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Abstract

Background: The relationship between switching rate of multilayer functional network and cognitive ability in mild cognitive impair-
ment (MCI) and Alzheimers’ disease remains unclear. Methods: We followed up MCI patients for one year and analyzed the association
of switching rates with cognitive decline. The iterative and ordinal Louvain algorithm tracked the switching of functional networks,
while elastic network regression and Bayesian belief networks were used to test the relationship between network switching rate and
cognitive performance cross-sectionally and longitudinally. Results: The switching rate of the default mode network positively corre-
lated with better cognitive function, while that of salience and executive control network was negatively associated with memory and
executive function. The lower default mode network (DMN) switching rate predicted MCI progression to dementia, while the lower
sensorimotor network switching rate heralded in slower cognitive decline. Conclusions: The present study investigated the predictive
effect of switching rate on cognitive performance, as well as MCI progression to dementia. The inverse effect from different functional

networks may become useful for early diagnosis and revealing the mechanism of neural networks in cognitive decline.
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1. Introduction

As the potential early stage of Alzheimer’s disease
(AD), mild cognitive impairment (MCI) was largely studied
about its progression to AD. About 10—-12% of MCI patients
converted to AD annually, and the rate became 25-30% at
three years. Overall, more than 60% of MCI patients even-
tually developed AD [1,2]. The judgment of MCI progres-
sion in the early stage was a crucial step to attain further
medical intervention. Various predictive models have been
generated, combing demographics, genetical factors, brain
structure, and functional connectivity, amyloid deposition,
and tauopathy [3—6]. The comprehensive analysis of multi-
modal information has made these models of relatively high
accuracy. However, we still need to explore how the cog-
nition related brain activity changes in this critical stage, as
well as predictive effect of brain network.

During the past two decades, resting-state func-
tional magnetic resonance imaging (rs-fMRI) has devel-
oped rapidly, which has promoted the understanding of the
human brain. The neural network was regarded as the basis
of human cognition. However, the traditional study of the
brain network was based on the static description of brain
functional connectivity (FC) from rs-fMRI. In the process
of cognitive activity, the neural network reorganized dy-
namically [7]. Based on the analysis of temporally dynamic
changes of the blood oxygen level-dependent (BOLD) sig-

nal in the resting state, it is found that the dynamic func-
tional network connection (dFNC) modes fluctuated spon-
taneously.

The dynamic functional connection of the brain net-
work was tried to predict the change of cognition, which
greatly promoted the understanding of brain cognition,
brain development, and the neural mechanism of brain dis-
eases [8]. However, the dynamic FC or dFNC analysis still
did not reflect real temporal changes of specific networks,
as there would be a gap between BOLD signals and real
neural network. Moreover, traditional clustering method,
such as k-means or distribution-based clustering, did not
fully make use of the dynamic temporal information.

Multilayer network analysis provided a novel method
to process the complex data of multivariate and multi-scale
information [9]. The multi-layer modularization algorithm
introduced the time and space of networks, and the decom-
posed networks had a non-overlapping period and space.
The multilayer modular model could quantify the dynamic
FC and track the temporal changes of each network. In this
way each network had a unique switching rate, which refers
to the degree of network switching between different mod-
ules in the multilayer network. In other words, the mul-
tilayer modularity model and switching rate allowed us to
track the temporal network of a specific one and quantify
their changes [10].
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Previous studies had used the switching rate as a
marker to predict various cognitive performance in healthy
people [7,11,12], as well as in the severity of mental and
neurological diseases with cognitive impairment, such as
schizophrenia and epilepsy [13,14].

It is the first time that the dynamic network switching
rate from fMRI is estimated as an effective index to predict
cognition in MCI. We assume that the switching rate of net-
works from fMRI can predict the cognitive changes of MCI
and become a new functional neuroimaging biomarker for
MCI progression. Given that the network serves as the basis
of cognitive activity, we also tend to find critical networks
accounting for cognition changes during the MCI stage.

2. Materials and Methods
2.1 Participants

The study was observational and used data from the
control group of MCI in the SIMPLE cohort (detailed in-
formation is available in [1]). The cohort recruited MCI
patients with age between 50 to 80 years from memory
clinics or community. After screened by neurologists,
patients with cognitive decline caused by other diseases
were excluded (including but not limited to cerebrovas-
cular disease, central nervous system infections, Parkin-
son’s disease, metabolic encephalopathy, deficiency of
folic acid/vitamin B12 and hypothyroidism). The pa-
tients were diagnosed according to the National Institute
on Aging-Alzheimer’s Association (NIA-AA) workgroups
[15]. Participants present mild cognitive problems based on
the Mini-Mental State Examination and Clinical Dementia
Rating scale (0.5). All MCI cases had medial temporal lobe
atrophy (MTA) score above Grade II. Further, we exclude
patients with MRI artifacts. The imaging and cognitive data
were collected in the same day.

In total, we included 118 MCI patients (mean age,
65.39 + 6.97; 19 male and 40 female patients). Among
them, 14 patients progressed to AD after 12-month follow-
up (pMCI group, mean age, 69.14 + 5.64; 2 male and 12
female patients), while the other 104 remained stable (sMCI
group, mean age, 64.88 + 7.02; 36 male and 68 female pa-
tients).

After the baseline assessment, patients would be fol-
lowed up without any intervention for cognition and had the
identical neuropsychological assessment after 12 months.
AD was diagnosed at the 12-month follow-up if patients
met the diagnostic criteria of dementia due to AD (de-
scribed in [ 1], according to the National Institute on Aging-
Alzheimer’s Association (NIA-AA) workgroups [15]). The
AD criteria included decline from previous levels of func-
tioning and significant cognitive symptoms which impaired
activities of daily living. The diagnosis was made by
a skilled clinician based on the individual circumstances
of the patient and were further were confirmed by '®F-
Florbetapir PET [16]. These patients were defined as pro-
gressed MCI (pMCI). The others were considered as stable

MCI (sMCI). Each patient signed written informed consent,
and Ruijin Hospital’s ethical committees had approved the
study.

2.2 Neuropsychological Assessment

Baseline demographics include sex, age, and educa-
tion level, listed in Table 1. Neuropsychological battery
for multiple cognitive domains was administered to all pa-
tients, including Alzheimer’s Disease Assessment Scale-
Cognitive subscale (ADAS-Cog) [17], the Auditory Ver-
bal Learning Test (AVLT) - Huashan version [18], the Trail
Making Test (TMT, including Part A and B) [19], the Rey-
Osterrieth Complex Figure Test (CFT) [20], the Stroop
Color-World Test (SCWT) and Boston Naming Test. In the
present study, we had considered only participants who un-
derwent the neuropsychological assessment both at the first
time point and after 12 months.

2.3 MRI Acquisition and Preprocssing

MRI images were acquired using a 3.0T uMR-890
MRI scanner (United Imaging, Shanghai, China) with a
64-channel coil and simultaneous multislice imaging tech-
niques. The patients were placed in a supine position qui-
etly with their eyes closed but asked to stay awake during
the MRI. The MR sequences included high-resolution 3-
dimensional T1-weighted imaging and resting-state fMRI.
We collected data in Clinical Neuroscience Center, Rui-
jin Hospital LuWan Branch, Shanghai Jiao Tong University
School of Medicine, Shanghai, China.

High-resolution T1-weighted images were acquired as
the templates of further functional images for coregistra-
tion. The sequences had the following parameters: repeti-
tion time (TR) = 7.52 ms, echo time (TE) = 3.4 ms, field of
view (FOV) =256 x 256 mm, flip angle = 7 degree, thick-
ness = 0.5 mm, no interslice gap, bandwidth = 240 Hz. All
ofthe brain data were acquired in the sagittal plane, yielding
480 continuous slices with an acquired voxel size of 0.5 x
0.5 x 0.5 mm3. Eye-closed resting-state imaging was car-
ried out using gradient EPI with the following parameters:
TR =700 ms, TE=37.2 ms, FOV =208 x 208 mm, matrix
size = 104 x 104, resolution = 2.0 x 2.0 x 2.0 mm, slice
thickness = 2 mm, number of slices = 70, multiple band =
10, flip angle = 52 degree. The acquisition orientation was
axial, and the order of acquisition was output for slice tim-
ing in the header information as the protocol was simulta-
neous multi-slice acceleration. A total of 670 whole-brain
volumes were acquired.

The rs-fMRI data were preprocessed using the SPM 12
software package (v7487, Wellcome Department of Imag-
ing Neuroscience, London, United Kingdom) based on
MATLAB 2020a (Mathworks Inc., Sherborn, MA, USA).
Briefly, the preprocessing steps consisted of removal of the
first ten volumes of resting-state data for magnetization sta-
bilization, field bias correction, slice time correction, and
Friston 24-parameter motion correction. Spatial normaliza-
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Table 1. Demographic characteristics, cognitive performance, and APOE genotype of MCI patients.

Stable MCI Progressing MCI )4

Age 64.88 + 7.02 69.14 £+ 5.64 0.1302
Sex (M/F) 36/68 2/12 0.5158
Education (yr) 13.13 +£2.74 11.43 £3.31 0.1361
APOE e4 carrier 36 8 0.4588

Baseline 12-Month Baseline 12-Month sMCI* pMCI*
MMSE 28.19 +£1.25 28.33 4+ 1.48 2743 +£2.15 25.86 + 3.29 0.499 0.249
AVLT immediate 15.69 4+ 4.22 18.10 £ 5.26 14.29 +3.77 14.86 + 4.88 <0.001 0.789
AVLT 5 min 4.67 +2.31 529 +291 443 +£3.15 3.57 £3.64 0.013 0.429
AVLT 20 min 4.52 +2.39 5.08 +3.09 4.00 +3.21 3.00 £ 3.65 0.028 0.395
AVLT recognition 19.94 4 2.93 20.58 4 3.45 19.57 +4.35 19.43 4+ 5.09 0.135 0.846
CFT copy 35.10 £ 1.75 35.00 £ 2.01 30.00 & 11.50 27.43 +12.93 0.650 0.321
CFT recall 30 min 16.09 + 8.25 18.04 +8.13 10.14 £+ 9.69 12.00 £ 9.90 0.020 0.250
SCWT_ Word 2524 +7.47 25.95 +6.12 30.63 + 7.82 33.03 £+ 6.55 0.873 0.199
SCWT _Color 43.07 + 48.27 38.69 £+ 10.26 40.40 4+ 8.26 48.17 + 14.28 0.404 0.022
SCWT Interfere 79.17 £ 42.60 82.03 +£37.71 84.61 £ 29.51 99.56 £+ 32.86 0.635 0.124
TMT A 57.55 + 18.58 62.44 +22.97 85.46 + 41.51 114.33 + 84.37 0.238 0.190
TMT B 13527 & 55.61  146.99 £ 62.31 212.96 & 106.23  269.44 + 129.11 0.271 0.100
BNT 24.12 £+ 3.05 23.37 +7.55 23.86 +2.19 22.57 + 6.50 0.480 0.546
ADAS-Cog 6.82 +£3.37 539 +3.53 7.94 £ 4.29 12.16 £ 5.11 <0.001 <0.001

M/F, Male/Female; sSMCI, Stable mild cognitive impairment; pMCI, Progressed mild cognitive impairment; MMSE, Mini-
mental State Examination; AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test; SCWT, Stroop Color-
Word Test; TMT, the Trail Making Test; BNT, Boston naming test; ADAS-Cog, Alzheimer’s Disease Assessment Scale—
Cognitive Subscale. * Comparison between baseline and 12-month.

tion was performed by Diffeomorphic Anatomical Regis-
tration Through Exponentiated Lie algebra (DARTEL) tool
for creating a group specific template and for normaliz-
ing functional images to the common space [21]. Spatial
smoothing was performed in the resultant images using a
Gaussian kernel with an 6-mm full-width half-maximum
with the modified MATLAB toolbox “Data Processing &
Analysis of Brain Imaging (DPABI, version 3.1)” [22]. We
excluded patients who had head motion >1.0 mm in any di-
rections. Nuisance covariates, including white matter, cere-
brospinal fluid and global signals were further regressed
out.

Then a group-level independent component analysis
(ICA) was used to define the 25 brain nodes of interest (in-
dependent component, IC) as described in previous studies
[23,24]. We performed spatial group independent compo-
nent analysis (ICA) implemented in the Group ICA of func-
tional MRI Toolbox (GIFT v4.0a; http://icatb.sourceforge.
net) [25,26]. Resting-state functional MRI data of all pa-
tients were firstly decomposed into principal components
for subject-specific data reduction, and then spatially de-
composed into 25 ICs, each of which exhibited a unique
time course profile, based on the Infomax algorithm [27].
The resultant data was converted to Z scores, and ICs with
Z score >1.5 can be found in Supplementary Fig. 1. We
additionally filtered the fMRI data between frequencies of
0.01 and 0.1 Hz.
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2.4 Sliding-Windows, Multilayer Modularity and Network
Switching

As depicted in Fig. 1, the sliding-window approach
was used to explore time-resolved dFNC. Resting-state
time-series data were extracted and segmented into a 30-
repetition time (TR) window with a size of 21 s, which
is convolved with Hamming function to mitigate edge ar-
tifacts of the windows and attenuate potentially noisy sig-
nals [14]. The window was sliding step-wise by 1 TR along
the 660-TR length scan, resulting in a total number of 631
consecutive windows. We chose 30 TRs segmented win-
dow length as the grade-off between dynamics of functional
connectivity [28] and 1/f0 wavelength criterion proposed
by Zalesky and Breakspear [29]. Here, the pairwise Pear-
son’s correlation coefficient between 25 ICs was calculated
in each 21s time window. We thus obtained 631 correlation
matrix, and positive matrix values entered the next multi-
layer network switching analysis. Although some identified
clusters might be related to noise, we did not exclude ICs
from ICA for the following reasons as in the previous stud-
ies [14,30]. In the preprocessing step, nuisance covariates,
including white matter, cerebrospinal fluid and global sig-
nals were regressed out. Meanwhile, the ICs identified from
ICA could not be 100% from noise as they may be in the mid
brain (i.e., IC 1). In addition, the switching rate represented
the dynamic change of each IC, and it was not greatly in-
fluenced by other ICs which might be noise. The elastic net
regression analysis automatically selected switching rate of
ICs and it could further rule out switching rate of noise.
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Fig. 1. Flow diagram shows data processing and patients grouping for the present study. Abbreviation: MCI, mild cognitive

impairment; IC, independent component.

To quantify spatiotemporal network switching, we
used an iterative and ordinal Louvain algorithm to track net-
work function over time [31], with the code governing pa-
rameters (7 = 1 and w = 1) and formula suggested by Ped-
ersen, Zalesky [14]:

Q) = g 32 [ (A= G5 O M) 4669 v )

3 (Mi51 Mir)

Modularity was quantified by Q ranging from 0 (low
network segregation) to 1 (high network segregation).
0 (M;s, M) and § (M;s, M) were 1 if nodes belonged to
in the same module and 0 if they did not belong to the same
module (M). This process was iterated before the inher-
ent heuristics of the multilayer modularity algorithm con-
verged, which also determined the number of modules per
individual. Ajj is the sliding-window correlation matrix be-
tween node i and j for time point s. The k was node degree at
time point s, and m = sum degree of all nodes at time point s.
The 7, is the topological resolution parameter of time point.
wirs 18 the temporal coupling parameter for node j between
time window r and s.

Networks had average modularity (Q) of 0.536 +
0.026 SD. The final output of the multilayer modularity al-
gorithm was a 25 x 631 array with integer values denoting
modules that each IC was assigned to in the specific time
window. The switching rate for each IC was estimated as

the percentage of time windows when a brain node transi-
tions between different module assignments.

2.5 Elastic Net Regression and Bayesian Belief Network

We used elastic net regression to test the association
between network switching rate of 25 ICs and the indi-
vidual’s cognitive performance at baseline, as well as its
changes (12 months - baseline), adjusted for age, sex, and
education, and APOE genotype. Elastic net enabled data-
driven regression analysis by enforcing sparsity of regres-
sion output values and it provided automatic variable se-
lection by removing all ICs not related to cognitive perfor-
mance. Network switching rates, cognition data were nor-
malized into z-scores to ensure all data were scaled equally.
According to previous study, we set the a value to 0.5
to take advantage of the relative strengths of LASSO and
Ridge regression approaches, providing a non-sparse solu-
tion with low variance among several correlated indepen-
dent variables [14]. In each regression, we calculated elas-
tic net over a range of different A values between 0 and
1 with increments of 0.001 using 10-fold cross-validation
(see equation in the Supplementary Material), The se-
lected threshold had lowest mean square error over all pos-
sible As across the 10-folds.

Given the /3 from elastic net regression equation in the
Supplementary Material, we defined prediction as:

Prediction = X - 3+
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Table 2. Parameters of the elastic regression model and switching rate of ICs associated with baseline cognition.

R P Lambda MinSE ICs in the regression model
MMSE 0471 0.0002 0.1153  0.0766 1,3,5,13,19
AVLT immediate 0.502 0.0001  0.1011  0.0625 3,14
AVLT 5 min 0.574 0.0001  0.0931  0.0690 7, 14,15
CFTrecall 30 min ~ 0.647  0.0001  0.0879  0.0629 10, 12, 17,21
SCWT _Interfere 0.444  0.0005 0.0414  0.0211 5,7,15,25
TMT B 0.498 0.0001  0.0869  0.0374 1,6,19
BNT 0.509 0.0001  0.0898  0.0444 16, 22
ADAS-word recall  0.823  0.0001  0.0236  0.0313 7,9, 14,15, 16

IC, independent component; MinSE, minimal mean square error; MMSE, Mini-mental State Exam-
ination; AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test; SCWT, Stroop Color-
Word Test; TMT, the Trail Making Test; BNT, Boston naming test; ADAS-Cog, Alzheimer’s Dis-

ease Assessment Scale—Cognitive Subscale; p, significance of regression model.

Where X is the original values of our neuropsycho-
logical variables, and 3 is the intercept of the elastic net
regression model. The significance and Spearman’s Rho
between prediction and X were calculated for regression
evaluation.

In relationship with MMSE, AVLT, STT, CFT, and
Boston naming test, positive 3 suggests a positive relation-
ship between switching rate and cognitive performance. On
the contrary, positive 5 found in the regression between
switching rate and ADAS-Cog or SCWT suggests a neg-
ative effect on performance due to the character of the two
measurements.

For assessing the association between groups (sMCI
and pMCI) and ICs’ switching rate, a Bayesian belief net-
work was introduced. Package Bnlearn (version 4.4, Marco
Scutari, Lugano, Switzerland) and Caret (version 6.0-81,
Max Kuhn, New London, CT, USA) in RStudio software
(the R Project for Statistical Computing, R software, ver-
sion 3.1.0, R Core Team, Boston, MA, USA) was intro-
duced for building a Bayesian belief network and directed
acyclic graph. To quantitively define their relationship, we
calculated the mean receiver operating characteristic (ROC)
curve for the results from the Bayesian belief network. For
multiple comparisions, we used Bonferroni correction to
minimize the chance of false positive rate.

3. Results
3.1 Participants

The age, sex, years of education, and ApoE geno-
type were of no difference between the two groups (Mann-
Whitney U-test for continuous data or Chi-square test for
categorical data). The pMCI group had significantly de-
clined performance mainly in SCWT and ADAS-Cog test
(p < 0.05, repeated measures analysis, Table 1). By con-
trast, SMCI had statistically better cognitive performance
in AVLT, CFT and ADAS-Cog after 12-month follow-up.
It suggested sMCI of negative trend for cognitive decline.
Thus, sMCI could be the control for pMCI patients who
would progress to AD with AD clinical and pathological
characters.
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3.2 Independent Components and Correlation with
Cognitive Performance

We identified 25 ICs from baseline resting-state fMRI
using the group ICA. Some ICs are topologically consis-
tent with previous results on the networks by visual inspec-
tion [24,32]: default mode network (DMN, IC 15), salience
network (IC 9), auditory network (IC 10, 14), sensorimotor
network (SMN, IC 17), visual network (IC 3, 11), execu-
tive control network (ECN, IC 5, 13, 16) and cerebellum
network (IC 19, 22). The detailed spatial maps of indepen-
dent components are listed in Supplementary Fig. 1.

The switching rate of each IC was calculated, as
shown in Supplementary Table 1, and normalized further.
The regularization parameter in elastic regression, A, and
the minimum mean square error was listed in Table 2. With
each pair of parameters, the switching rate of several ICs
contributed to specific cognitive domains after adjusting the
effect from age, sex, education, and ApoE genotype. The
mapping of IC 15 was comprised of the posterior cingulate
and medial prefrontal cortex, suggesting its major role in
the DMN. In the models above, a higher switching rate of
IC 15 was positively related to global and word recall of
ADAS-Cog performance (Table 2).

Besides, the switching rate of the auditory network
(IC 14) involved in the AVLT immediate and 5-min recall,
and it also positively contributed to ADAS-Cog word re-
call. DMN (IC 15) also positively contributed to AVLT 5-
min recall and ADAS-Cog word recall. The switching rate
of SAN (IC 9) and ECN (IC 16) negatively associated with
performance in ADAS-Cog word recall. Another compo-
nent in ECN (IC 5) also negatively associated with MMSE
and SCWT-interference (Fig. 2).

3.3 Switching Rate Predicted Clinical Progression

We compared the switching rate of each IC between
sMCI and pMCI groups at baseline, and IC 15 had a sig-
nificantly higher switching rate in the sMCI group (4.1%
+ 1.4% vs. 2.3% + 1.5%, p = 0.0017). Further, we esti-
mated the predictive effect of switching rates in each ICs
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Fig. 2. Cross-sectional switching rate and cognition. (A) Contribution of switching rate in each IC to cross-sectional cognitive perfor-
mance. The positive effect suggested that a higher switching rate correlated with better cognition and vice versa. (B) The fitting between
original cognitive performance and predicted data from the elastic regression model, with the input of demographics and switching rate.
Abbreviation: IC, independent component; MMSE, Mini-mental State Examination; AVLT, Auditory Verbal Learning Test; CFT, Com-
plex Figure Test; SCWT, Stroop Color-Word Test; TMT, the Trail Making Test; BNT, Boston naming test; ADAS-Cog, Alzheimer’s

Disease Assessment Scale—Cognitive Subscale.

on the disease progression. In the elastic regression model
used above, lower switching rate of IC 15 predicted the MCI
progress (A=0.169, mSE=0.109, r=0.339, p =0.009) and
faster MMSE decline (A = 0.067, mSE = 0.038, r = 0.554,
p < 0.001). By contrast, lower switching rate in SMN (IC
17) contributed to slower cognitive decline in ADAS-Cog,
AVLT-5 min and AVLT-20 min recall (Table 3, Fig. 3).

To make the results more consolidated, we used the
Bayesian belief network and found that only a lower IC 15
switching rate has an associated effect on the pMCI group
(Coefficients of IC 15: —8.135). Since we found the topo-
logical association between progress and IC 15, we built a
classifier just using IC 15 with a random forest model. The
area under the curve was 0.820 £ 0.094.

4. Discussion

It has been largely studied that dynamic functional
network connectivity serves as a physiological biomarker
of cognitive performance. The switching rate of nodes in
the network provides novel time-vary connectivity changes
in adjacent ICA time windows. Using the data-driven ap-
proach of independent component analysis, we observed a
set of independently coherent nodes belonging to networks
in MCI, which were coincided with functional networks, as
previously reported [33]. The relationship between switch-
ing rates and behavior has been extensively investigated.
In healthy individuals, the whole-brain modularity steadily
increased during training for both conditions of the dual
n-back task, especially the autonomy of the default mode
system. Its integration among task-positive systems was
modulated by training [34]. In addition, major depression
and bipolar disorder patients decreased network switching
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Table 3. Parameters of the elastic regression model and switching rate of ICs associated with cognition changes.

Changes R p Lambda MinSE ICs in the regression model
AVLT 5 min 0.289 0.028 0.1034  0.0300 17

AVLT 20 min 0.554 0.001 0.0745  0.0379 1, 10, 17

CFT copy 0294 0.025 0.0605  0.0158 10, 17

SCWT Interfere 0.307 0.019  0.0757  0.0186 13

BNT 0.330 0.011 0.0842  0.0423 14, 20, 21
ADAS-Cog 0.554 0.001 0.0674  0.0376 2,11, 17

sMCI vs pMCI 0.339  0.009 0.1691  0.1090 15

No. of IC, Number of independent component; MinSE, minimal mean square error; sSMCI, sta-

ble mild cognitive impairment; pMCI, progressed mild cognitive impairment; MMSE, Mini-

mental state examination; AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test;
SCWT, Stroop Color-Word Test; TMT, the Trail Making Test; BNT, Boston naming test;

ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive Subscale; p, significance of

regression model.

rate of key hubs in default mode network [30]. By contrast,
higher ‘flexibility’ (switching between multilayer network
communities) was suggested to be a feature of schizophre-
nia during working memory task [35]. There was signifi-
cantly higher flexibility in the thalamus due to default-mode
sensory/motor transitions [36]. The present study is the
first one to investigate the predictive effect of resting state
switching rate in MCI on cross-sectional cognitive perfor-
mance, as well as MCI conversion to dementia.

In the cross-sectional part, the compelling finding was
that, in MCI patients, more frequent switching in the DMN
generally suggested better cognition, while the networks re-
lated to executive control (ECN) and attention (SAN) had
contrary results. It was well-established that the frontal and
parietal regions were crucial aspects of the ECN, which sent
rich sensory information not only for movement controls,
but also for other cognitive abilities, especially in exec-
utive function [37]. A meta-analysis study suggested an
increase of functional changes in the frontal and parietal
regions of MCI [38], which was in line with our results.
The attention network was associated with working mem-
ory and episodic memory encoding. Recent studies have
found intra-network and inter-network functional disrup-
tions in the DAN in MCI patients [39,40]. Mind-body ex-
ercise significantly increased the selective attention of MCI
patients, and meanwhile decreased functional connectivity
in attention network [41].

However, the relationship between the executive con-
trol and attention networks with cognition was not found
significant longitudinally. The relationship might be ob-
scured by longitudinal u-shaped trajectory in inter-network
FC between ECN and DMN [42]. Another possible rea-
son related to neural compensation, which involved frontal
regions and the dorsal attention network. Neural compen-
sation was suggested to be common in mild cognitive im-
pairment and Alzheimer’s disease [43].

The brain regions of DMN include the pre-
cuneus/posterior cingulate cortex (PCC), medial prefrontal
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cortex (MPFC) and medial, lateral, and inferior parietal
cortex [44], which are consistent with our IC 15 mapping.
The resting-state DMN changes in aging, MCI, and AD
patients have been largely studied, and its activation
and inter-network connectivity are generally considered
biomarker to dementia [45,46]. The anterior aspect of
the DMN was negatively related to cognitive decline
in the older group [47]. In the individuals at risk for
Alzheimer’s disease, APOE €4 carriers demonstrated a
slower increase of functional connectivity in frontal lobes
within the DMN [48]. Regarding MCI, they demonstrated
deactivation of frontal DMN regions, while less significant
in Alzheimer’s patients [49]. MCI with amyloid deposition
showed steeper longitudinal DMN FC declines [50]. In
AD patients, a resting-state fMRI study observed reduced
functional connectivity between right hippocampus and
MPFC, ventral ACC, inferotemporal cortex, right cuneus,
right superior, MTG, and PCC [51]. Different from
seed-based analysis for functional connectivity, the present
study focused on the co-operation of functional networks
(e.g., DMN, ECN, SAN). Based on the networks derived
from ICA, seed-based analysis only explored the strength
of inter- or extra-network connectivity. However, we
used dynamic strength changes between networks during
the acquisition time span to calculate the modularity of
networks. For instance, in one state, DMN and ECN had
strong connection and they belonged to the same module.
In the next state, DMN switched to another module and
might have strong connection with SAN. The transition
represented segregation of DMN and ECN, as well as
integration of DMN and SAN. As described in the Method
section, the switching rate for each network was estimated
as the percentage of network transitions across different
modules.

We further focused on the switching rate of DMN and
its relationship with MCI cognition. The resting brain’s
functional organization was suggested to be configured to
maintain a balance between network segregation and inte-
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Fig. 3. Switching rate and longitudinal cognition changes. (A) Contribution of switching rate in each IC to longitudinal cognitive

changes. The positive effect suggested that a higher switching rate correlated with better cognition endpoints. (B) The mapping of IC

15 and the ROC curve for MCI grouping by IC 15’s switching rate. (C) The fitting between original cognitive performance changes and

predicted changes from the elastic regression model. Abbreviation: IC, independent component; MMSE, Mini-mental State Examination;
AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test; SCWT, Stroop Color-Word Test; TMT, the Trail Making Test; BNT,
Boston naming test; ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive Subscale.

gration. This functional balance was associated with better
memory. Furthermore, brain tending toward stronger seg-
regation versus integration foster different cognitive abili-
ties [52]. Thus, our results suggested DMN switching rate
as marker for cognitive abilities in MCI and AD.

Amyloid and tau burden also showed their association
with DMN. DMN functional connectivity during rest is al-
tered with increasing amyloid-PET signal levels in aging
and AD patients [53,54]. In the early phase of AD, hy-
perconnectivity in the DMN was associated with neocorti-
cal tau in the positive amyloid individuals, while hypocon-
nectivity was observed when tau level elevated [55]. As
switching of DMN is presumed to be related to increased
information load on the related brain regions [56], our ob-

servations closely resemble the trend of DMN changes in
MCI and AD. This reduction in DMN switching rate was
closely linked to the clinical severity of MCI patients, es-
pecially the short-term memory and executive function by
data-driven elastic net regression. The difference in IC 15
switching rate between groups was consolidated by elas-
tic net regression for grouping and Bayesian belief network
validation.

While the DMN is generally regarded as active when
the brain is at wakeful rest, it is negatively correlated with
other networks [57]. We also observed inverse switching
rate changes in some other resting-state networks. Worse
memory and executive function in MCI correlated with in-
creased switching rate in ECN and SAN. It implies the
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higher entropy or information load on the specific brain re-
gions illustrated in IC 5, 9, 13, and 16 [58], especially on
the bilateral inferior parietal cortex. The association cortex
was known to integrate information between a range of dif-
ferent networks, and might act as compensation [59]. The
observed increased switching rate in ECN showed some re-
semblance to the functional connectivity changes in ECN
of MCI and AD patients. The mild AD showed signifi-
cantly increased resting-state functional in ECN compared
to healthy controls, as well as increased rsFC in ECN com-
pared to MCI [60]. In the effective connectivity study for
MCI and AD, in contrary to connectivity from the DMN to
the other resting-state networks, increased connectivity was
evident between the memory network and the ECN in the
AD and MCI patients [61].

Longitudinal data in the present study also demon-
strated the ominous effects of the higher switching rate
of SMN. Several studies of Alzheimer’s disease have
also identified changed functional connectivity in the sen-
sorimotor network indicative of compensation or covert
biomarker [62,63]. Amnesic MCI showed increased FC be-
tween the supplementary motor area with the superior pari-
etal lobe in the SMN, while the DMN has reduced inter-
network connectivity with the SMN [64]. Although sta-
tistical association was found between cognitive tests (i.e.,
AVLT, ADAS-Cog and CFT-copy) and switching rate of IC
17 in SMN, the association was not strong to further show
the relationship between SMN and MCI/AD conversion.
The potential compensation role of SMN in MCI stages
need to be further studied.

It is suggested that the motor cortex is involved in
the initial stages of AD, and its hyperexcitability is a well-
defined neurophysiological feature of early AD [54,65,66].
The increased ability of excitation was regarded as its abil-
ity to plastically reorganize itself via recruiting extra cor-
tical circuits in the SMN, or other alternative circuits [66],
due to its natural distributed network with multiple repre-
sentations of the motor maps [67]. The motor cortex hy-
perexcitability would be due to an imbalance between exci-
tatory and inhibitory circuits, probably induced by 5 amy-
loid deposition [66,68], glutamatergic over-activation, and
reduction of GABA mediated inhibition [69]. The phe-
nomenon has great clinical sense as the parameter is related
to disease severity and progression, and could be intervened
by transcranial magnetic stimulation [68,70].

There are a few limitations that should be considered
in the interpretation of our results. First, the parameter of
temporal resolution and length of acquisition in BOLD sig-
nal sampling should be carefully checked for reliable re-
sults. Previous studies suggested much higher temporal res-
olution [14,71] and longer resting-state session (57.6 min),
which could merely be possible in clinical practice. Though
temporal down-sampling of fMRI networks has similar re-
sults in the previous study [14], it is necessary to re-test the
multilayer network modularity detection in a larger sample
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of MCI for further validation. Second, the length of the
time window was discussed and varied in different stud-
ies [28,33]. The reliability caused by different time win-
dow needs to be optimized by more accurate computational
methods. Finally, due to the moderate sample size (118
MCI) and relatively short follow-up period for patients (1
year), the MCI conversion rate is low (14 in 118) and posed
difficulty in constructing the predictive model. Further
studies with larger sample size and longer follow-up peri-
ods would allow for the examination of MCI conversion.

5. Conclusions

In summary, the switching rate of resting-state net-
works serves as a novel biomarker for cognitive perfor-
mance in MCI patients, as well as a predictive marker for
disease progression. Among them, DMN switches as a rep-
resentation of slow cognitive decline, while switching of
SMN heralds worsening. The biomarker-guided predictive
models will further permit researchers to identify and strat-
ify MCI populations.
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