
J. Integr. Neurosci. 2023; 22(3): 57
https://doi.org/10.31083/j.jin2203057

Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

A Fully Automated Visual Grading System for White Matter
Hyperintensities of T2-Fluid Attenuated Inversion Recovery Magnetic
Resonance Imaging
ZunHyan Rieu1,†, Regina EY Kim1,†, Minho Lee1, Hye Weon Kim1, Donghyeon Kim1,
JeongHyun Yong1, JiMin Kim2, MinKyoung Lee3, Hyunkook Lim4, JeeYoung Kim2,*
1Research Institute, NEUROPHET Inc., 06234 Seoul, Republic of Korea
2Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 06247 Seoul, Republic of Korea
3Department of Radiology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 06247 Seoul, Republic of Korea
4Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 06247 Seoul, Republic of Korea
*Correspondence: jeeyoungkim@catholic.ac.kr (JeeYoung Kim)
†These authors contributed equally.
Academic Editor: Gernot Riedel
Submitted: 30 September 2022 Revised: 21 December 2022 Accepted: 26 December 2022 Published: 6 May 2023

Abstract

Background: The Fazekas scale is one of the most commonly used visual grading systems for white matter hyperintensity (WMH) for
brain disorders like dementia from T2-fluid attenuated inversion recovery magnetic resonance (MR) images (T2-FLAIRs). However,
the visual grading of the Fazekas scale suffers from low-intra and inter-rater reliability and high labor-intensive work. Therefore, we de-
veloped a fully automated visual grading system using quantifiable measurements. Methods: Our approach involves four stages: (1) the
deep learning-based segmentation of ventricles and WMH lesions, (2) the categorization into periventricular white matter hyperintensity
(PWMH) and deep white matter hyperintensity (DWMH), (3) theWMH diameter measurement, and (4) automated scoring, following the
quantifiable method modified for Fazekas grading. We compared the performances of our method and that of the modified Fazekas scale
graded by three neuroradiologists for 404 subjects with T2-FLAIR utilized from a clinical site in Korea. Results: The Krippendorff’s
alpha across our method and raters (A) versus those only between the radiologists (R) were comparable, showing substantial (0.694 vs.
0.732; 0.658 vs. 0.671) and moderate (0.579 vs. 0.586) level of agreements for the modified Fazekas, the DWMH, and the PWMH
scales, respectively. Also, the average of areas under the receiver operating characteristic curve between the radiologists (0.80 ± 0.09)
and the radiologists against our approach (0.80 ± 0.03) was comparable. Conclusions: Our fully automated visual grading system for
WMH demonstrated comparable performance to the radiologists, which we believe has the potential to assist the radiologist in clinical
findings with unbiased and consistent scoring.
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1. Introduction
T2-weighted fluid-attenuated inversion recoverymag-

netic resonance imaging (T2-FLAIRs) is used to assess the
severity of white matter lesions that appeared as hyperin-
tensities (WMHs) in vivo. WMH provides important in-
formation about brain health, aging, and possible disease
burden [1–4]. WMH has been recognized as an impor-
tant biomarker for small-vessel cerebrovascular diseases
and Alzheimer’s disease [5,6].

The Fazekas scale provides a conventional visual
grading approach to quantifyWMHseverity into four scales
and is often practiced by radiologists and in clinics world-
wide [7]. The Fazekas scale classifies the severity of
WMHs presented in the T2-FLAIR using the combination
of the periventricular hyperintensity (PWMH) scale and the
deep white matter hyperintensity (DWMH) scale [7]. Both
PWMHs and DWMHs are graded from zero to three (Ta-
ble 1) [7].

However, the use of the Fazekas scale in clinical prac-

tice or research is often limited by its labor-intensive pro-
cess, as are all forms of visual grading [8], and low inter-
and intra-rater reliability due to its ambiguous given criteria
[9]. Over time, the age-related white matter changes (AR-
WMC) scale was introduced to overcome the ambiguous-
ness of the subjectively measured Fazekas scale to provide
quantifiable measurements [10]. Yet, the ARWMC scale
also had limits due to not providing a detailed separation of
DWMH and PWMH lesions. Hence, we had to find an ad-
vanced method that is computationally viable to implement
for gratifying the original Fazekas scale. Several groups
suggested a quantifiable method using the maximum diam-
eter distance to divide DWMH and PWMH. The DWMH
and PWMH scales are defined from the measured distance,
which they call the modified Fazekas scale (Table 1) [11].

This study aims to provide an automated approach to
the modified Fazekas scale that is efficient and easily appli-
cable with reliable results in general clinical research and
practice to assist doctors by reducing their labor-intensive
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Table 1. Comparison of criteria between the original and the modified Fazekas scale.
The original Fazekas scale The modified Fazekas scale

Grade 0 Absent Absent

Grade 1 PWMH: caps or pencil-thin lining PWMH <10 mm AND DWMH <10 mm
DWMH: punctuate foci

Grade 2 PWMH: smooth halo 1. DWMH <10 mm AND PWMH ≥10 mm
DWMH: beginning confluence OR

2. 10 mm ≤ DWMH <25
OR

3. DWMH ≥25 mm AND PWMH <10 mm

Grade 3 PWMH: irregular periventricular signal
extending into the deep white matter

PWMH ≥10 mm AND DWMH ≥25 mm

DWMH: large confluent areas
DWMH, deep white matter hyperintensity; PWMH, periventricular hyperintensity.

process. Thus, this study shares our implementation and
validation on a fully automated modified Fazekas scale us-
ing deep learning and a rule-based algorithm. Radiologists
participated in this study to validate if our method is com-
parable to humans since this study is the first automation
algorithm for the modified Fazekas scale.

2. Materials and Methods
2.1 Overview of the Proposed Method

The proposed approach consists of four stages (Fig. 1).
First, the ventricle and WMH are segmented from the input
2D T2-FLAIR using a deep learning algorithm [12]. Sec-
ond, the segmented WMHs are categorized into DWMHs
and PWMHs following the rule suggested in the previ-
ous study [13]. Third, the maximum diameter is measured
for both DWMHs and PWMHs according to the modified
Fazekas scale. Finally, the modified Fazekas scale is cal-
culated using the obtained maximum diameter of DWMH
and PWMH. For validation, we compared the agreements
of our proposed method against those of three certified ra-
diologists.

2.2 Institutional Review Board Statement
The study was conducted according to the guidelines

of the Declaration of Helsinki and approved by the Institu-
tional ReviewBoard of Eunpyeon St. Mary’s Hospital, Col-
lege of Medicine, The Catholic University of Korea (IRB
No. PC20EISI0094 on 02 July 2020).

2.3 Study Population Demographics
Two-dimensional (2D) T2-FLAIR scans from the

Catholic University of Korea Eunpyeong St. Mary’s Hos-
pital were used in this study. The dataset was collected
with the inclusion criteria of magnetic resonance imaging
(MRI) containing WMH diagnosed with dementia. The
exclusion criteria were WMHs with multiple pathologies,
such as stroke or other disorders that may cause different
components (e.g., cerebrospinal fluid, microbleeds) within

the WMHs. The average age of the 404 participants was
68.7 ± 12.7 years.

2.4 MRI Acquisition
All images were acquired using a 3T MRI scan-

ner (MAGNETOM Vida, Siemens Medical Solutions Inc.,
Malvern, PA, USA) with the following parameters: axial,
time of echo (TE) = 114 ms, time of repetition (TR) = 8 s,
time of inversion (TI) = 2370 ms, field of view (FOV) = 21
cm × 21 cm, slice thickness = 4 mm, number of slices =
32, with a gap = 1 mm, and acquisition matrix size = 384×
230.

2.5 Comparison between Human Raters and Our
Proposed Method

The modified Fazekas scale is based on measuring the
maximum diameter (mm) of DWMH and PWMH, which
is quantitative (Table 1). Theoretically, our computation-
ally implemented measuring method would be more accu-
rate than the human raters. Yet, we compared our auto-
mated results to the human raters to demonstrate the sim-
ilarity since the main goal of developing this method is to
help out the intense labor of humans. For human raters,
each T2-FLAIR images were assessed by three certified ra-
diologists with a subspecialty in neuroradiology. All pa-
tient information was blinded to make no bias in rating, and
also that mutual information shall not be shared between the
raters. The images were visually graded independently by
raters following the criteria of the modified Fazekas scale.
The raters manually used a MRI measuring tool to mea-
sure the diameter (mm) of the longest axis on the PWMH
and DWMH. Measurement was done on raw MRI without
any provided annotations. Then, radiologists provided the
modified Fazekas scale on the basis of the measurement
[11]. For our proposed method, we proceed with the au-
tomated pipeline shown in the overview of the proposed
method (Fig. 1), then provide the modified Fazekas scale.
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Fig. 1. The pipeline of the proposed method. Automated scoring for the Fazekas scale involves four stages and is based on T2-FLAIR
MR images. (a) Brain tissue and WMH segmentation. (b) WMH separation. (c) Diameter measurement. (d) Fazekas scale prediction.

Fig. 2. DWMH and PWMH separation results in multiple planes. The blue, green, and red labels represent the ventricles, PWMH,
and DWMH segmentations, respectively. (a) Axial plane. (b) Sagittal plane. (c) Coronal plane. (d) 3D view from the top.

2.6 Automated Classification for the Modified Fazekas
Scale
2.6.1 T2-FLAIR Segmentation between Ventricle and
WMH

We used our previously reported in-house method for
simultaneous ventricle and WMH segmentation (Fig. 1a)
[12]. The publication introduced two individual deep
learning-based segmentation methods for T2-FLAIR. This
research aimed to produce brain tissues andWMH segmen-
tation using T2-FLAIRwithout its paired T1-weightedMRI
(T1). We utilized the semi-supervised learning method and
constructed the deep learning-based segmentation model to
train FreeSurfer-generated brain tissue, including the ven-
tricle from T1 to T2-FLAIR [14,15]. Then, the WMH
model was trained with U-Net-based architecture using
manually annotated and clinically confirmed WMH la-
bels from radiologists utilizing PyTorch (version 1.7.1,
python software foundation, Wilmington, DE, USA) [16,
17]. The previous research datasets are unrelated to our
automated approach. The in-house segmentations demon-
strated promising results for further clinical relevance and
application.

All processed segmentation labels from the models
used for this study were set to right-anterior-superior (RAS)
orientation and resampled to 1× 1 mm3 spacing for the ax-
ial plane. Then, the ventricle and WMH segmentation re-
sults were merged for further measurement.

2.6.2 WMH Separation into DWMH and PWMH
We categorized the segmented WMH region further

into DWMH and PWMH regions (Fig. 2). The sepa-
ration was based on the calculated distance between the
DWMHs/PWMHs and the boundaries of the segmented
ventricle regions. For the X and Y axes, we separated
PWMHs and DWMHs in 2D slice-based where ventricle
segmentation exists in the axial plane: PWMHs were spec-
ified from WMHs within ≤13 mm from the margin of the
ventricles; DWMHs were specified fromWMHs outside of
>13 mm [13]. For the Z-axis, we defined PWMHs and
DWMHs based on the range of the ventricles in the Z-axis:
PWMHs forWMHs from the lowest slice to slice one above
the ventricle and DWMHs for others [11].
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2.6.3 Diameter of DWMH and PWMH

We measured the diameters of the separated DWMH
and PWMH (Fig. 3). The vertical distance was used
for DWMHs, and the horizontal distance was used for
PWMHs, as suggested in the modified Fazekas scale [11].

Fig. 3. Overview of the WMH separation into DWMH and
PWMH.WMH,white matter hyperintensity; DWMH, deep white
matter hyperintensity; PWMH, periventricular white matter hy-
perintensity.

Principal Component Analysis (PCA) based on the eu-
clidean distance was performed on DWMHs in all 2D ax-
ial planes to measure the vertical diameter [18]. Taking
the irregularly shaped DWMH as an input, the PCA-based
measurement generates an approximated ellipse around the
DWMH (Fig. 4d). Then, the major and minor axes are sug-
gested for the eclipse. Since the DWMH scale is measured
from the maximum diameter, we utilized the distance of the
major axis [18].

PWMH is measured by measuring the horizontal di-
ameter between the ventricle and the PWMH. Since the hor-
izontal diameter varies from the starting point of the ven-
tricle, we created a 2D Danielsson distance map for all 2D
axial slices containing PWMHs and ventricles (Fig. 5) [19].
We extracted the ventricle contour from the distance map.
We created perpendicular rays with a length of 13 mm from
each pixel coordinate of the ventricle contour, representing
the cut-off distance between PWMH and DWMH [13]. For
each cluster of PWMH, we measured the mean distance of
every ray that intersected the PWMH.

2.6.4 Classification of the Modified Fazekas Scale

At this stage (Fig. 1d), we finalized the automation
process by classifying the modified Fazekas scale. Us-
ing the measured maximum diameters of the DWMHs and
PWMHs, we assigned scales ranging from 1 to 3 (Table 1)

as suggested by the modified Fazekas scale [11]. For the
PWMHs, 1 represented maximum diameters <5 mm, 3
represented maximum diameters ≥10 mm, and 2 repre-
sented maximum diameters ≥5 mm and <10 mm. For
the DWMHs, 1 represented maximum diameters <10 mm,
3 represented maximum diameters ≥25 mm, and 2 repre-
sented maximum diameters≥10 mm but<25 mm. Finally,
we classified the modified Fazekas scale using the WMH
Visual rating system (Table 1).

2.7 Performance Evaluation
We investigated the agreements of the modified

Fazekas scale from our proposed method and the experts
with different years of experience. The multiple-rater
agreement was assessed using Krippendorff’s alpha [20].
Krippendorff’s alpha was utilized to provide the level of
agreement between the visual gradings performed by the ra-
diologists and our proposed method. The inter-rater agree-
ment was assessed using the areas under the receiver op-
erating characteristic curves (AUROCs) [21] for the pro-
posed method and each radiologist assessment. The AU-
ROC was utilized to present the correspondence between
our proposed method and the radiologists. The AUROC
was used to determine the decision threshold for the clas-
sification performance of the two raters related to the true-
positive rate (TPR) and false-positive rate (FPR) within the
range of 0 to 1. Higher AUROCs are associated with higher
performance than the gold standard [21]. All the perfor-
mance evaluation was conducted either using R package
software version 3.4.3 (The R Foundation for Statistical
Computing, Vienna, Austria) or Python version 3.7 (Python
Software Foundation) with the scikit-learn library [22–24].

3. Results
3.1 Multiple-Rater Agreement

To investigate the level of agreement between the dif-
ferent ratings, we assessed the multiple-rater agreement us-
ingKrippendorff’s alpha (α) [25]. Themultiple-rater agree-
ments (α) with and without our proposed method for the
DWMH scale, PWMH scale, and the modified Fazekas
scale are shown in Table 2. The agreement of the modified
Fazekas scale among the radiologists (R) and the ratings in-
cluding our proposed method (A) were both substantial, as
indicated byα = 0.732 and 0.694, respectively, as suggested
in Krippendorff’s alpha [20]. Themulti-rater agreement (α)
was also substantial (R, 0.671; A, 0.658) for DWHH and
moderate (R, 0.586; A, 0.579) for PWMH, as suggested in
Krippendorff’s alpha [20]. Note that the multi-rater agree-
ment (α) for among the radiologists’ ratings only (R) was
consistently higher (the modified Fazekas scale, +0.038;
DWMH scale, 0.013; PWMH scale, 0.007) than the agree-
ment of the radiologists’ ratings and our proposed method.
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Fig. 4. Measurement of DWMH performed with PCA method. (a) T2-FLAIR MRI input. (b) DWMH segmentation. (c) PCA
method. (d) Calculation of the major and minor axes.

Fig. 5. Measurement of PWMH with four stages. (a) T2-FLAIR MRI input. (b) Combined segmentation results with ventricles and
WMHs. (c) Distance map from ventricle segmentation. (d) PWMH measurement using ventricle segmentation and a distance map.

Table 2. Multiple-rater agreement using Krippendorff’s alpha coefficient for the modified Fazekas scale.
Multiple-rater agreements (α)

ROI
(R) without proposed method (A) with proposed method

R1, R2, and R3 R1, R2, R3, and P
The modified Fazekas scale 0.732* 0.694*
DWMH scale 0.671* 0.658
PWMH scale 0.586 0.579
ROI, region of interest; DWMH, deep white matter hyperintensity; PWMH, periventricular
hyperintensity; P, proposed method; R1/2/3, raters 1, 2, and 3; *, Krippendorff’s alpha (α)
greater than (≥) 0.667.

3.2 Inter-Rater Agreement

We determined the performance agreement using AU-
ROCs. The agreements of the modified Fazekas scales de-
termined by the radiologists and the proposed method are
summarized in Table 3: G shows the evaluations by the ra-
diologists (R1 vs. R2, R1 vs. R3, and R2 vs. R3), and
M shows the evaluations by the raters and the proposed
method (R1 vs. P, R2 vs. P, R3 vs. P). The interpreta-
tions of the area under the curve (AUROC) coefficients are
as follows: 0.5, no discrimination; 0.6 to 0.7, poor discrim-
ination; 0.7 to 0.8, acceptable discrimination; 0.8 to 0.9,
excellent discrimination; 0.9 to 1.0, outstanding discrimi-
nation [26]. The average AUROC scores for the modified
Fazekas scale determined by the radiologists showed excel-

lent discrimination (G 0.87 ± 0.06; M 0.83 ± 0.05) for the
modified Fazekas scale 1, excellent and acceptable discrim-
ination (G 0.83 ± 0.08; M 0.77 ± 0.05) for the modified
Fazekas scale 2, and acceptable discrimination (G 0.70 ±
0.10; M 0.79± 0.09) for the modified Fazekas scale 3. The
average AUROC score for the agreement between the radi-
ologists (G) was higher than that for our proposed method
(M), the modified Fazekas scale 1 (+0.04), and themodified
Fazekas scale 2 (+0.06). In contrast, M showed a higher
score than G for the modified Fazekas scale 3 (+0.09).

4. Discussion
In this study, we demonstrated a fully automated vi-

sual grading system for WMH using the modified Fazekas
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Table 3. Inter-rater agreement using AUROC coefficient on the modified Fazekas scale.
(G) between radiologists (M) against our proposed method

Modified Fazekas scale Modified Fazekas scale

1 2 3 1 2 3

R1 vs. R2 0.89 0.85 0.63 R1 vs. P 0.81 0.74 0.71
R1 vs. R3 0.80 0.74 0.81 R2 vs. P 0.79 0.75 0.89
R2 vs. R3 0.93 0.91 0.64 R3 vs. P 0.88 0.83 0.78
Average 0.87 ± 0.06 0.83 ± 0.08 0.70 ± 0.10 Average 0.83 ± 0.05 0.77 ± 0.05 0.79 ± 0.09
Combined 0.80 ± 0.09 Combined 0.80 ± 0.03
The inter-rater agreements of raters only (G, left part of the table) and raters vs. proposed method (M, right part of the
table); R1/2/3, raters 1, 2, and 3; P, proposed method.

scale on T2-FLAIRs. Our approach aimed to automate
the visual grading of the modified Fazekas scale utiliz-
ing deep learning and rule-based algorithms with quantifi-
able imaging-driven measurements using T2-FLAIR exclu-
sively. This study was the first attempt to automate the
WMHvisual grading using themodified Fazekas scale [11].

Theoretically, since our proposed method is a compu-
tational implementation, it is more accurate than the manu-
ally calculated results from the human raters when it comes
to measuring the diameter of WMHs. Nevertheless, per-
formance evaluations were done on comparing our results
to the radiologists’ assessments, mainly due to two big rea-
sons. First, the main goal of this method is to help doctors
on reducing labor time and cost on daily basis. Second,
since we are the first software to implement the modified
Fazekas scale, comparison with other software was impos-
sible. Hence, we compared our proposed method to human
raters with multiple-rater and inter-rater agreements, which
showed a high correspondence. Further investigation of the
intra correlation coefficient (ICC) between software is pre-
ferred [27].

The multiple-rater agreement investigation (rating
agreements with and without our proposed method sug-
gested that the level of agreement from our approach was
comparable to those among the radiologists. We used Krip-
pendorff’s alpha (α), which indicates the reliabilities of
multiple raters for multiple categories [28]. Our results in-
dicated an agreement between the radiologists was simi-
lar to the agreement between the radiologists and our pro-
posed method (Table 2). We noticed ‘(A) with the proposed
method R1, R2, R3, and P’ had slightly lower agreement
than ‘(R) without proposed method R1, R2, and R3’ for all
scales. The lower agreement with our proposed tool is due
to the nature of Krippendorff’s alpha, as the formula con-
tains the weights on the number of raters in the denominator
[20].

The inter-rater agreement between the radiologists and
our proposed method demonstrated an equivalent perfor-
mance on AUROC as well, which indicates the classifica-
tion performance of the modified Fazekas scale between the
two raters. The average AUROC showed minimal differ-
ences in the comparisons within radiologists (G) and be-

tween the radiologists and our proposed method (M) for the
modified Fazekas scale 1 (G 0.87 vs. M 0.83), the modi-
fied Fazekas scale 2 (G 0.83 vs. M 0.77), and the modified
Fazekas scale 3 (G 0.70 vs. M 0.79).

The average AUROC coefficient being higher in
lower modified Fazekas scale means that the radiologists
performed better for small WMH burdens than our pro-
posed method. In contrast, our proposed method performed
better than all of each radiologist and also the average AU-
ROC coefficient for grade 3 for the modified Fazekas scale.
This indicates out method may be clinically useful for ob-
jective disease severity evaluation in large WMH burdens.
Regardless, the combined AUROC of the modified Fazekas
scales demonstrated that the performance value between G
and P was comparable (G 0.80 ± 0.09 vs. P 0.80 ± 0.03),
suggesting that our proposed method is clinically useful as
an objective indicator for WMH evaluation.

Our study has a few limitations. The implemented
modified Fazekas scale may not be widely used more than
the original version. However, since the original Fazekas
scale is not quantifiable and is based on a qualitative and
subjective grading, we had to implement a scale which is
applicable to automatic analysis. Additionally, our pro-
posed system is currently being developed, and it has been
mostly tested using 2D T2-FLAIRs. While this approach
can be extended to any T2-FLAIR protocol, its performance
may vary depending on the protocol. Future validation
studies are needed to generalize our approach. Another lim-
itation is the lack of ground-truth data, which is grand-scale
collected data, on the modified Fazekas scale. We validated
our approach against the three radiologists, whose results
were used as the standard for comparison. As we have ob-
served from our results, the three radiologists did not agree
perfectly, and the ground-truth for the modified Fazekas
scale has not been established at this point. To overcome
the lack of ground-truth, further studies involving more ex-
perienced experts are needed to establish the gold standard
for the modified Fazekas scale.

This study presented an automated modified Fazekas
scoring approach using the objective measurements driven
from T2-FLAIR and showed its performance against certi-
fied neuroradiologists. More work is needed to show our
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approach’s applicability to the research and clinical setting
in the near future. Even so, we believe the present work
could also contribute to both scientific society and clini-
cal environments by suggesting automated analysis for the
modified Fazekas scoring, especially for research related to
large-scale or multi-site of WMH.

5. Conclusions
We introduced a fully automated visual grading sys-

tem for WMH of T2-FLAIRs based on deep learning and
rule-based algorithms utilizing the modified Fazekas scale.
As we aimed, the results of our method were comparable to
those of the three certified radiologists who used the visual
grading method. We believe that our proposed method may
assist clinic works and radiologists’ reading with its fully
automated and quantifiable Fazekas scale with consistent
measurement.
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