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Abstract

Background: Traumatic brain injury (TBI) is a common brain injury with a high morbidity and mortality. The complex injury cascade
triggered by TBI can result in permanent neurological dysfunction such as cognitive impairment. In order to provide new insights for
elucidating the underlying molecular mechanisms of TBI, this study systematically analyzed the transcriptome data of the rat hippocam-
pus in the subacute phase of TBI. Methods: Two datasets (GSE111452 and GSE173975) were downloaded from the Gene Expression
Omnibus (GEO) database. Systematic bioinformatics analyses were performed, including differentially expressed genes (DEGs) analy-
sis, gene set enrichment analysis (GSEA), Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis, protein-protein interaction (PPI) network construction, and hub gene identification. In addition, hematoxylin
and eosin (HE), Nissl, and immunohistochemical staining were performed to assess the injured hippocampus in a TBI rat model. The
hub genes identified by bioinformatics analyses were verified at the mRNA expression level. Results: A total of 56 DEGs were shared
in the two datasets. GSEA results suggested significant enrichment in the MAPK and PI3K/Akt pathways, focal adhesion, and cellular
senescence. GO and KEGG analyses showed that the common DEGs were predominantly related to immune and inflammatory pro-
cesses, including antigen processing and presentation, leukocyte-mediated immunity, adaptive immune response, lymphocyte-mediated
immunity, phagosome, lysosome, and complement and coagulation cascades. A PPI network of the common DEGs was constructed, and
15 hub genes were identified. In the shared DEGs, we identified two transcription co-factors and 15 immune-related genes. The results
of GO analysis indicated that these immune-related DEGs were mainly enriched in biological processes associated with the activation of
multiple cells such as microglia, astrocytes, and macrophages. HE and Nissl staining results demonstrated overt hippocampal neuronal
damage. Immunohistochemical staining revealed a marked increase in the number of Ibal-positive cells in the injured hippocampus.
The mRNA expression levels of the hub genes were consistent with the transcriptome data. Conclusions: This study highlighted the
potential pathological processes in TBI-related hippocampal impairment. The crucial genes identified in this study may serve as novel
biomarkers and therapeutic targets, accelerating the pace of developing effective treatments for TBI-related hippocampal impairment.
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1. Introduction progressive and chronic consequences of TBI. Many pre-
clinical and clinical studies have suggested that TBI is a sig-
nificant risk factor for neuropsychiatric and cognitive disor-
ders such as posttraumatic stress disorder (PTSD), chronic
traumatic encephalopathy (CTE), and Alzheimer’s disease
(AD) [4-7]. The hippocampus is the main locus responsi-
ble for cognitive processing involving learning and memory
[6,8]. It has been shown that hippocampus dysfunction is
associated with cognitive deficits following a TBI [6,8,9].
Existing treatments for TBI primarily focus on immediate
neurosurgical procedures and long-term behavioral rehabil-
itation, but few treatments are sufficient to improve TBI-
induced cognitive deficits [10,11]. TBI differs from other
diseases in that it involves different periods after the in-
jury. However, subacute phase studies of TBI functional re-
covery have received substantially less attention than acute

Traumatic brain injury (TBI) is a lethal and disabling
injury and is a major challenge to public health and so-
cial development worldwide [1]. The global incidence of
TBI has been continuously increasing over the past several
decades [1,2]. In 2016, there were more than 27 million
new cases of TBI, and the total number of prevalent cases
exceeded 55 million [2]. TBI is caused by the application
of an external mechanical force to the head, followed by a
series of primary and secondary pathological mechanisms,
such as cell death in the brain parenchyma, disruption of the
neurovascular unit, axonal injury, neuroinflammation, and
neurodegeneration [3]. Due to the complex pathological
mechanisms of TBI, developing effective neuroprotective
therapeutics for afflicted patients has been challenging [3].
In recent years, increasing emphasis has been placed on the

Copyright: © 2023 The Author(s). Published by IMR Press.
BY This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.imrpress.com/journal/JIN
https://doi.org/10.31083/j.jin2202044
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

GSE111452

GEO database

GSE173975

Bioinformatics analysis

‘ GSEA GO analysis KEGG analysis
ﬁl fi I
oxasill i ' —— gl

—

i
_ l'i
""'I'I'I"“F".

Hub gene identification

Experimental validation

Construction of a rat model of TBI

Histopathological analysis

afl W e Hap g Detecting the mRNA expression level
Hall el 1.0 el Wall

Hall fiafl el Tal iR

Fig. 1. Schematic illustration of bioinformatics analyses and experimental validation in the study.

phase studies [12,13]. Since effective therapeutic strategies
for the subacute phase of TBI are limited, it is essential to
explore optimal therapeutic targets at this stage [12,13].

Understanding the molecular mechanisms underlying
pathological processes is a critical step toward develop-
ing effective treatments for TBI. Based on the system-
atic bioinformatics analysis, microarray and high through-
put sequencing techniques have emerged as essential tools
for exploring the pathogenesis of complex human diseases
[14,15]. Many bioinformatics studies have been conducted
in the field of oncology and some non-tumor diseases, but
relatively few have focused explicitly on traumatic nerve
injuries such as TBI [16]. The Gene Expression Omnibus
(GEO) is a publicly available database consisting of an in-
valuable resource of mass gene expression data that can be
systematically analyzed for biomarker or therapeutic target
discovery [17]. In this study, we used two datasets from the
GEO database to screen the differentially expressed genes
(DEGs) of the hippocampus in the subacute phase of TBI.
Gene functional enrichment analyses, protein-protein inter-
action (PPI) network construction, and hub gene identifica-
tion were also performed. Furthermore, we observed the
main histopathological features of the injured hippocam-
pus and selected several DEGs for verification in vivo. The
schematic workflow of our study is presented in Fig. 1.
This study may provide new insight into potential biomark-
ers and therapeutic targets for cognitive deficits induced by
TBI

2. Materials and Methods
2.1 Dataset Source

We downloaded two mRNA expression datasets
(GSE111452 and GSE173975) from the GEO database (ht
tps://www.ncbi.nlm.nih.gov/geo/) [18,19]. In two experi-
ments, adult male Sprague-Dawley (SD) rats were used as
the experimental models. The rats were anesthetized by
inhaling 1.5-3.0% isoflurane; then, a circular craniotomy
was made on the right side of the parietal bone. The rats in
the model group were subjected to a fluid percussion injury
(FPI). The fluid pressure pulses were 2.3 and 2.12 atm in
the GSE111452 and GSE173975 datasets. The rats in the
sham group underwent a similar surgical preparation ex-
cept for the FPI. The rat hippocampus tissues on the side of
the lesion were harvested on the 14th day (subacute phase)
after TBI modeling. Each dataset contained four separate
hippocampus tissue samples in the sham and TBI groups.
Detailed information of the two datasets can be found in
Supplementary Table 1.

2.2 DEGs Identification

We utilized the “limma” and “edgeR” packages to
identify DEGs between the sham and TBI groups in the
GSE111452 and GSE173975 datasets, respectively. The
criterion for defining differential gene expression was a p-
value < 0.05 and a |log2 (fold change)| >1.00. The com-
mon DEGs in the two datasets were identified using the
“VennDiagram” package.
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2.3 Gene Enrichment Analysis

Gene set enrichment analysis (GSEA), Gene Ontol-
ogy (GO) enrichment analysis, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were con-
ducted by the “clusterProfiler” package [20]. For GSEA,
a |standardized enrichment score (NES)| >1.00 and an ad-
justed p-value < 0.05 were considered as the criteria for
significant enrichment. For the GO and KEGG analyses,
the significant threshold was set as an adjusted p-value <
0.05. The GO enrichment analysis contained three cate-
gories: biological process (BP), cellular components (CC),
and molecular function (MF).

2.4 Construction of a PPI Network and Identification of
Hub Genes

A PPI network was drawn by the Search Tool for the
Retrieval of Interacting Genes (STRING) database (http:
//string-db.org/). The threshold for the minimum interac-
tion score was set to 0.4. The PPI network was plotted in
Cytoscape. The hub genes were identified using the MCC
algorithm of the CytoHubba plug-in.

2.5 Transcription Factor (TF) and Co-Factor Analysis

The list of TF and co-factor of rats were downloaded
from the AnimalTFDB database [21]. The differentially
expressed TF and co-factors shared in common between
the two datasets were identified using the “VennDiagram”
package.

2.6 Immune-Related Genes (IRGs) Analysis

The list of IRGs was obtained from the InnateDB
database [22,23]. The overlapped differentially expressed
IRGs in the two datasets were identified using the “VennDi-
agram” package.

2.7 Animal Experiment

Specific pathogen-free (SPF) Male SD rats (7 weeks
old, 220-240 g body weight) were purchased from Bei-
jing Huafukang Bioscience (Beijing, China). All animals
were housed in a standard environment (12-h light/dark cy-
cle, room temperature: 23-25 °C, relative humidity: 50%—
60%) with water and food ad libitum. After adaptive feed-
ing for ten days, fourteen rats were randomly allocated into
the sham and TBI groups (n = seven per group). The exper-
imental procedures were approved by the Laboratory Ani-
mal Ethics Committee of Jinan University (ethical number:
14075) and followed the Principles of Laboratory Animal
Care.

2.7.1 TBI Model

TBI model was produced with a controlled cortical
impact (CCI) device (YHC199, Wuhan Yihong Science
& Technology Co., Ltd., Wuhan, Hubei, China). Briefly,
rats were anesthetized with 2% pentobarbital sodium (40
mg/kg) with an intraperitoneal injection. Then, they were
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fixed in a stereotaxic frame, and a skin incision was made
on the scalp to expose the skull. A craniotomy (diame-
ter of 5.0 mm) was performed over the right parietal bone
(2.0 mm lateral to the sagittal suture and 1.0 mm poste-
rior to the bregma) to expose the dura and cerebral cortex.
A flat-tipped impactor (diameter of 4 mm) was utilized to
impact the exposed dura (impact parameters: depth of 2.5
mm, dwell time of 250 ms, and impact velocity of 3.5 m/s)
[24]. After surgery, scalp incisions were sutured, and the
rats were moved into clean cages with heated pads for re-
covery. The rats in the sham group were subjected to the
same procedures without the CCI.

2.7.2 Tissue Collection and Preparation

To collect the hippocampal tissue, on the 14th day af-
ter TBI, four rats in each group were anesthetized with 2%
pentobarbital sodium (40 mg/kg) with an intraperitoneal in-
jection, followed by transcardial perfusion with ice-cold
0.9% normal saline. Then, the brain was removed, and
the hippocampal tissue in the ipsilateral (lesion) side was
rapidly removed. The collected samples were flash-frozen
in liquid nitrogen and stored at —80 °C for subsequent analy-
sis. For histopathological detection, three rats in each group
were anesthetized in the same manner; then, the brain was
harvested after transcardial perfusion with ice-cold 0.9%
normal saline followed by 4% paraformaldehyde. The tis-
sue blocks were embedded in paraffin after fixation in 4%
paraformaldehyde for 24 hours.

2.8 Hematoxylin and Eosin (HE) Staining

HE staining was conducted using a HE staining kit
(Servicebio, Wuhan, Hubei, China) according to the in-
struction manual. Brain sections (5 um) were subjected
to deparaffinization with dimethylbenzene, ethanol hydra-
tion, hematoxylin staining, eosin staining, and ethanol de-
hydration. Finally, the sections were sealed with neutral
resin. Tissue sections were observed by a light microscope
(Olympus, Tokyo, Japan).

2.9 Nissl Staining

Nissl staining was performed using Nissl staining so-
lution (Servicebio, Wuhan, Hubei, China) according to the
manufacturer’s instructions. After deparaffinization and
hydration, brain slices were stained in Nissl staining solu-
tion and then differentiated in 0.1% glacial acetic acid. Af-
ter sealing the slices, the staining was visualized under a
light microscope (Olympus, Tokyo, Japan).

2.10 Immunohistochemical Staining

After deparaffinization and hydration, brain sections
underwent high-temperature antigen repair using citrate
buffer (pH 6.0). The sections were cooled naturally after
antigen retrieval. To block endogenous peroxidases, 3%
hydrogen peroxide solution was applied to the sections for
25 minutes, and nonspecific bindings were blocked with
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Fig. 2. The DEGs between the sham and TBI groups in the GSE111452 and GSE173975 datasets. (A) Volcano plot of the DEGs in
the GSE111452 dataset. (B) Volcano plot of the DEGs in the GSE173975 dataset. Red dots represent upregulated genes, and blue dots
represent downregulated genes. (C) Heatmap of the top 50 DEGs in the GSE111452 dataset. (D) Heatmap of the top 50 DEGs in the

GSE173975 dataset.

3% bovine serum albumin (BSA) solution for 30 minutes.
Then, the sections were incubated with primary antibody
mouse anti-Ibal (1:500, Servicebio, Wuhan, Hubei, China)
overnight at 4 °C. After removing the primary antibody,
the sections were incubated in anti-mouse HRP-labeled
secondary antibody (1:500, Servicebio, Wuhan, Hubei,
China) at room temperature for one hour. Diaminobenzi-

dine (DAB) staining was performed using the DAB chro-
mogenic agent (Servicebio, Wuhan, Hubei, China). The
sections were sealed with coverslips after nuclear coun-
terstaining and dehydration. The positive staining cells
were observed using a light microscope (Olympus, Tokyo,
Japan).
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Fig. 3. The main results of GSEA in the GSE111452 (A) and GSE173975 (B) datasets.

2.11 Quantitative Real-Time PCR (RT-qPCR)

Total RNA was extracted from the hippocampal tis-
sues using RNAiso Plus (Takara, Ohtsu, Japan). A Nan-
oDrop spectrophotometer (Thermo Scientific, Waltham,
MA, USA) was used to measure RNA concentration and
purity. RT-qPCR was performed using the SYBR Green
RT-qPCR kit (Takara, Ohtsu, Japan) and the CFX96 Real-
Time PCR Detection System (Bio-Rad, Hercules, CA,
USA). We used (-actin as a reference gene and calculated
the relative mRNA expression level by the 2~24C method.
Reactions were performed in triplicate. The sequences of
primers used are provided in Supplementary Table 2.

2.12 Statistical Analysis

All data were presented as mean =+ standard error of
the mean (SEM). Two groups of data were compared using
Student’s #-test. Statistical analyses were performed with
SPSS (version 23.0, IBM Corp., Chicago, IL, USA) soft-
ware. Plots were generated using GraphPad Prism (version
6.0, GraphPad Software Inc., San Diego, CA, USA) and
R (version 4.1.1, the R Foundation, Vienna, Austria) soft-
wares. A p-value < 0.05 indicated statistical significance.

3. Results
3.1 Bioinformatics Analyses of the GEO Datasets
3.1.1 Identification of DEGs

A total of 445 genes were differentially expressed
between the sham and TBI groups in the GSE111452
dataset, including 276 upregulated genes and 169 downreg-
ulated genes (Fig. 2A,C). In the GSE173975 dataset, 802
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DEGs were screened between the sham and TBI groups,
including 718 upregulated genes and 84 downregulated
genes (Fig. 2B,D). The Venn diagram was utilized to iden-
tify the intersections of DEGs from the GSE111452 and
GSE173975 datasets. Overall, 56 upregulated DEGs were
shared in common between the two datasets.

3.1.2 GSEA Analysis

To avoid missing some genes with crucial biologi-
cal relevance during the screening of DEGs, GSEA was
conducted based on all gene expression data of the two
datasets. We extracted four main pathways from the over-
lapped pathways in the two datasets, including the mitogen-
activated protein kinase (MAPK) signaling pathway, phos-
phatidylinositol 3-kinases/protein kinase B (PI3K/Akt) sig-
naling pathway, focal adhesion, and cellular senescence.
The enrichment plots of the GSEA results are shown in
Fig. 3.

3.1.3 GO and KEGG Analyses of DEGs

For the BP terms, the DEGs were mainly involved
in antigen processing and presentation, leukocyte-mediated
immunity, adaptive immune response, and lymphocyte-
mediated immunity.

For the CC terms, the DEGs were primarily enriched
in lytic vacuole, lysosome, late endosome, external side
of plasma membrane, phagocytic vesicle, lysosomal mem-
brane, lytic vacuole membrane, MHC class II protein com-
plex, collagen trimer, and vacuolar membrane.
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Fig. 4. GO analyses of the common DEGs. (A) The bar plot of the top 10 BP, CC, and MF terms. (B) The bubble plot of the top 10

BP, CC, and MF terms.

For the MF terms, the DEGs were significantly en-
riched in immune receptor activity, immunoglobulin recep-
tor activity, peptide binding, cysteine-type endopeptidase
activity, amide binding, immunoglobulin binding, amyloid-
beta binding, cysteine-type peptidase activity, peptide anti-
gen binding, and endopeptidase activity.

KEGG pathway enrichment analysis found that the
DEGs were mainly involved in antigen processing and pre-
sentation, phagosome, lysosome, and complement and co-
agulation cascades, etc. The results of the GO and KEGG
analyses are shown in Figs. 4,5.
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3.1.4 PPI Analysis and Hub Gene Identification

The PPI network was constructed to reveal the poten-
tial connection among the DEGs. As shown in Fig. 6A,
the PPI network consisted of 52 nodes and 220 linkages.
We further identified the top 15 hub genes according to
the MCC method. Next, we performed K-means cluster-
ing and grouped these hub genes into four distinct clusters
as follows: cluster 1: allograft inflammatory factor 1 (4if7),
colony-stimulating factor 1 receptor (Csf1r), triggering re-
ceptor expressed on myeloid cells 2 (7rem2), and TYRO
protein tyrosine kinase-binding protein (7yrobp); cluster 2:
Clga, Clgb, Clgc, Cd74, and Cathepsin S (Ctss); clus-
ter 3: Rho GDP dissociation inhibitor-53 (4rhgdib), Cd53,
lysosomal-associated protein transmembrane 5 (Laptm));
and cluster 4: Fc epsilon receptor Ig (Fcerlg), Fc gamma
receptor IIb (Fcgr2b), and protein tyrosine phosphatase
non-receptor type 6 (Ptpn6) (Fig. 6B).

3.1.5 TF, TF Co-Factors, and IRGs Analysis

We identified two overlapped TF co-factors among
the DEGs shared in the two datasets (Fig. 7A). They were
adipocyte enhancer-binding protein 1 (4debpl) and PYD
and CARD domain containing (Pycard) genes. Further-
more, we also found 15 immune-related DEGs, includ-
ing Clqa, interferon +y receptor 1 (Ifngrl), Csfir, Unc-93
homolog B1 (Unc93b1), Ctss, Clgc, Ptpn6, Clgb, legu-
main (Lgmn), Tyrobp, Trem2, granulin precursor (Grn), an-
nexin A2 (Anxa2), interferon-stimulated gene 15 (Isgl)5),
and Pycard. The GO enrichment analysis of these immune-
related DEGs indicated that the significant BP terms in-
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cluded microglial cell activation, cell junction disassem-
bly, astrocyte activation, antigen processing and presenta-
tion, macrophage activation, positive regulation of response
to external stimulus, myeloid cell differentiation, myeloid
leukocyte activation, and astrocyte development (Fig. 7B).

3.2 Experimental Validation in a Rat Model of TBI
3.2.1 Histopathological Features

HE staining was used to observe the cell morphol-
ogy of neurons. In the sham group, neurons in the hip-
pocampus were arranged regularly and showed clear and
intact cellular structure (Fig. 8A). However, the TBI group
showed distinct morphological alterations, nuclear pykno-
sis, and neuronal necrosis (Fig. 8A). Nissl staining was used
to detect neuronal loss. The results of Nissl staining also
demonstrated severe structural damage in the neurons and
apparent reductions in the number of intact neurons in the
TBI group (Fig. 8B). No such pathological abnormalities
were observed in the sham group (Fig. 8B). Moreover, mi-
croglia was visualized by staining with anti-Ibal antibody.
The results of Ibal staining suggested that the number of
Ibal-positive cells was markedly increased in the TBI group
(Fig. 8C).

3.2.2 The mRNA Expression Levels of the Hub Genes

To validate the transcriptome data, we selected the 15
hub genes (4if1, Csf1r, Trem2, Tyrobp, Clga, Clgb, Clqc,
Cd74, Ctss, Arhgdib, Cd53, Laptm5, Fcerlg, Fcgr2b, and
Ptpn6) for RT-qPCR (Fig. 9). Compared with the sham
group, the mRNA expression levels of these genes were sig-
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nificantly higher in the TBI group (p < 0.05). Overall, these
RT-qPCR results were in accordance with the transcriptome
data.

4. Discussion

TBI is one of the most common traumatic injuries
which can cause long-lasting cerebral damage and cognitive
deficits [25]. Elucidating the potential molecular mecha-
nisms and therapeutic targets for improving cognitive func-
tion helps to improve the clinical prognosis and alleviate the
burden on patients suffering from TBI [26]. Transcriptomic
profiling is a powerful tool that can identify the genes differ-

entially expressed in specific physiological and pathologi-
cal states and discover new diagnostic or therapeutic targets
[27]. In this study, we conducted a systematic bioinfor-
matics analysis of the two GEO datasets (GSE111452 and
GSE173975) to reveal the potential molecular mechanisms
responsible for hippocampal damage in rats in the subacute
phase of TBI.

Initially, we performed GSEA on the basis of all tran-
scriptome data of the two GEO datasets, separately. The
GSEA results revealed notable enrichment in the MAPK
signaling pathway, PI3K/Akt signaling pathway, focal ad-
hesion, and cellular senescence. The MAPK family in
mammals consists of c-Jun N-terminal kinase, p38 MAPK,
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and extracellular signal-regulated kinase [28]. Previous
findings suggested that inhibiting the activation of the
MAPK signaling pathway might produce neuroprotective
effects in TBI [29,30]. As a critical regulator of organismal
growth and multiple cellular processes, the PI3K/Akt sig-
naling pathway plays an important role under various patho-
physiological conditions [31]. Preclinical studies of TBI
revealed that the PI3K/Akt signaling pathway exerted pos-
itive effects on neural repair by regulating neuronal apop-
tosis and neurogenesis [32,33]. Focal adhesions are pro-
tein complexes that mediate cell adhesion by linking the
extracellular matrix to the cytoskeleton [34]. A recent in
vitro study demonstrated that inhibiting focal adhesion ki-
nase phosphorylation could mitigate astrocyte activation in-
duced by mechano-stimulation [35]. Cellular senescence
refers to a cell state triggered by various stress factors and
some specific physiological conditions [36]. It is charac-
terized by proliferative arrest, secretory phenotype, macro-
molecular damage, and alternation in metabolism [36,37].
Several studies suggested that DNA damage-induced cellu-
lar senescence was a possible driver of TBI-associated se-
quelae such as cognitive impairment [38—40]. Among the
common DEGs, several genes might play a role in the re-
sponse to DNA damage. Du et al. [41] found that the acti-
vation of complement C3 contributed to retinal DNA dam-
age and C3 deficiency alleviated alkylation-induced reti-
nal degeneration in mice. Raso ef al. [42] reported that
Isgl5 upregulation promoted DNA replication fork pro-
gression, leading to extensive DNA damage and chromoso-
mal aberrations in a human osteosarcoma cell line. Xie e?
al. [43] found that downregulating the expression of CX3C
chemokine receptor 1 (Cx3crl) accelerated double-strand
DNA damage in irradiated ovarian cancer cells. These ex-
periments were primarily in the field of oncology, and the
studies that investigated how these genes regulated DNA
damage response to impact the progression of TBI are still
limited.

To further explore potential biological functions and
signaling pathways involved in hippocampal damage, we
performed GO and KEGG analyses based on the common
DEGs of the two datasets. We found that the DEGs were
mainly involved in an array of critical immune and inflam-
matory processes, including antigen processing and pre-
sentation, leukocyte and lymphocyte mediated immunity,
adaptive immune response, phagosome, lysosome, and
complement and coagulation cascades. Following the ini-
tial insult triggered by TBI, peripheral leukocytes and lym-
phocytes were successively recruited to the injury site [44].
Antigen processing and presentation by antigen-presenting
cells promote the transition between innate and adaptive
immune responses [45]. Moderate immune responses pro-
mote the removal of cellular debris, repair, and regenera-
tion in the central nervous system (CNS) post-TBI, but ex-
cessive immune responses result in reactions causing de-
structive neuroinflammation and maladaptive secondary in-
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juries [3,44]. In view of the enrichment of phagosome- and
lysosome-related genes after TBI, it is reasonable to specu-
late that active phagocytosis plays a critical role in neural in-
jury and repair [46]. Microglia act as important phagocytes
in the brain and can rapidly remove cellular and myelin de-
bris after brain injury [47]. Moderate microglial phagocy-
tosis is beneficial for remodeling the brain microenviron-
ment and alleviating secondary injury [47,48], whereas ex-
cessive phagocytosis by microglia of neurons, synapses, or
myelin may impede tissue and functional recovery [49,50].
Current evidence indicates extensive crosstalk between the
complement and coagulation systems, which have funda-
mental clinical implications for inflammation, immunity,
and tissue damage [51]. A previous proteomics study sug-
gested that complement and coagulation cascades were ac-
tivated during the acute and subacute phases of TBI, which
was consistent with our findings [52].

In addition to the functional enrichment and pathway
analyses described above, we proceeded to construct the
PPI network of the DEGs and then identified the top 15
hub genes which were upregulated in both datasets. Among
the hub genes, we found several microglia signature genes
such as Csflr, Aifl, and Trem2. Csflr is a crucial regula-
tor of myeloid lineage cells and is also necessary for main-
taining the cell viability of microglia [53]. Several exper-
iments adopted the method of Csflr inhibition to attenuate
microglia-mediated neuroinflammation in rodent models of
TBI [54,55]. However, given that microglia plays a key
role in maintaining homeostasis and normal function of the
brain [56], inhibiting Csflr may increase the risk of failure
in clinical translation. In contrast, the infiltrating periph-
eral macrophages in the brain after TBI may be promising
targets for developing potential treatment strategies [57].
Aifl is a calcium-binding protein that regulates immune
and inflammatory responses [58,59]. Increased expression
of Aifl is an indication of microglia and macrophage ac-
tivation in response to brain trauma [60,61]. A previous
experimental study identified 7rem2 and Tyrobp as sig-
nificant hub genes in TBI mice expressing human APOE
[62]. Trem2 is an innate immune receptor mainly expressed
on various tissue macrophages, such as microglia in the
brain [63]. It transmits intracellular signals through bind-
ing with the adaptor protein Tyrobp, which in turn regulates
many crucial biological processes, including phagocytosis,
chemotaxis, inflammatory responses, and lipid metabolism
[56,63,64]. It was reported that Trem2 deficiency allevi-
ated the acute peripheral macrophage infiltration and atten-
uated chronic hippocampal atrophy and cognitive deficits
in a murine TBI model [65]. Given the vital role of Trem2
in the progression of neurodegeneration, it was worthwhile
to explore it as a potential therapeutic target in managing
TBI-mediated neurodegenerative pathologies [56,57,65].

Ctss is a cysteine protease expressed by diverse im-
mune cells that is responsible for cleaving certain extracel-
lular matrix proteins and cell adhesion molecules to pro-
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mote immune cell motility [66,67]. In the acute phase after
TBI, the upregulation of Ctss expression was mainly ob-
served in microglia; inhibiting Ctss could reduce the level
of inflammatory factors, alleviate brain edema, and im-
prove neurobehavioral function [68]. The Cd74 molecule
is the cognate receptor of macrophage migration inhibitory
factor that is recognized to be a pleiotropic inflamma-
tory cytokine [69,70]. Tobin ef al. [45] found that TBI-
induced neurodegeneration depended on antigen processing
and presentation that required Cd74. Cd74 deficiency could
decrease peripheral lymphocyte activation and neurodegen-
eration following TBI, suggesting that targeting the switch
between innate and adaptive immunity might be a potential
therapeutic strategy [45]. Clqa, Clgb, and Clqc are three
distinct subunits of complement component C1q, which is a
crucial protein in the complement cascade within the innate
immune system [71,72]. One recent clinical study showed
that elevated serum C1q levels were significantly correlated
with traumatic severity and could serve as an independent
prognostic factor for long-term outcomes after TBI [73].
After TBI, microglia and neurons were the primary source
of C1q[74,75]. The increased expression of C1q might lead
to neuron loss and chronic neuroinflammation and correlate
with sleep spindle loss and epileptic spikes. Blocking Clq
was beneficial to counteract these effects, indicating that
Clq might be a potential target for treating the devastating
long-term outcomes of TBI [75].

We also discovered two upregulated Fc receptor
genes. It was reported that Fcerlg might be a potential mi-
croglial biomarker related to aging and neurodegeneration
[72,76]. Among the Fc receptors, Fcgr2b could serve as one
marker of the pro-inflammatory phenotype of microglia af-
ter TBI [77-79]. There was some evidence that Laptm5
had pro-inflammatory properties in macrophages [80]. In a
chronic constriction injury in rats, Laptm5 was identified as
a significant upregulated neuroinflammation-related gene
that influenced neuropathic pain behavior [81]. However,
due to the lack of relevant literature, it is unknown whether
Laptm5 plays a role in the pathological processes of TBI.

TF co-factors play an essential role in diverse biolog-
ical processes by interacting with TFs to suppress or acti-
vate gene transcription [21,82]. Among the DEGs shared
in common between the GSE111452 and GSE173975
datasets, we found two inflammation-related TF co-factors
(Aebpl and Pycard). Aebpl has been shown to promote
inflammatory processes in macrophages by activating the
nuclear factor kappa B [83,84]. Shijo et al. [85] found
that Aebpl was highly expressed in hippocampal neurons
and glial cells in AD patients, implying its potential role
in the progression of AD pathology. The Pycard gene
encodes a critical adaptor protein in activating inflamma-
somes [86]. Recent research has shown that inflammasome
proteins such as Pycard are elevated in the blood of TBI
patients and are closely associated with injury severity and
pathological outcomes [87]. Experimental inhibition of in-
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flammasomes exerted anti-inflammatory and neuroprotec-
tive effects in rodent models of TBI, implying that devel-
oping inflammasome-targeting therapeutics might be a po-
tential direction for future research [88—90].

CTE refers to a progressive Tau-dependent neurode-
generative disease that remains relatively understudied [91,
92]. In several animal models of TBI, the immunocyto-
chemical signature for CTE has been presented, which is in
agreement with clinical studies [4,7]. Among the common
DEGs identified in this study, several genes (e.g., Trem2,
Tyrobp, and Cx3crl) might be involved in the progression
of tauopathy based on the current literature. Jiang et al.
[93] found that Trem?2 attenuated tau kinase activity by in-
hibiting neuroinflammation and Trem?2 deficiency exacer-
bated tau pathology and neurodegeneration in P301S tau
transgenic mice. Another study reported that Trem2 dele-
tion enhanced tau dispersion through microglia exosomes
[94]. In a tauopathy mouse model, silencing of Tyrobp re-
duced Clq levels and improved learning behavior and elec-
trophysiological properties despite increasing tau phospho-
rylation [95]. Cx3crl was deemed as a potential target for
treating tauopathy, since its deficiency impaired the phago-
cytosis and internalization of extracellular tau by microglia
[96,97].

Recent evidence suggested that endoplasmic reticu-
lum (ER) stress resulted in extensive behavioral changes re-
lated to a CTE-like phenotype after TBI [91,98]. Inhibiting
ER stress ameliorated cognitive deficits by reducing tau hy-
perphosphorylation in rodent models of CTE [91,98]. Sev-
eral genes within the common DEGs might be involved in
ER stress response. It was reported that Glycoprotein non-
metastatic melanoma protein B (Gpnmb) increased the ex-
pression of chaperone protein BiP to increase the protein-
folding capacity of the ER and attenuate cell death caused
by ER stress [99]. In a cerebral ischemia mouse model,
the neuronal damage of Gpnmb-transgenic mice was sig-
nificantly alleviated compared with wild-type mice [99].
Kam et al. [100] found that Fcgr2b mediated amyloid-3
neurotoxicity by activating ER stress and caspase-12. It
has been reported that the translocator protein (Tspo) is a
potential biomarker in multiple inflammatory and neurode-
generative diseases [101,102]. Loss of Tspo in hepatocytes
caused free cholesterol accumulation, which subsequently
induced ER stress [103]. More importantly, recent clini-
cal studies suggested that PET imaging with tracers bind-
ing to Tspo could be applied to detect the neuroinflamma-
tory changes in subjects with CTE [102,104]. Interestingly,
a multi-tracer PET Study showed that tau deposition and
increased Tspo expression were co-localized in the cortex
and hippocampus in a tau transgenic mouse model; how-
ever, the complex interaction between tauopathy and Tspo
expression remains to be further studied [105]. Neuroimag-
ing modalities could be conducted longitudinally at various
time points on the same subject, showing an advantage in
observing dynamic change during the progression of CTE
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[92]. In future studies, molecular imaging through PET
technology such as Tspo-PET may be used as a novel tool
to study CTE on preclinical models and help to elucidate
the complex pathophysiological mechanisms leading from
TBI to symptomatic CTE [102,104]. In addition, Gouna
and colleagues [106] demonstrated that Trem2 deficiency
in microglia/macrophages resulted in ER stress due to im-
paired lipid droplet formation. The potential critical role
of these genes in both tauopathy progression and ER stress
implied that they might be of considerable value in the field
of CTE modeling, although the specific molecular mecha-
nisms remain to be determined in future studies. Tau trans-
genic rodent models combined with targeted gene deletion
might be instrumental for the study of CTE modeling and
help to reveal the potential pathophysiological processes of
CTE.

In summary, our research was a comprehensive bioin-
formatics study analyzing the transcriptome data of rat hip-
pocampus in the subacute phase of TBI. We used multi-
ple tools for enrichment analysis to reveal the underlying
biological mechanisms involved in TBI-related hippocam-
pal impairment. The enrichment analysis showed that TBI
might result in a significant dysregulation of multiple in-
flammation and immune processes. We further identified
the hub genes, TF co-factors, and IRGs, which likely play a
critical role in the progression of hippocampal impairment.

In the validation experiment, we found some appar-
ent histopathologic changes in the hippocampus during the
subacute phase of TBI, including neuronal necrosis and re-
ductions in the number of intact neurons. A previous study
supports the pathological changes described in our model
[107]. Furthermore, we used immunohistochemical stain-
ing to observe the number of microglia. The staining re-
sults suggested that the level of microglia activation was
markedly elevated in the hippocampus of rats in the TBI
group when compared with the sham group. Through im-
munofluorescence staining analysis, Luo et al. [52] also
found that the number of microglia was significantly in-
creased in the hippocampus during the subacute phase of
TBI, which was consistent with our results. Similarly, the
immune-related DEGs identified by bioinformatic analyses
were significantly enriched in BP terms associated with the
activation of microglia and macrophages. Microglia is the
major type of glial cells involved in neuroinflammation in
the mammalian CNS [108]. The peripheral immune cells
(especially macrophages) are also essential responders to
tissue injuries in the CNS [3,109]. These findings sug-
gest that these inflammatory cells might be valuable targets
in the therapy of hippocampal impairment in the subacute
phase after TBI. Moreover, we also detected the mRNA ex-
pression levels of the 15 hub genes identified by bioinfor-
matics analyses. Overall, the RT-qPCR results were con-
sistent with the transcriptome data, indicating that the tran-
scriptome data were reliable. Overall, traumatic homogene-
ity between the datasets and our validation experiment was
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relatively high. Both the datasets and our experiment used
adult male SD rats as the experimental objects, and the loca-
tion and extent of the brain injury were similar. In addition,
the tissue type and disease stage were consistent.

However, there were several limitations of this study.
First, it specifically focused on the hippocampus rather than
other brain regions. The principal reason was that hip-
pocampal impairment acts as a key player in the pathogene-
sis of TBI-induced cognitive decline [6,8,9], which was one
of the most dominant clinical manifestations in the subacute
phase [110-112]. Developing effective treatments to pro-
mote cognitive rehabilitation in TBI patients during the sub-
acute phase is of high clinical importance [110]. The bioin-
formatics analyses and experimental validation performed
in this study mainly focused on the subacute phase (14
days), which was important for assessing cognitive func-
tion in the rodent model of TBI [13,113]. Notably, there
was some evidence that several potential biomarkers were
significantly upregulated in the acute phase. For instance,
Saber et al. [65] found that both the protein and mRNA ex-
pressions of Trem2 were significantly increased in the ip-
silateral cortex in mice on the third day after experimental
TBI. The study by Luo and colleagues [52] revealed that
the multiple proteins (e.g., Clqa, Pycard, Aifl, Ptpn6, and
Fcerlg) in the ipsilateral hippocampus were markedly up-
regulated in a rat model of TBI on the third day. In addition,
Wang et al. [54] reported that the gene expression levels of
Clqa, Aifl, and Csflr were prominently increased in the
perilesional area on the fifth day post injury in TBI mice.
Therefore, these biomarker genes might become important
therapeutic targets during the early phase of TBI. Further
study on these crucial genes might provide useful insight
for treating TBI-induced cognitive deficits in fundamental,
translational, and clinical research.

Second, in this study, only male rats were used in the
experiments. Previous observations have suggested that
there may be a link between sex and clinical outcomes
after TBI [114,115]. Some studies demonstrated that fe-
males had a lower risk of mortality and cognitive dysfunc-
tion than males, while others failed to find such advan-
tages [114,115]. Given the predominant role of microglia in
posttraumatic neuroinflammation, it is worthwhile to deter-
mine whether sex differences exist in microglial activation
after TBI [114]. Several studies have revealed that male
rodents may exhibit more significant microglial activation
than female rodents [114,116,117]. However, there has also
been conflicting evidence about the influence of sex on mi-
croglial activation in rodent models of TBI [79,114]. Re-
grettably, there is currently an apparent male bias in the
field of TBI research, both in preclinical rodent studies and
clinical trials [116,118]. Thus, future studies are needed be-
fore drawing definite conclusions about the role of sex in
TBI. Finally, traditional microarray and mRNA sequencing
techniques mainly investigate the global gene expression
patterns of the same tissues. Single-cell mRNA sequenc-
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ing techniques may help to reveal the exact role of specific
cell types in the complex pathophysiological mechanisms
underlying TBI.

5. Conclusions

In conclusion, this study identified several critical
genes and key signaling pathways involved in hippocam-
pal impairment induced by TBI. Several genes involved in
neuroinflammation (e.g., Trem2, Clq, and Pycard) might
represent potential targets for treating TBI-induced cogni-
tive deficits.
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