

Extracellular vesicles (EVs) are lipid bilayer enclosed
microvesicles or exosomes of cells that are released by all
types of cells into the extracellular space [124]. EVs serve
cell-to-cell communication and facilitate the exchange of a
wide variety of molecules between adjacent or distant cells.
Platelet-derived EVs (pEVs) can release numerous solu-
ble mediators that are in general stored in platelet granules,
such as vascular endothelial growth factor (VEGF), platelet
factor 4 (PF4), Willebrand factor (vWF), serotonin, among
others [125,126]. Although platelets cannot pass through
tissue barriers, their EVs can enter lymph, bone marrow,
and synovial fluid. Puhm ef al. [124] proposed that pEVs
may be transferred across tissue barriers such as the BBB,
especially under inflammatory conditions.

Latest experiments found that platelets can enter the
CNS parenchyma and directly interact with neuronal cells

[127]. When platelets are activated in the CNS, they release
various pro-inflammatory mediators, neurotrophic factors,
and neurotransmitters, which stimulate neuronal electrical
and synaptic activity and promote the development of new
synapses and axonal reconstruction near the site of dam-
age [127]. Kopeikina and Ponomarev emphasize [127]:
“Platelets and their secreted factors could affect many cell
types involved in the regulation of BBB integrity including
endothelial cells, astroglia, and pericytes”.

It can be seen that 5-HT could be transported from
the bloodstream to the CNS by various proposed mecha-
nisms. Namely, by the help of pEVs [126]; by the help
of SERT that is present in the BBB [123]; by means of in-
creased plasma 5-HT level that can increase permeability of
microvessel endothelial cells as well as the BBB [118,128—
130]; by PAF that modulates the function of the brain mi-
crovascular endothelial cells—that are the major compo-
nent of the BBB—and increases the permeability of the
BBB [115,128]; or platelets may enter CNS parenchyma
and directly interact with neuronal cells [127].

Based on the above, the view that serotonin cannot
cross the BBB may be re-examined.

8. Classic Psychedelics

Classical serotonergic psychedelics create altered
states of consciousness that involve a change in sensory per-
ception, mood and, thinking, including the perception of re-
ality and self-esteem. In the last few decades, various stud-
ies have suggested that serotonergic psychedelics can have
beneficial effects on psychiatric disorders like mood and de-
pressive symptoms, anxiety, post-traumatic stress disorder
(PTSD), alcoholism, or inflammatory diseases [131-136].

Hallucinogens are naturally occurring chemicals, in-
cluding mescaline (3,4,5-trimethoxyphenethylamine),
psilocybin (magic mushrooms), and DMT (N,N-
dimethyltryptamine) or synthetic compounds, such as
lysergic acid diethylamide (LSD), which can induce alter-
ations in human consciousness, emotion, and cognition.

Studies agree that serotonergic psychedelics are me-
diated primarily by activation of the brain’s serotonin 5-
HT2A receptors and that 5-HT2A receptor activation is
necessary for most of the psychoactive effects [137-141].
However, there is evidence that interactions with other re-
ceptor sites also play a role in the psychopharmacological
and behavioral effects of serotonergic hallucinogens [142—
144]. Serotonergic psychedelics have a significant effect on
the major neuronal populations that regulate excitatory and
inhibitory neurotransmission [145]. Psychedelic agents di-
rectly activate some of the excitatory neurons expressing 5-
HT2A and then other cell types, which include subpopula-
tions of inhibitory somatostatin and parvalbumin GABAer-
gic interneurons and astrocytes that create distinct and re-
gional responses [146]. Nevertheless, the effects of sero-
tonergic psychedelic drugs on neurotransmission and corti-
cal networks have been partially elucidated to date [147].
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9. Classic Psychedelics: The Default Mode
Network and the Amygdala

Although serotonergic hallucinogens can produce nu-
merous alterations in the brain networks [148], here we fo-
cus on the amygdala and the default mode network (DMN),
since the amygdala gets input from all sensory modali-
ties and is a key structure in the emotional brain, and the
DMN is considered as the backbone of cortical integration
[149,150].

The DMN is a group of anatomically separated areas
in the brain. DMN’s typical electrophysiological manifes-
tations are strong low-frequency oscillations, coherent dur-
ing the resting state, that are mainly activated when indi-
viduals are focused on their internal mentalstates, such as
self-referential processing, interoception, autobiographical
memory retrieval, or imagining the future [150,151].

The classical regions of the DMN are the posterior
cingulate cortex and retrosplenial cortex; ventromedial, an-
teromedial, and dorsal prefrontal cortex; temporal pole;
middle temporal gyrus; hippocampus and parahippocampal
cortex; amygdala and the posterior parietal cortex.

There are several studies about the function of the
amygdala as related to affective dysfunctions in many psy-
chiatric disorders [152—157]. The human amygdala gets in-
put from all sensory modalities, and the visual modality is
the most significant for emotional aspects of social inter-
actions. The amygdala is a key structure in the emotional
brain, with diverse affective processes [158]. It seems that
the amygdala may be a core brain network, and signals from
the amygdala reach around 90% of the prefrontal cortex
(PFC) [159,160]. Furthermore, emotional stimulation can
be processed without awareness that activates the amyg-
dala, which has an impact on human behavior [161].

A recent review by De Gregorio et al. [162] concluded
that psilocybin and LSD can modulate functional brain con-
nectivity. Mueller et al. [163] investigated the acute ef-
fects of LSD and found a significant negative correlation
between LSD-induced amygdala response to fearful stim-
uli and the LSD-induced subjective drug effects. Bershad
et al. [164] studied the effects of a single low dose of LSD
on healthy subjects. The authors found increased amygdala
seed-based connectivity with the right angular gyrus, right
middle frontal gyrus, and the cerebellum, and decreased
amygdala connectivity with the left and right postcentral
gyrus and the superior temporal gyrus. It seems that very
low doses of LSD produce insignificant subjective changes
but can alter brain connectivity within the limbic network.

Grimm et al. [165] investigated psilocybin’s acute
effects on the amygdala in 18 healthy subjects. They
found that psilocybin decreased the connectivity between
the amygdala and the striatum during angry face discrimi-
nation. In addition, the happy face discrimination decreased
the connectivity between the amygdala and the frontal pole.
There was no effect on discrimination against fearful faces.
According to the authors, psilocybin acts as a modulator
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of the amygdala’s major connectivity hubs. Roseman et
al. [166] investigated the effects of psilocybin on 20 pa-
tients with moderate to severe, treatment-resistant depres-
sion with two separate dosing sessions with psilocybin.
They observed that psilocybin with psychological support
produced increased responses in the right amygdala to emo-
tional faces in patients. However, SSRIs have the oppo-
site effect. This suggests that while SSRIs reduce negative
emotions, psilocybin allows patients to confront and work
through them.

There is a fundamental discrepancy between the
mechanisms of SSRIs that can decrease negative emotions
and psilocybin that allows patients to achieve an emotional
breakthrough [164]. Furthermore, there is an inconsistency
between the results by Roseman er al. [167] and those
by Krachenmann et al. [168], since in the latter, acute
treatment with psilocybin reduced amygdala activity during
emotion processing, which was associated with an increase
in positive mood in healthy subjects. The study by Krae-
henmann et al. [168] may suggest similarities between the
mechanisms of antidepressants and psilocybin. However,
Roseman et al. [167] assume that this interpretation is not
likely because their pre- versus post-resting-state fMRI out-
comes support the notion [169] that the post-acute changes
observed just one-day after a psychedelic experience are
very different to those found during the acute psychedelic
state. Since psilocybin acutely decreases but post-acutely
increases DMN integrity [169], it can produce a transient
disintegration within the normal network by reducing con-
nectivity between the frontal cortex and the lower brain ar-
eas [170]. That is, psychedelics could create a transient per-
turbation of the normal neural hierarchy by reducing top-
down control and increasing bottom-up information trans-
fer [170,171].

Studies have revealed that the serotonin system can
regulate DMN connectivity. Namely, genetic polymor-
phisms of the 5-HT1A receptor can modulate the activ-
ity and functional connectivity of the DMN [172—174].
Abnormal connectivity in the DMN has been associated
with major depressive disorder (MDD). However, there are
contradictory results in studies regarding increased or de-
creased functional connectivity within the DMN in MDD
[175—-178]. In addition, patients with depression present in-
creased amygdala responses to fearful faces.

In the latest study, Shao et al. [179] found that a sin-
gle dose of psilocybin produced an immediate and long-
lasting increase in connections between neurons in mice.
Namely, the authors demonstrated increases in the number
of dendritic spines and in their size within 24 hours of the
administration of psilocybin in frontal cortical pyramidal
cells (Dendrites and the dendritic spines of neurons have
key roles in the connectivity of the brain and are the locus
of long-term synaptic plasticity, which is associated with
learning and memory.). These changes were still present
a month later. In addition, mice subjected to stress have
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shown behavioral improvements and increased neurotrans-
mitter activity after a single dose of psilocybin.

According to Carhart-Harris et al. [180], psychedelics
reduce the stability and integrity of brain networks and si-
multaneously reduce the degree of separateness or segre-
gation between them. Namely, psychedelics cause net-
work disintegration and desegregation [180]. These find-
ings suggest that psychedelics significantly influence brain
complexity and connectivity and competition of neural as-
semblies, which play a significant role in the mechanisms
of conscious experience [4]. Winkelman suggested [181]
that psychedelics enhance access to information that is nor-
mally unconscious and may become conscious and avail-
able through visual symbolic processes that use image-
schemas to integrate knowledge.

In important experiments by Carhart-Harris et al.
[169], nineteen patients with resistant major depression got
10 mg psilocybin, followed 1 week later with 25 mg psilo-
cybin. Functional magnetic resonance imaging (fMRI) was
performed at baseline and post-treatment at 1 day after the
25-mg dose. They found an increased DMN integrity in
patients one-day post treated with psilocybin that is essen-
tially different to that revealed during the acute psychedelic
state. The authors suggested that this mechanism can be
compared to a “reset” process in which the acute modular
disintegration of the DMN allows subsequent reintegration
and restoration of normal operation. Carhart-Harris told the
BBC News website [182] about their experiments [169]:
“Patients were very ready to use this analogy. Without
any priming they would say, ‘I've been reset, reborn, re-
booted’, and one patient said his brain had been defragged
and cleaned up”.

It is possible that psychedelics may produce a spe-
cial functional connectivity in the CNS, mainly within the
DMN, with transient perturbation of the normal neural
hierarchy—reduced connectivity between the frontal cor-
tex and the lower brain arecas—that makes it possible for
patients to accomplish emotional resolution, in which the
amygdala can have a key role [166,171,183]. Roseman et
al. [184] proposed that there are essential differences be-
tween the therapeutic mechanisms by which SSRIs mitigate
negative emotions and those by psilocybin, since the latter
allows patients to confront and work with negative emo-
tions.

Recently, we pointed out [171] that classical
psychedelics increase the vividness of autobiograph-
ical memories and often encourage the recall and re-
experiencing of autobiographical memories, i.e., the visual
effects of psychedelics may play a key role in resetting
fears [169]. These recalled memories are often coupled
with strong negative or positive emotional intensity that
had been avoided and/or forgotten before the experience
[185]. From this perspective, psychedelics might be
helpful in the memory processing of traumatic memories
and stressful experiences.

The inconsistencies in neuroimaging studies about
classical psychedelics [167,169] are probably due to nu-
merous factors. Many aspects must be considered in neu-
roimaging studies regarding the neural mechanisms of clas-
sic psychedelics, such as the type of classic psychedelic,
oral or intravenous administration, optimal dose, dose du-
ration and frequency, acute effect or post-acute effect, indi-
vidual (biopsychosocial) factors, healthy volunteers or de-
pressed patients, the method of measurement and its accu-
racy, among others.

We should also emphasize that studies support the no-
tion that SSRIs work via normalization of the amygdala re-
sponse to emotional stimuli. Namely, SSRIs can normal-
ize amygdala reactivity by increasing responses to posi-
tive emotional stimuli and decreasing responses to negative
emotional stimuli [186—189].

10. Classic Psychedelics can Induce
Epigenetic Changes and Synaptic Rewiring

Psychedelics induce acute effects that promote DMN
disintegration and hyperconnectivity between brain areas
that allow centers that do not normally communicate with
each other [169,190]. These acute biomolecular mecha-
nisms also induce significant epigenetic changes, which can
have an effect on synaptic plasticity (synaptic rewiring) and
facilitate long-term changes in brain neurochemistry [179,
190,191]. Thus, a single administration of psychedelics
can establish long-lasting effects with lasting beneficial out-
comes.

11. Serotonergic Psychedelics Alone almost
never Cause Serotonin Syndrome

Serotonin syndrome (SS or serotonin toxicity) is a po-
tentially life-threatening adverse drug reaction produced by
excessive serotonergic agonism in central and peripheral
nervous system serotonergic receptors [192]. Symptoms of
SS include altered mental status, autonomic instability, and
neuromuscular abnormalities. Antidepressants, such as SS-
RIs (fluoxetine, paroxetine, and fluvoxamine), require sev-
eral weeks of chronic dosing before the benefit is felt, which
increases the risk of adverse effects such as SS [193]. In
contrast, serotonergic psychedelic agents have a rapid and
long-lasting antidepressant effect [ 194]. Psychedelic agents
may induce rapid synaptic plasticity, which may be a key
mechanism by which they can exert long-term antidepres-
sant effects [194]. In the published literature, the major-
ity of clinical reports of SS almost always include combi-
nations of two or more serotonergic agents, i.e., different
types of antidepressants and other serotonergic drugs such
as antibiotics, opioids, antihistamines, and atypical antipsy-
chotics [195,196]. Namely, SS typically occurs with a sero-
tonergic drug overdose or in combination with drugs that
can increase intrasynaptic serotonin [195]. However, sero-
tonergic psychedelics alone almost never induce SS [197].
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12. Volume Transmission

To this day, the classical paradigm prevails that ba-
sic communication in the neural system takes place through
synaptic transmission. Numerous studies and experiments
support that volume transmission (VT) is also a major and
widespread mode of intercellular communication in the
CNS [198-208].

VT intercellular communication takes place in the ex-
tracellular fluid in the brain and in the cerebrospinal fluid
(CSF) [204]. Exosomes may be the primary vesicular car-
riers of volume transmission and important neurotransmis-
sion regulators [202,209]. Exosomes are extracellular vesi-
cles (ECVs) with a diameter of between 40 and 100 nm that
are mainly derived from endosomes. All cells can secrete
exosomes that work as mediators of near and long-distance
intercellular communication. They can transfer lipids, pro-
teins, receptors, miRNAs, RNA, DNA, among others. At
the soma—dendritic level, neurons may communicate via
VT through both extrasynaptic exocytosis and an ECV-
mediated manner [209]. Since the BBB is a complex vas-
cular network containing microvessel endothelial cells with
various enzymes, efflux pumps, transporters, etc. [115], ex-
osomes released from BBB microvascular endothelial cells
may be a possible route of entry of plasma 5-HT and other
molecules into the CNS [204].

Central monoamines such as dopamine,
pinephrine, and serotonin perform VT in the mammalian
CNS, which could modulate glutamate and GABA neu-
rons via diffusion and flow in the extracellular fluid and
CSF [210,211]. According to Fuxe and Borroto-Escuela
[212], the integration of VT and synaptic transmission
via receptor-receptor interactions in heteroreceptor com-
plexes may be essential for CNS communication, which
is also important in psychiatric disorders such as depres-
sion, anxiety, schizophrenia, and cocaine addiction. In
schizophrenia, neuroinflammation may also perturb the
integrative process of synaptic and VT signals in glutamate
synapses by altering kynurenines in the mammalian brain
[213]. As we pointed out, VT has fundamental regulating
roles in both presynaptic and postsynaptic processes,
and the extracellular space could work as an analog
communication pathway in the brain [203].

nore-

The dorsal raphe nucleus (DRN) is a major source of
neuromodulators in the CNS and is the largest of the sero-
tonergic nuclei, containing approximately one-third of all 5-
HT neurons in the brain [214]. From the DRN, serotonergic
neurons innervate the mPFC and perform top—down con-
trol of information processes mainly by nonsynaptic vol-
ume transmission [215,216]. The release of 5-HT in dorsal
raphe neurons is achieved from vesicles in the soma, den-
drites, and/or axonal varicosities, which is independent of
synapses [217]. 5-HT release can be produced by neuron
depolarization, by the stimulation of L-type calcium chan-
nels, by the activation of glutamatergic receptors, and/or by
the activation of 5-HT2 receptors. This induced serotonin
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release is characterized by slow kinetics and large diffusion,
i.e., volume transmission. This VT may ultimately affect
the rate of discharge of serotonergic neurons and their tonic
activity. In addition, serotonin cell bodies in the Raphe nu-
cleus are surrounded by free serotonin [218,219].

There is increasing experimental evidence that most
transmitters and peptides can be released extrasynaptically
[220,221]. Synaptic and extrasynaptic exocytoses coex-
ist in the same neurons. Extrasynaptic communication
can integrate the activities of neurons, glia and blood ves-
sels. Transmitters and peptides that are released extrasy-
naptically from the soma, dendrites, and axon can modu-
late the responses (i.e., the neuronal electrical activities) of
the whole neuronal network from seconds to days. How-
ever, monoaminergic neurotransmission (dopamine, sero-
tonin, and norepinephrine) is predominantly realized by
nonsynaptic volume transmission in the CNS [203,221]. In
addition, Pérez de la Mora et al. [222] suggested that neuro-
transmitters within the amygdala could regulate fear learn-
ing and memories through effects on receptor mosaics in
the fear circuits through wiring and VT mechanisms.

13. Psychedelics Induce a Sleep-Like State

Both wake and sleep electroencephalograms (EEGs)
can be biomarkers of depression and antidepressant treat-
ments. Disturbed sleep and the sleep-wake cycle are es-
sentially associated with various psychological disorders,
including depression [223-225]. The major typical sleep
EEG biomarkers of MDD are reduced rapid eye move-
ment (REM) sleep onset latency, increased REM sleep time
and increased density of REMs during REM sleep, reduced
sleep efficiency, and reduced total sleep time of slow wave
sleep (SWS, the deepest stage of nonrapid eye movement
(NREM) sleep) [226].

There are various hypotheses that try to explain the
effect of antidepressant drugs on sleep [227]. Antidepres-
sants represent a broad class of medications that have dif-
ferent effects on sleep, i.e., some antidepressants can alle-
viate sleep problems, others can cause sleep disorders that
affect the outcome of treatment [228]. In depressed pa-
tients and healthy volunteers, most antidepressants suppress
REM sleep, but REM suppression is not an absolute re-
quirement for antidepressant effects [229,230]. In partic-
ular, SSRIs are potent inhibitors of REM sleep when ad-
ministered acutely, sub-chronically, or chronically [231].

One of the special features of REM sleep is the acti-
vation of limbic and paralimbic structures (amygdala, hip-
pocampus, and anterior cingulate cortex). It seems that the
amygdala and the hippocampus are among the most active
brain regions during REM sleep [232,233]. The process-
ing of neutral episodic memories relies on the hippocampus
and adjacent structures, and emotional episodic memories
receive a special boost from the amygdala that can modu-
late hippocampal activity and thus affect the development
of emotional memory.
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There is a significant overlap between dreams and
psychedelic states that suggests psychedelics induce tran-
sient dreamlike subjective experiences with long-term ben-
eficial effects on mental and physical functioning [234].
In healthy subjects, LSD produced mental imagery similar
to dreaming, mainly via activation of the 5S-HT2A receptor,
which was associated with loss of self-boundaries and cog-
nitive control [235]. Experiments have revealed that sero-
tonergic hallucinogens via 5-HT2AR activation can induce
visual hallucinations [236,237]. In addition, during sleep
paralysis, hallucinatory experiences present the classic fea-
tures of serotonergic hallucinations that are similar to sub-
jective states produced by hallucinogenic drugs (LSD and
psilocybin), i.e., they imply visual hallucinations, mysti-
cal experiences, and extreme fear reactions [238]. Kuypers
[9] emphasizes that regarding the neurobiological mecha-
nisms of psychedelics, studies have focused on the CNS,
including the immune system and the neuroendocrine sys-
tem. Kuypers [9] suggested that sleep and the microbiome
play a key role in the effects of regular and low doses of
psychedelics, respectively. In this context, the positive ef-
fects of psychedelics may have a “psychosomatic” influ-
ence.

Kometer ef al. [237] conducted double-blind,
placebo-controlled trials in which 50 healthy volunteers
were given moderate doses of psilocybin while high-density
EEG was recorded at eyes-open and eyes-closed resting
states. It was found that the current source density of neu-
ronal oscillations at 1.5-20 Hz was decreased within the
anterior and posterior cingulate cortices and the parahip-
pocampal areas. In addition, the intensity of psilocybin-
induced mystical-type experience and insightfulness cor-
related with the lagged phase synchronization of delta os-
cillations (1.5—4 Hz) between the retrosplenial cortex, the
parahippocampus, and the lateral orbitofrontal area. It
seems that the incidence of mystical-type experiences is
a predictive factor of long-term therapeutic benefit from
psychedelics [239].

Because psychedelic drugs can induce a sleep-like
state and mystical-type experiences, the exploration of sim-
ilar neuromolecular processes in these states may contribute
to a better understanding of the mechanism of action of
psychedelic drugs.

14. Summary with Hypothesis

Based on the brief review of relevant literature about
serotonin, platelets, classic psychedelics, gut-brain axis,
BBB, and volume transmission, and based on our previous
article ideas [7,8], here we present a hypothesis about the
psychosomatic mechanisms of serotonergic psychedelics
(see Fig. 1).

Diverse medications and environmental factors can
perturb 5-HT biosynthesis in the gut that could cause dys-
biosis, which impairs the serotonergic gut-brain axis and
produces alterations in platelet-dependent signal processes,

including changes in vascular permeability throughout the
whole body as well as in the BBB [240-242].

‘We should consider that in the case under discussion,
i.e., serotonergic psychedelics, we are not talking about
dysbiosis, but a transient modulation of 5-HT biosynthesis
by serotonergic psychedelics in the gut.

Serotonergic psychedelics could modulate the gut mi-
crobiota and excitatory and inhibitory neurons in the ENS.
This may influence the microbiota that promotes 5-HT
biosynthesis from ECs that supply 5-HT to the mucosa, lu-
men, and circulating platelets [18]. Recently, we raised the
idea that a large part of 5-HT-produced by ECs that is taken
up and distributed by platelets-may operate as a hormone-
like regulatory signal for the whole body [7]. This platelet-
mediated distribution of intestinal 5-HT is dependent on the
intestine’s actual health condition and influences membrane
permeability throughout our organization.

5-HT has a strong lipid membrane affinity, influences
membrane structure properties that modify membrane sig-
naling processes, and affects vascular permeability [28—
32]. Consequently, the hormone-like regulatory signal by
platelet 5-HT can modulate countless signal processes in
the whole body. Nevertheless, here we focus on membrane
permeability, particularly on BBB permeability.

Lipid rafts may also play an important function in
serotonergic psychedelic mechanisms. Increased plasma 5-
HT levels induced by serotonergic psychedelics may mod-
ulate the permeability and fluidity of lipid rafts in plasma
membrane subregions that participate dynamically in cell
signaling and molecular trafficking operations in various
cell membranes like platelets and the BBB [243-246].

Several studies have found that increased plasma 5-
HT levels can increase the permeability of microvessel en-
dothelial cells as well as the BBB [118,119,128,129,247].
5-HT injected intravenously in rats produces an increase
in 5-HT and 5-HIAA (5-Hydroxyindoleacetic acid) in the
brain [120].

Platelets are the key regulators of plasma 5-HT con-
centration [45,248]. The regulation of the SERT activity
on platelets has a key role to stabilize the concentration of
plasma SHT. It has been proposed that 5-HT regulates its
own plasma concentration by modulating the uptake prop-
erties of platelet SERT, and that SERT does not regulate
plasma 5-HT levels [249]. Since SERT is present in the
BBB, it was proposed that 5-HT may enter into the extra-
cellular fluid of the CNS [123].

Serotonergic psychedelics could increase the circulat-
ing concentration of PAF. Increases in 5-HT in the gut and,
as aresult, the increased level of 5-HT carried by platelets in
the blood can act as an inflammatory signal [250,251]. This
could increase the circulating concentration of PAF, so PAF
can also contribute to inflammation-mediated tissue injury,
including BBB breakdown [116].

Volume transmission is a general mode of intercel-
lular communication that takes place in the extracellular
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Fig. 1. Visualization of the key aspects of our hypothesis. Serotonergic psychedelics could affect gut microbes that produce a transient
increase of serotonin (5-HT) by host enterochromaftfin cells (ECs). This increased gut 5-HT production—which is taken up and distributed
by platelets—may work as a hormone-like regulatory signal that could influence membrane structure (that modifies membrane signaling
processes) and membrane permeability in the host organs and tissues and in the brain. Increased plasma 5-HT levels could enhance
permeability of microvessel endothelial cells and the blood-brain barrier (BBB). Transiently increased permeability of the BBB allows
for plasma 5-HT to enter the central nervous system (CNS) and be distributed by the volume transmission (VT). Then, this gut-derived
5-HT could transiently modulate excitatory and inhibitory neurotransmission, produce special network disintegration in the CNS mainly
within the default mode network (DMN), and promote structural and functional neural plasticity. This transient perturbation of the normal
neural hierarchy (reduced connectivity between the frontal cortex and the lower brain areas, i.e., inhibition of top-down control) allows
patients access to suppressed fear information and perform an emotional reset, in which the amygdala may have a key function.
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fluid and in the cerebrospinal fluid of the brain [201,203,
210]. In the CNS, serotonergic transmission is mainly
achieved by a non-synaptic VT mechanism [252]. Neu-
ropsychoactive drugs act rather as VT signals [253].

We hypothesize (see Fig. 1) that the increased level of
5-HT—induced by serotonergic psychedelics in the gut and
carried by platelets—produces a transient increase in per-
meability in microvessel endothelial cells within the BBB.
This lets 5-HT enter into the extracellular fluid of the CNS
and may act via volume transmission (diffusion mecha-
nism). As a result, serotonin has a wide range of effects in
the CNS that can modulate both excitatory and inhibitory
neurotransmission, in which the DMN and amygdala may
have key roles.

Our hypothesis may provide a possible mechanism
for how psychedelics could create a transient disintegra-
tion in the normal neural network by reducing connectiv-
ity between the frontal cortex and the lower brain areas
and promoting structural and functional neural plasticity,
which allows patients access to suppressed fear informa-
tion and perform an emotional reset [169—171]. Finally,
it seems that there are important differences between the
therapeutic mechanisms by which SSRIs mitigate negative
emotions and those by psilocybin, since the latter allows
patients to process traumatic memories and stressful expe-
riences [184].

15. The Limitations of this Hypothesis

The limitations of this new complex hypothesis are
that many parts are difficult to substantiate with scientific
literature and that findings from cited animal and cell re-
search might not translate to the complex physiology of
humans. For example, the role of volumetric transport in
brain processes is not yet known, and research has been
neglected to this day, although it is one of the major and
widespread forms of intercellular communication in the
CNS. Monoamine neurotransmission, such as dopamine,
norepinephrine, and serotonin, basically performs VT that
could modulate glutamate and GABA neurons in the mam-
malian CNS. Furthermore, 5-HT is essentially produced in
the gut, which is distributed by platelets and affects the reg-
ulation of the whole body and the brain, and the existing lit-
erature suggests that 5-HT may enter the brain via the BBB
and could affect brain processes. Is it possible that a portion
of brain serotonin comes from the gut? Studies have also
suggested that BBB permeability can be regulated continu-
ously and extensively, allowing types of molecules to enter
the CNS that we would not believe.

One may argue that such enhancement of BBB per-
meability by 5-HT that is derived from ECs and conveyed
by platelets may cause neuronal toxicity through the pas-
sage of peripheral cytokines and toxic substances into the
brain. However, it is possible that 5-HT and other various
molecules can selectively enter the brain through as yet un-
known mechanisms.
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