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Abstract

Spinal cord injury is a serious and devastating condition. Recently, research into microRNAs (miRNAs) has become increasingly exhaus-
tive and it has been determined that they are closely related to the pathophysiological processes of spinal cord injury. They participate in

the regulation of the inflammatory response of spinal cord injury, the death of neuronal cells, and the repair of neural functions, which

are related to the recovery of spinal cord injury. This review focuses on the relationship between miRNA and spinal cord injury, lists

miRNA-324-5p, miRNA-221 and miRNA-124, which are helpful for the repair of spinal cord injury, and finally summarizes the current
research progress of miRNA-based therapies, so as to provide a foundational reference for clinical and scientific researchers.
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1. Introduction

Spinal cord injury (SCI) is a serious and debilitating
condition that currently is one of the most challenging of
medical problems, as it exhibits a high rate of disability and
death [1]. Globally, there are over 27 million people living
with SCI, with approximately one million new cases each
year. Among them, falls and car accidents are the main
causes [2]. Recently, the trend globally for SCI is for it
to affect younger people, mostly under 30 years of age [3].
The occurrence of irreversible motor and sensory impair-
ment following SCI has implications for the whole person
[4]. Many studies have also shown that SCI patients are
more likely to suffer from depression or anxiety than nor-
mal people [5-7]. Additionally, the financial cost per SCI
patient is generally higher [8]. It is evident that SCI can
place a serious burden on the patient physically, psycho-
logically, and financially. However, currently the patho-
logical mechanisms of spinal cord injury are known to be
complex and undefined, and clinical diagnosis relies mainly
on physical examination, imaging, and relevant biochemi-
cal indicators [9]. Most importantly, the treatment of SCI
is limited, currently focused on surgical relief of compres-
sion, and reduction of secondary pathologies, as well as the
use of hormonal drugs to reduce inflammation and swelling
[10]. Therefore, it is of great importance to identify and
study the pathogenesis of SCI and develop new treatment
methods and tools.

miRNAs are RNAs of 21-25 amino acids in length
that do not encode proteins [11,12]. Intracellularly they reg-
ulate gene expression by binding to the 3’-untranslated re-
gion (UTR) of messenger RNA (mRNA) to either inhibit
translation or induce degradation of the target mRNA [13].
Further, it has been shown that miRNAs influence both var-
ious physiological processes during development and tissue

homeostasis by regulating the expression of approximately
90% of human genes [14]. Recently miRNAs have been
widely studied for their role in various human diseases in-
cluding tumours [ 15], haematological diseases [16], cardio-
vascular diseases [17], and central nervous system diseases
[18]. Currently, studies in animal models [19] and bioinfor-
matics [20] analyses have preliminarily demonstrated that
alterations in miRNA expression have an impact on key
processes in the pathophysiology of SCI. In-depth studies
of miRNAs may also generate novel approaches to the treat-
ment of SCI.

In this review, initially the close relationship between
miRNAs and SCI is summarized and their potential to treat
SCI through multiple pathways briefly outlined. Three
miRNAs are then described that are more closely related to
SCI, have been studied more frequently, and have potential
applications for SCI treatment. Finally, current approaches
to miRNA-based drug therapy for SCI and current issues of
clinical translation are discussed and future directions for
miRNA research in SCI are examined.

2. Characterization of miRNA Expression
after Spinal Cord Injury and Its Therapeutic
Potential

Expression of miRNAs in the rat spinal cord is ex-
ceptionally abundant, with one study showing that approxi-
mately 77% of identified mature rat miRNAs are expressed
there [21]. Tang et al. [22] identified a total of 3361
miRNAs expressed in the spinal cord of adult rats. Addi-
tionally, the spatial distribution of miRNAs in the spinal
cord varied. For example, miRNA-9 is more highly ex-
pressed in the dorsal sacral medulla, whereas, miRNA-
124a/125b is more highly expressed in the ventral aspect
[23]. SCI models can be classified according to the mech-
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Fig. 1. Map of miRNA changes over time after unilateral and contralateral spinal cord injury in rats.
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anism of injury, such as avulsion of the spinal brachial
plexus, contusion of the spinal cord, ischaemia and reper-
fusion of the spinal cord, compression of the spinal cord,
dislocation, transection, or chemical injury [24]. As SCI
models of three injury mechanisms—avulsion of the spinal
brachial plexus, ischemia-reperfusion of the spinal cord,
contusion of the spinal cord, and spinal cord transection—
are currently well studied, the miRNA expression patterns
of these four injury-dependent mechanisms are briefly out-
lined here. The first is the miRNA expression pattern af-
ter spinal brachial plexus nerve avulsion. After such uni-
lateral nerve avulsions in adult rats, the injured side was
compared to the contralateral side. It was found that on
day three after injury, 55 miRNAs were up-regulated and
24 were down-regulated. More significant up-regulations
included miRNA-201-5p and miRNA-142-5p, while more
significant down-regulation included miRNA-34a-3p and
miRNA-324-5p. Up-regulation of 36 miRNAs including
miRNA-363-3p and down-regulation of 23 miRNAs in-
cluding miRNA-147 were observed at day 14 after in-
jury. Additionally, 11 miRNAs, including miRNA-21-5p,
continued to increase in expression after SCI, while only
miRNA-466¢-3p continued to decrease in expression af-
ter SCI. In comparison, 16 miRNAs including miRNA-18a

showed persistent and significant changes at both days three
and fourteen after SCI [22] (Fig. 1). Thirteen miRNAs were
aberrantly expressed 24 hours after spinal cord ischemia-
reperfusion. while 12 miRNAs including miRNA-331-
5p were upregulated and miRNA-3084b-5p was down-
regulated. Forty-eight hours after spinal cord ischemia-
reperfusion, 105 miRNAs showed differential expression.
This included the upregulation of 44 miRNAs including
miRNA-140-5p and the downregulation of 61 miRNAs in-
cluding miRNA-129-2-3p. Only miRNA-22-3p was sig-
nificantly upregulated at both 24 and 48 hours following
reperfusion [25]. Studies of significant miRNA dysregula-
tion after spinal cord contusion have recently been exten-
sively reported [26-28]. Liu et al. [21] published an earlier
report on miRNA expression analysis after contusion SCI
in rats. Of the 46 miRNAs examined, 30 miRNAs were
found to be increased and 16 miRNAs were found to be de-
creased after spinal cord contusion. Additionally, miRNA-
21 was found to be elevated in the serum of patients with
spinal cord contusion immediately during the acute phase
of injury and peaked on day seven following SCI, before
decreasing to normal control levels [27]. He et al. [29] re-
ported the miRNA expression profile of the rat spinal cord
3 days after transection. Compared with the sham-operated

&% IMR Press


https://www.imrpress.com

group, the expression of 42 miRNAs, including miRNA-
124, was down-regulated by 2-fold and the expression of
42 miRNAs, including miRNA-182, was up-regulated by
more than 2-fold. In addition, miRNA-326, miRNA-30b-
5p, miRNA-10a-5p and miRNA-127-3p were more than 4-
fold down-regulated. Since the main function of miRNAs is
the regulation of gene expression products, it is inferred that
miRNA expression patterns after SCI may fall into three
broad categories: (1) increased after injury, (2) decreased
after injury, and (3) possibly bi-directional changes after
injury. These expression patterns may also regulate gene
expression products at different pathophysiological stages
after SCI. This has illuminating implications for elucida-
tion of the pathogenesis of SCI and identification of new
targets for the treatment of SCI. The pathological process
of SCI is currently divided into a primary injury phase and
secondary injury phase. The primary injury phase is mainly
the compression, contusion, and transection of the spinal
cord, which are mechanical injuries. while the secondary
injury phase is typically the period of biological effects such
as inflammation, neuronal cell death, and destruction of
neurological functions [30]. As miRNA is a molecule that
typically regulates gene expression products, it may play a
key role in the secondary damage phase of SCI. In recent
years a number of miRNAs have been identified as impor-
tant regulators of SCI, which can influence the pathophys-
iological processes of SCI through a variety of pathways.
miRNA-21, miRNA-212-3p, and miRNA-26a inhibit neu-
ronal apoptosis through the PTEN/AKT pathway thereby
contributing to the recovery of motor function after SCI in
rats [31-33]. miRNA-940, miRNA-182, miRNA-488, and
miRNA-543-5p are involved in the NF-KB pathway to in-
hibit the release of pro-inflammatory factors such as tumour
necrosis factor-a. (TNF-«) and interleukin-15 (IL-13) and
subsequently regulate the inflammatory response after SCI
in rats [34—37]. miRNA-411, miRNA-129-5p, miRNA-9-
5p, and miRNA-7a inhibit apoptosis of neuronal cells af-
ter SCI in rats [38—41]. miRNA-466¢-3p and miRNA-155
are involved in the regulation of mitochondrial function af-
ter SCI in rats [42,43]. miRNA-99a and miRNA-672-3p
regulate oxidative stress induced after SCI in rats [44,45].
miRNA-125a and miRNA-216a-5p regulate M1/M2 polar-
ization in microglia by targeting IRF5 (Recombinant Inter-
feron Regulatory Factor 5) and TLR4 (Toll-Like Receptor
4), respectively, ultimately inhibiting the inflammatory re-
sponse after SCI in rats [46,47]. Many of the basic exper-
iments described above have shown that miRNAs are ex-
tensively involved in various repair pathways of SCI. How-
ever, miRNAs may not contribute to SCI recovery through
a single pathway. Many studies are now highlighting the
role of complex regulatory networks among various non-
coding RNAs in human diseases [48-50]. miRNA reg-
ulation through a single pathway may only be part of a
large network, which may point the way to future research
on non-coding RNAs. Although most of the experimental
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studies are currently at the animal testing stage, the conclu-
sions of further clinical trials are unclear and there are no
detailed and complete reports on the analysis of abnormal
miRNA expression profiles in SCI patients. However, the
data from the aforementioned animal models of SCI may
largely reflect the condition of SCI patients. It is thus clear
that miRNAs have shown initial potential for the treatment
of SCI.

3. The Following Three miRNAs have been
Shown to be Closely Associated with SCI in
Basic Experiments and may be Applied to
SCI Therapy

3.1 miRNA-324-5p

MiRNA-324-5p is located on chromosome 17p13.1
[51]. and has been shown to be associated with central ner-
vous system disorders such as epilepsy [52]. In vitro experi-
ments have revealed that overexpression of miRNA-324-5p
further inhibits the viability of oxygen-glucose deprivation
(OGD)-treated neuronal cells and ultimately induces apop-
tosis [53]. In in vivo experiments, Wang et al. [54] found
that miRNA-324-5p expression was significantly elevated
in the acute phase after SCI in rats. Inhibition of endoge-
nous miRNA-324-5p expression in rats with SCI reduced
neuronal loss near the injury area and improved locomo-
tor performance in rats with SCI. Additionally, knockdown
of miRNA-324-5p inhibited the downregulation of brain-
derived neurotrophic factor (BDNF) and glial cell-derived
neurotrophic factor (GDNF) in SCI rats [54]. miRNA-324-
5p directly targets NAD-dependent deacetylase sirtuin-1
(Sirt1) and chemokine ligand 5 (CCL5), and negatively reg-
ulates the levels of Sirtl and CCLS5 [54,55]. Both Sirtl and
CCLS5 have been shown to be involved in the regulation of
a large number of biological processes including the cell
cycle, DNA repair, apoptosis and inflammation, autophagy
and senescence [56,57]. It is not clear how miRNA-324-
5p is expressed in SCI patients. And the regulation of
Sirt]l/CCL5 by miRNA-324-5p has not been reported in
human cases. Experimental validation in human cell lines
or non-human primates may be required in future studies.
However, the successful experience of applying miRNA-
324-5p inhibitors in animal models may demonstrate the
great potential of its related inhibitors for application in the
treatment of human SCI.

3.2 miRNA-221

MiRNA-221 is one of the most significantly and pro-
gressively increased miRNAs over seven days following
spinal cord injury [21]. It has been found that miRNA-
221 can inhibit apoptosis by regulating the apoptosis reg-
ulator p53 upregulated modulator of apoptosis (PUMA)
and downstream c-Jun N-terminal kinase (JNK)/H2A hi-
stone family member X (H2AX) signalling [58]. On the
one hand, miRNA-221 overexpression leads to inhibition of
hippocampal neuronal proliferation and on the other hand
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Fig. 2. Schematic diagram of miRNA-based therapy.

neuronal apoptosis increases [59], silencing miRNA-221
increases the expression of BDNF by neuronal cells [60]. In
vitro experiments with oxygen-glucose deprivation-treated
(OGD) human neural precursor cells (AGE1.HN) and hu-
man neuroblastoma cells (SY-SH-5Y), miRNA-221 was
significantly downregulated. This resulted in elevated tu-
mour necrosis factor-ac (TNF-«) and interleukin 6 (IL-6)
and an increased percentage of apoptotic cells [61]. In addi-
tion, miRNA-221 has been shown to directly target tumour
necrosis factor alpha induced protein 2 (TNFAIP2) to reg-
ulate the inflammatory response and apoptosis of neuronal
cells [62]. In vivo experiments revealed that the inflam-
matory markers TNF-« and IL-6 and the index of oxida-
tive stress were significantly upregulated in mice after SCI
and overexpression of miRNA-221 significantly inhibited
the expression of these factors [63]. miRNA-221 also di-
rectly targets suppressor of cytokine signalling-1 (SOCS-
1), which is associated with inflammation [64]. A growing
number of studies now show that the immune inflammatory
response after SCI plays a crucial role in the injury and re-
covery process [65—67]. This also shows the important role
that miRNA-221 plays in the recovery from SCI, especially
through inflammation suppression pathways.

3.3 miRNA-124

One study [68] found that miRNA-124 concentrations
in the mouse central nervous system (CNS) were more than
100-fold higher than in other systems and that miRNA-
124 expression varied within the CNS, with expression ra-
tios of 60.7% in the cerebellum and 35.4% in the spinal
cord. miRNA-124 expression was significantly reduced
from one to seven days after SCI in mice [69]. Overexpres-
sion of miRNA-124 promotes the differentiation of bone
marrow mesenchymal stem cells (BMSCS) towards neu-
rons and it inhibits the expression of proteins with anti-
neuronal activity, including repressor element-1 silencing

transcription factor (REST), small c-terminal domain phos-
phatase 1 (SCP1), and Recombinant Sex Determining Re-
gion Y Box 9 (Sox9) Protein [70]. In in vitro experiments
with the mouse macrophage cell line RAW264.7 and human
HEK?293 cells, miRNA-124 was shown to reduce IL-6 and
TNF-a production via the Recombinant Signal Transducer
and Activator of Transcription 3 (STAT3) Tumour necrosis
factor-a-converting enzyme (TACE) production and subse-
quently inhibit TNF-« release to regulate Lipopolysaccha-
ride (LPS)-induced pro-inflammatory cytokine production
[71]. Chitosan is a natural non-toxic degradable complex.
One study [71] piggybacked miRNA-124 in chitosan and
then transfected it into rat microglia and found that trans-
fection of miRNA-124 reduced the expression of major his-
tocompatibility complex-1I (MHC-II), TNF-q, and the ex-
pression of Reactive oxygen species (ROS) was found to re-
duce the inflammatory response after SCI. It also prevented
the development of secondary neuronal damage induced
by activated microglia/macrophage secretory proteins af-
ter SCI. More relevant studies have now shown that the
downregulation of circRNA-2960, its target miRNA-124,
by molecular sponge action after SCI attenuates the inflam-
matory response and inhibits apoptosis at the site of the le-
sion [72]. The application of miRNA-124 mimics at the ap-
propriate stage as well as at the lesion site based on the sig-
nificant changes in miRNA-124 in the early stages of SCI
and differential expression in the CNS may provide a new
approach to promote recovery in SCI patients.

4. Research Progress of miRNA-Based
Therapies

Although the effect of miRNAs in treating human dis-
eases, including SCI, remains to be elucidated, there is
growing evidence that miRNAs represent a new class of
drug targets.
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4.1 Currently, Two Types of miRNA-Based Therapies have
been Developed

(1) miRNA mimics and (2) miRNA inhibitors. The
former is an exogenous synthetic miRNA mimic that acts
specifically on its target RNA to silence the endogenous
RNA and thereby attenuate the protein expression product
of the unfavourable gene. The latter is a synthetic inhibitor
of a miRNA that binds to the endogenous miRNA through
specific targeting and weakens the silencing effect of the
endogenous miRNA on the favourable gene and promotes
the expression of the protein product of the favourable gene
[73] (Fig. 2).

4.2 Challenges for miRNA-Based Clinical Therapies
4.2.1 Mode of Administration

(1) Intrathecal drug delivery. Intrathecal administra-
tion in the subarachnoid space is commonly used to de-
liver miRNA-based drugs to the spinal cord or the cere-
bellar pool at the base of the brain [74]. In one study,
miRNA-651 injected through a subdural catheter into rats
three days after SCI inhibited the expression of leucine rich
repeat and Ig domain containing 1 (LINGO-1), resulted in
increased neuronal survival and enhanced axonal extension
and myelin formation, and ultimately improved recovery of
motor function in the hind limbs of SCI rats [75]. However,
this invasive drug delivery method with relatively precise
positioning may be difficult to apply in the clinical setting
and may cause secondary injuries to patients.

(2) Intravenous injection. Due to the advantages of
high dosing volume, ease of handling, low risk and the
ability to reach almost all damaged tissues, they are cur-
rently probably the most suitable for clinical use in relative
terms [76]. However, how to get miRNA-based drugs to
bypass the blood brain barrier (BBB) or blood-spinal cord
barrier (BSCB) is still a clinical challenge that needs to be
addressed.

(3) Intranasal drug delivery. This delivery method has
been shown to bypass the BBB or BSCB and allows access
to the central nervous system in animal models [77]. It may
also be a potentially non-invasive method of clinical drug
delivery.

(4) Adeno-associated virus (AAV). This method al-
lows the delivery of in vitro synthetic miRNA mimics or
inhibitors into the target genome. Although this delivery
method can be validated in both conceptual and animal
models, there are still some issues with clinical application
such as immunological responses and ethical aspects [78].
Most importantly, despite the conceptual validation of this
approach, it is best performed prior to SCI to ensure that
the vector material has sufficient time to function. Because
viral-mediated miRNA knockdown or overexpression usu-
ally takes time to express, this approach may not be very
useful in acute SCI injury, but could be considered for use
during recovery from SCI [74].
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(5) Exosomal delivery [79]. Has a strong biological
barrier permeability to selectively penetrate tissue injury
due to its natural ability to target donor cells based on its
ability to deliver drugs and has nanomolecules of cell sur-
face material [80]. This method of delivering miRNA to the
site of spinal cord injury has great potential for application.

(6) The use of biological complexes such as chitosan
[81]. As a natural complex, chitosan is the only positively
charged edible fibre in nature, non-toxic, non-hazardous,
readily degradable in humans, and has been experimentally
corroborated as a miRNA delivery material in animal mod-
els of SCI [71]. From the chemical structure, chitosan is a
cationic polyamine, which can bind to negatively charged
miRNA through electrostatic interaction, thus encapsulat-
ing miRNA and making it less susceptible to destruction
by RNA enzymes, effectively protecting miRNA [82]. At
the same time, miRNAs are characterized by immediate
degradation after action and can only play a regulatory role
for a short period of time, whereas chitosan has good mu-
cosal adhesion properties, which allows it to accomplish
sustained release in vivo as well, and can effectively in-
crease the action time of miRNAs [83]. It is worth mention-
ing the emerging biomaterial hydrogel, a physically entan-
gled and/or chemically cross-linked polymer structure with
a high water content, which mimics natural human tissue
due to its similarity to the extracellular matrix [84]. Al-
though most hydrogel-based reports have confirmed the de-
livery capacity of hydrogels, some studies have shown that
certain hydrogels have intrinsic immunomodulatory prop-
erties that are well known to attenuate the inflammatory
process of SCI [85]. However, few studies have been re-
ported on miRNA-loaded hydrogels for SCI repair. Al-
though the mode of miRNA administration in the clinic is
still debatable, the mode of administration in animal mod-
els could certainly provide new avenues and inspiration for
clinical drug delivery.

4.2.2 Administration Dose

The dose of a miRNA-based drug should have a sig-
nificant impact on the predicted target gene, making it par-
ticularly important to assess the half-life of miRNA-based
drugs, as it can determine whether multiple injections are
required to ensure maximum drug benefit [86]. In practice,
however, dosing ultimately depends on the method of deliv-
ery and the model of injection. Currently, miRNA dosing
is mostly empirically determined in animal models and the
dosing of miRNA-based drugs in the clinic remains open to
debate.

4.2.3 Time Window of Administration

There are currently two main approaches to the time
window for miRNA administration in animal SCI models:
(1) pre-SCI administration and (2) post-SCI administration.
The former is pre-protective for SCI models, but cannot be
carried out in practical clinical applications. Although the
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Table 1. Development and intended application of miRNA-based drugs and therapeutic limitations of clinical trial exposure.

Drug Drug nature Expected application Therapeutic limitations of clinical trial exposure

Miravirsen miRNA-122 inhibitor HCV Drug half-life, miRNA off-target effects and their
side-effects

RG-101 miRNA-122 inhibitor HCV Drug half-life, miRNA off-target effects and their

side-effects

RG-125/AZD4076 miRNA-103/107 inhibitor Type 2 diabetes or nonalcoholic fatty liver Discontinued

disease
MRX34 miRNA-34 mimics Primary liver cancer and small cell lung Side effects of miRNA off-target effects
cancer or lymphoma
Melanoma or multiple myeloma or renal
cell carcinoma
TargomiR miRNA-16 mimics Recurrent breast cancer Drug half-life, miRNA off-target effects and their
side-effects
MRG-106 miRNA-155 mimics Mycosis fungoides skin or T cell lym- Clinical trials may present problems that have

phoma

arisen with other miRNA-based drugs

latter dosing time window is more in line with clinical ap-
plications, the dosing method and the dosing time window
are often closely linked. Both the dosing method and the
dosing time window need to be precisely optimised and tai-
lored for each treatment application. This is because it may
be relevant to the delivery vehicle, tissue exposure time, de-
livery route and target cell type [87].

4.3 Some miRNA-Based Drugs are under Clinical Trial
Development

Several miRNA-based drugs tested in animal models
have entered human clinical trials, including Miravirsen,
RG-101, RG-125/AZD4076 (which has been called off),
MRX34, TagomiR, and MRG-106 (Table 1). Although the-
oretical and pre-clinical trials have demonstrated the po-
tential of these miRNA-based drugs, their therapeutic lim-
itations have also been exposed. Miravirsen is essentially
a miRNA-122 inhibitor. Although short-term use of Mi-
ravirsen does not result in changes in the genetic material
as well as the phenotype of Hepatitis C Virus (HCV), how-
ever a small proportion of HCV still proliferates slowly in
the presence of Miravirsen. As the dose of Miravirsen is
increased, mutations begin to occur in the 5’UTR region
of HCV viral RNA, which may also lead to off-target ef-
fects of miRNA-based drug therapy [88]. RG-101 is also a
miRNA-122 inhibitor by nature. In clinical trials with RG-
101, doses of 2 mg/kg versus 4 mg/kg were shown to be safe
for humans and to have a significant inhibitory effect on
HCYV replication. However, hepatitis C is prone to relapse
at this dose, possibly due to unresolved half-life issues and
miRNA off-target effects of the drug [89]. Subsequent stud-
ies used RG-101 in combination with Harvoni to determine
whether treatment could be prolonged, but a relapse of hep-
atitis C and cases of jaundice were observed at 24 weeks and
the clinical trial was eventually suspended by the US Food
and Drug Administration (FDA) [90]. RG-125/AZD4076

is essentially a miRNA-103/107 inhibitor, which improves
insulin sensitivity in type II diabetes and non-alcoholic fatty
liver disease, but development of RG-125/AZD4076 has
been halted as the clinical program was terminated in June
2017 [74]. MRX34 is essentially a miRNA-34 mimetic.
It acts as a tumour suppressor through multiple pathways
and is one of the most advanced miRNA-based drugs in the
oncology field [91]. However, subsequent negative events
(and even patient deaths), possibly related to the side ef-
fects of miRNA off-target effects, eventually led to the ter-
mination of the clinical programme [92]. TargomiR is es-
sentially a mimic of miRNA-16 [93]. Although preliminary
clinical trials corroborated the remission effect of TargomiR
in patients with recurrent thoracic cancer, subsequent clin-
ical trials revealed problems with drug dose selection and
side effects arising from the off-target effect of miRNAs.
Eventually, deaths were reported [94]. MRG-106 is es-
sentially a miRNA-155 mimic. It is expected to be used
in mycosis fungoides cutaneous T-cell lymphoma [95]. It
does not appear to have been found in recent studies to pro-
duce evidence of serious adverse consequences [96]. But
in-depth clinical trials may also face problems that have
arisen with other miRNA-based drugs. The main problem
currently facing miRNA-based drug development is the off-
target effect. Because miRNAs can regulate one or more
target genes, miRNAs may act on other target genes to pro-
duce unwanted side effects or may even activate pathways
that counteract the protective effect [97]. Therefore, an ur-
gent clinical task should be to improve the specificity of
miRNAs for selected target genes and to develop methods
to block off-target effects. Another common problem with
miRNA-based therapies is their potential for rapid degra-
dation by RNA enzymes. Repeated injections or chem-
ical modifications of miRNA-based drugs may therefore
be required to guarantee that they work for an effective
circulation time [98]. Next is the mode of administration
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of miRNA-based drugs and the window of administration.
Different diseases may dictate different drug delivery meth-
ods due to the different sites of lesion involvement. In par-
ticular, the delivery of miRNAs following CNS injury is
complicated by the need to bypass the BBB or BSCB. Al-
though basic experiments have demonstrated several meth-
ods such as intrathecal and intranasal administration and
these studies have proven the principle, there are consid-
erable challenges. For example, intrathecal administration
is likely to cause secondary harm to patients in the clinic
and it is unclear whether intranasal administration is trans-
latable to humans with different anatomical structures [74].
The dosing window may also have different time points
in different diseases. For example, viral-mediated miRNA
knockdown overexpression may often take time to express,
so it is important to assess the precise timing of dosing.
Although none of these drugs are relevant to SCI and the
current clinical translation is still problematic, they may
provide new avenues and guidance for the development of
SCI-based miRNA drugs, which continue to demonstrate
the great potential of miRNAs in the treatment of SCI.

5. Summary and Outlook

In summary, (1) miRNAs are likely to provide a new
approach to SCI treatment. However, the animal models
chosen for most of the current experiments demonstrating
the recovery-promoting effects of miRNAs on SCI are non-
primate and future studies will likely also be conducted in
non-human primates. (2) Most of the RNAs present in or-
ganisms are non-coding RNAs [99], such as miRNA, cir-
cRNA, IncRNA, etc. As research progresses the interac-
tions of these non-coding RNAs and the complex network
of regulatory relationships are found to remain largely un-
known. It supports the notion that ideal future miRNA-
based therapies should focus on the regulatory network of
non-coding RNAs. In 2018, a related study found that
miRNA-7 and miRNA-671 cooperated to build a complex
regulatory network to regulate brain function in mice [100].
However, similar studies have been rarely reported in recent
years in SCI as well as other diseases. Future studies could
therefore focus on the regulatory network of non-coding
RNAs. (3) Although miRNAs have been shown to be use-
ful for the alleviation of SCI in animal models, there are
still many issues in clinical application. (i) How to effec-
tively avoid the off-target effect of miRNAs and thus avoid
the possible side effects of miRNAs acting on other target
genes. (i) How to choose the appropriate vector and deliv-
ery method, the appropriate dosing window, and the appro-
priate dose to ensure the maximum benefit of miRNA as a
drug for SCI. (iii) How miRNA-based drugs can bypass the
BBB or BSCB. Although much work remains to be done
to develop miRNAs for application in clinical applications,
the resolution of related issues will certainly enhance the
development of this emerging field.
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