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Abstract

Background: With the advent of portable neurophysiological methods, including electroencephalography, progress in studying brain
activity during physical tasks has received considerable attention, predominantly in clinical exercise and sports studies. However, the
neural signatures of physical tasks in everyday settings were less addressed. Methods: Electroencephalography (EEG) indices are
sensitive to fluctuations in the human brain, reflecting spontaneous brain activity with an excellent temporal resolution. Objective: In
this regard, this study attempts to systematically review the feasibility of using EEG indices to quantify human performance in various
physical activities in both laboratory and real-world applications. A secondary goal was to examine the feasibility of using EEG indices
for quantifying human performance during physical activities with mental tasks. The systematic review was conducted based on the
updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Out of 81 studies, 64 task studies
focused on quantifying human performance concerning physical activity, whereas 17 studies focused on quantifying human performance
on physical activities associated with mental tasks. EEG studies have primarily relied on linear methods, including the power spectrum,
followed by the amplitude of Event-related potential components, to evaluate human physical performance. The nonlinear methods were
relatively less addressed in the literature. Most studies focused on assessing the brain activity associated with muscular fatigue tasks.
The upper anatomical areas have been discussed in several occupational schemes. The studies addressing biomechanical loading on the
torso and spine, which are the risk factors for musculoskeletal disorders, are less addressed. Conclusions: Despite the recent interest in
investigating the neural mechanisms underlying human motor functioning, assessing the brain signatures of physical tasks performed in
naturalistic settings is still limited.
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1. Introduction
Neuroergonomics, the study of the brain and behav-

ior at work, applies methods and tools from neuroscience
and neuroengineering to human factors, ergonomics and
engineering for understanding the human brain at work
and in everyday life [1–3]. Traditional domains of hu-
man factors and ergonomics are categorized into cogni-
tive, physical, and organizational ergonomics [4]. Cog-
nitive ergonomics is associated with different mental pro-
cesses such as perception, reasoning, decision making, in-
formation processing, and memory. Physical ergonomics
is concerned with biomechanical, anthropometric, human
anatomical, and physiological characteristics. Progress in
neuroergonomics research to date mainly focused on ana-
lyzing the neural behavior in the cognitive domain of human
activity, while few studies were conducted in the physical

domain [3,5–8]. Since humans are engaged daily with tasks
that require human body or limb movements alongside cog-
nitive processing, integrating both physical and cognitive
considerations should be applied in future neuroergonomics
studies to understand better the human capabilities and lim-
itations at work [9–11].

The human brain is composed of over 100 billion neu-
rons that communicate via electrical signals generating an
electrical current, which subsequently creates wave patterns
termed as brain signals [12]. The brain signals measured in
hertz (Hz) including delta (δ) (0.5 to 4) (Hz), theta (θ) (4
to 8) Hz, alpha (α) (8 to13) Hz, beta (β) (13 to 30) Hz,
and gamma (γ) (30 to 150) Hz [13]. To measure brain sig-
nals, several neurophysiological methods have been used,
which are categorized as direct brain signals, indirect cor-
relates, and imaging. Direct brain signals include mag-
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netoencephalography (MEG), and electroencephalography
(EEG), indirect correlates include functional magnetic res-
onance imaging (fMRI), and functional near-infrared spec-
troscopy (fNIRS) whereas imaging methods include com-
puted tomography (CT), and positron emission tomogra-
phy (PET). The EEG has an excellent temporal resolution
in milliseconds, reflecting the spontaneous activity in the
brain, which is not possible to acquire using fMRI, CT,
and PET. Furthermore, the scale of EEG devices enabled
recording of brain signals in a motion-based task, which is
impossible with fMRI and MEG. The advent of portable,
wearable, and battery-powered neurophysiological meth-
ods has facilitated recording the brain signals during physi-
cal activities. EEG and fNIRS are more accommodating in
neuroergonomics studies [14–16] as they allow full-body
movement without restricted cables or interference [17–
19]. However, fNIRS has a limited temporal resolution,
which is necessary to identify the neural events associated
with physical movements. In this study, we focus on the
feasibility of using EEG indices to quantify human perfor-
mance in various physical activities in both laboratory and
real-world applications.

One limitation in EEG data is the high contamina-
tion of non-neural signals termed as “artifacts”. Artifacts
create abnormal and irregular signal patterns yielding to
data distortion, and thus reducing the signal output quality
[20]. Artifacts are categorized into physiological and non-
physiological sources [21]. Physiological artifacts occur
due to the eye or headmovements, glossokineticmovement,
muscular, respiratory, cardiac activities, and sweat bridges
[22] whereas the non-physiological artifacts arise from the
external environments such as movement of electrodes,
broken electrodes, bad electrode contact, cable movements,
power line, electrical equipment (e.g., cell phones and air
conditioner) and the light source that is 60 Hz or above
[23,24]. Considerable research has been devoted to detect-
ing, separate, and isolating the EEG artifacts. Preventing
movement artifacts entirely from the data is impossible, but
reducing and separating some is applicable [25,26]. The
challenging aspect is not only to removemovement artifacts
but also to assess their impact on the results.

EEG indices are reliable indicators that reflect the
spontaneous activity in the brain. In this regard, it is essen-
tial to explore the research into EEG indices in physical ac-
tivities. An emerging body of knowledge illustrates the ap-
plications of EEG techniques to characterize the brain sig-
natures in several applications, including brain-computer
interfaces (BCI) [27], sports [28], human factors [29], neu-
romarketing [27] and clinical and psychiatric domains [30].
This study follows up on a prospective review byRahman et
al. [31], which discussed the applications of EEG technique
in physical activities. Our current study systematically ex-
plores the use of EEG indices in quantifying human phys-
ical performance to reveal the current state of knowledge
about characterizing the neural mechanisms associated with

physical tasks based on the predefined research questions as
follows:

RQ1: What are the different domains that address the
applications of EEG to assess work-related physical activi-
ties?

RQ2: What are the dominant EEG indices used to
quantify human performance in physical activities?

RQ3: What are the aspects of EEG measurement rel-
evant to physical activities concerning methods of feature
extraction, the number of channels, the number of partici-
pants and their gender, and methods of artifact removal that
have been addressed to date?

RQ4: What are the current limitations in characteriz-
ing human physical performance using EEG data?

To the best of our knowledge, there is no comprehen-
sive study that has reviewed the EEG indices used to quan-
tify human performance to the assessment of physical ac-
tivities. The current study might be helpful for future in-
vestigations that aim to evaluate the human brain activity
associated with human physical tasks in the context of neu-
roergonomics.

2. Procedures
The present study uses a systematic approach to re-

view the applications of EEG indices used to quantify hu-
man performance at work either in the laboratory or real-life
settings.

2.1 Review Standards
This systematic review was conducted using the up-

dated guidelines for preferred reporting items for systematic
reviews and meta-analyses (PRISMA) [32] and a checklist
item. The checklist item we included in (Supplementary
Material A) consists of 27 item checklists addressing the
introduction, methods, results and discussion sections of a
systematic review report. It is a crucial part of the PRISMA
2020 protocol as it helps to record the responses with the
page number for each item in the checklist(s), which makes
the reviewers and readers knowwhat authors did and found,
but also to optimize the quality of reporting and make the
peer review process more efficient. The Cochrane Collab-
oration’s method has been used to minimize the risk of bias
[33].

2.2 Search Strategy
The articles in this review were selected after a search

of the following databases: IEEE Xplore, SpringerLink,
Google Scholar, and Web-of-Science. Some Boolean op-
erators with specific keywords including “EEG” OR “Elec-
troencephalography” AND “physical work” OR “physical
task” OR “physical exercise” OR “physical activity” OR
“physical movement” OR “movement-related cortical ac-
tivity”. Conducted searches were not restricted to publica-
tion dates. A brief explanation of the strategy we followed
for the literature search, including the used data bases, the

2

https://www.imrpress.com


combined searches with the Boolean operator, and key-
words/terms are presented in Supplementary Material B.
We further included an example of how we selected some
articles from “IEEE Xplore database” according to our cri-
teria of inclusions and exclusions.

2.3 Screening Process and Study Selection
Based on the updated PRISMA as shown in (Fig. 1),

830 articles were retrieved from databases. Duplicate stud-
ies (n = 130) were removed, and (n = 427) studies were
removed as an initial screening based on study title with
some exclusions including studies on brain diseases, stud-
ies on children or infants, and studies on animals. There-
fore, (n = 273) records originally screened for eligibility.
After reviewing all abstracts of the remaining articles, (n =
188) were further excluded. To collect all relevant articles
during the literature search, the reference lists of the can-
didate articles (n = 75) were reviewed. Three researchers
independently reviewed the 190 full text articles specifi-
cally (n = 115 from database and n = 75 from citations
search) for inclusion and exclusion criteria. Exclusion cri-
teria were applied to limit the final selection of the rele-
vant studies. To meet the eligibility requirements, we have
included published articles with the following criteria: (a)
only English language publications; (b) experimental stud-
ies on healthy participants; (c) content from peer-reviewed
journals, conference publications, textbooks, and reference
books, and (d) physical activities representing the biome-
chanical properties of movements, such as grasping, grip-
ping, finger wrist, elbow, arm, knee and hipmovements that
may be present during lifting, assembling, carrying, and
placement tasks. Articles with the following features were
excluded: (a) studies that were not associated with physi-
cal tasks; (b) multi-modal studies that do not present EEG
results separately; (c) physical activity studies on infants
or children; (d) physical activities studies on participants
with neural disorders or brain diseases; and (e) physical in
vigorous tasks that require high-intensity movements, such
as jogging [34,35], dancing [36], running [37], or jumping
[38].

2.4 Data Collection and Summary Measures
Relevant information from the included articles was

extracted and is summarized in Supplementary Material
C, which illustrates the article reference, author name and
year of publication, physiological measurements used, EEG
reference used, EEG index analyzed, different domains,
different experimental tasks, characteristics of participants
in terms of gender and number, the EEG artifact removal
method, and EEG feature extraction method.

2.5 Data Extraction and Synthesis
The selected articles were classified according to the

following eight domains: (1) physical, muscular, or neu-
romuscular fatigue, (2) movement observation, planning,

and execution, (3) biomechanical properties (e.g., force,
torque), (4) stressful and emotional exhaustion, (5) physical
workload, (6) perception of physical effort, (7) motor train-
ing and learning, and (8) strength capability. Data extrac-
tion and synthesis were independently reviewed by three
researchers.

2.6 Quality Assessment

Three researchers independently assessed the qual-
ity of the studies. Any disagreement between the authors
was resolved by consensus. The Cochrane Collaboration’s
method [39] was used to assess the risk of bias in each ex-
periment of the selected studies. The Cochrane Collabo-
ration’s method has six main domains of bias: (1) random
sequence generation, (2) allocation concealment, (3) blind-
ing of participants and personnel, (4) blinding to outcome
assessment, (5) incomplete outcome data, and (6) selective
reporting. The following judgments were used to assess the
quality of the articles: low risk of bias, unclear risk of bias,
or high risk of bias. To evaluate the strength of the evidence,
we applied the standards of the Agency for Healthcare Re-
search and Quality AHRQ [40]. A good quality article was
judged to have a low risk of bias, a fair quality article was
judged to have two unclear risks of bias, and low-quality
article was judged to have a high risk of bias. The over-
all quality of the studies was categorized into good, fair, or
low, if the number of low-risk domains was ≥4, =3, or ≤2,
respectively.

2.7 Study Selection and Characteristics

A total of 81 articles were eligible for the final inclu-
sion in the systematic literature review. The overall search
process and the associated quantitative identifications are
shown in (Fig. 1). Three researchers screened all papers to
ensure the minimum bias, transparency, and keep that we
covered a generic scope of everyday settings applications.
Furthermore, disagreements between the three authors were
resolved by consensus.

3. Results
3.1 Synthesis of Results

Of the 81 studies included in this systematic review, (n
= 34) were classified as good quality, (n = 9) were classified
as fair quality, and (n = 37) were classified as low quality
(Fig. 2). The explanation behind this finding is that all stud-
ies across the six domains have a high frequency of unclear
risk levels. The reviewed studies confirmed that EEG in-
dices are sensitive to fluctuations during physical activity.
The articles in the current review have been categorized into
(1) physical activity experiments only, and (2) physical ac-
tivity experiments with mental components. Generally, 64
(80%) of the reviewed articles investigated brain activity
during physical activity only, whereas 17 articles (20%) re-
ported on the combined physical and mental activities.
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Fig. 1. Flowchart of the methodology and process selection according to PRISMA.

Fig. 2. Assessment of risk of bias using the Cochrane collabo-
ration’s tool.

3.2 Task Categorization

The experimental studies have been categorized into
physical tasks only, and studies on physical and mental
tasks. Physical tasks were categorized into upper body,
lower body, upper and lower body, and stressful and emo-
tional exhaustion. The studies of physical tasks with mental
components were grouped to analyze (1) the effect of the
physical and mental activity on EEG, and (2) the effect of
the physical activity on cognitive processes (Fig. 3).

3.3 Taxonomy of Different Domains

The taxonomy of different domains in physical activ-
ities (Fig. 4) includes physical fatigue task (n = 22), fol-
lowed by observation, preparation, and execution (n = 14),
workload (n = 7), force and torque (n = 6), stressful and
emotional exhaustion (n = 6), perception of effort (n = 5),
motor training and learning (n = 4), and perception of risk
(n = 1), addressing research question 1.

Fig. 3. Task Categorization of the reviewed article’s tasks.

Fig. 4. Taxonomy of different domains in physical activities.
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3.4 EEG Indices Used to Quantify the Human
Performance

Generally, 68% of the reviewed articles used a tradi-
tional linear analysis approach to analyze EEG signals in
physical activity studies. Numerous studies (n = 43) have
applied the power of frequency methods including power
spectrum density (PSD), event-related desynchronization
and synchronization (ERD/ERS), the ratio of powers, and
peak alpha frequency (PAF), Root Mean Square (RMS),
and the ratio of powers (Fig. 5), followed by the event-
related potentials (ERP) components (n = 25). Some stud-
ies have combined the frequency of powers with the ERp
components (n = 7). Few studies combined both linear and
nonlinear methods (n = 3). The synchronization between
the connectivity of the pairs EEG electrodes was discussed
in two studies. However, the nonlinear methods such as
fractural dimension (FD) and largest lyapunov exponents
(L1) have been used in few studies. EEG coherence was
found in only one study, addressing research question 2.

Fig. 5. The frequency of the used EEG indices (event-related
potential [ERP], fractural dimension [FD], largest lyapunov
exponents [L1]).

3.5 Aspects Relevant to EEG Measurements
The aspects of EEG measurement relevant to physi-

cal activities include the methods of feature extraction, the
number of channels, the number of participants and their
gender, and methods of artifact removal that have been ad-
dressed, this section addressing research question 3.

3.5.1 Feature Extraction Methods
Since PSD is the most used EEG analysis method, the

Fourier transform has been widely used for feature extrac-
tion from the power spectrum.

3.5.2 Number of EEG channels
A critical aspect of any EEG study is the selection of

the number of recording electrodes. Two recommendations
were made in the literature. The first is to reduce the num-
ber of electrodes (i.e., <64 channels) to cover the region of
interest [20,41–43], which provides sufficient analysis, es-
pecially when using ERPs [44]. The second is to use a large

number of electrodes (i.e., ≥64 channels) to help to elim-
inate the tonic muscle artifacts [14,45]. Moreover, a large
number of electrodes are needed for researchers interested
in network analysis and EEG source localization methods
[46–50]. Our systematic review identified 66 studies that
used fewer than 64 channels, while 13 studies used 64 or
more electrodes, addressing research question 3. One study
did not mention the number of electrodes as we summarized
in Supplementary Material C.

3.5.3 Participant’s Demographic Distribution
The demographic distribution of the studies included

healthy male and female participants. Of these, 27 studies
engaged males, and three studies employed females, and 51
reported participation of subjects of both genders. The di-
mensions of the experimental samples are listed in Supple-
mentary Material C. Most reviewed studies had a higher
number of male participants than females (n = 25).

3.5.4 Artifact Removal Methods
The raw EEG signals in physical tasks can be con-

taminated with artifacts due to body movements, including
the neck and muscle activity. Therefore, several artifact re-
moval methods have been developed and applied including
(1) visual checking (n = 48); (2) filters such as bandpass
filters, low pass filter, high pass filter, notch filter, spatial
filters, Butterworth filter, moving average filters, infinite
impulse response filter (FIR), and infinite impulse response
(IIR) (n = 44); (3) bad channel rejection (n = 38); (4) power
line removal (n = 12); (5) regression methods (n = 3); (6)
blind source separation including independent component
analysis (ICA) and principal component analysis (PCA) (n
= 35); (6) artifact subspace reconstruction method (ASR) (n
= 4); and (7) automatic artifacts rejections software includ-
ing EEGLAB [51], NeuroScan’s software [52], and Field-
trip [53]. Visual checking and a bandpass filter were the
most frequently used methods.

4. Discussion
4.1 Applications of EEG Indices to Physical Work

This section discusses the effect of the following
eight application domains including (1) physical or mus-
cular fatigue, (2) movement observation, planning, and ex-
ecution, (3) biomechanical properties (e.g., force, torque),
(4) stressful and emotional exhaustion, (5) physical work-
load, (6) perception of effort, (7) motor training and learn-
ing, (8) strength capability. We focus on the EEG anal-
ysis methods used to characterize human performance in
physical work. These methods are categorized into the
time domain, frequency domain, time-frequency domain,
and nonlinear methods. The Time-domain analysis meth-
ods include EEG components analysis known as event-
related potential (ERP); the frequency domain method is
known as spectral analysis, including power spectrum den-
sity (PSD), event-related desynchronization and synchro-
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nization (ERD/ERS), the ratio of powers, and peak alpha
frequency (PAF); the time-frequency domain methods in-
clude the wavelet transform and Hilbert-Huang transform.
Finally, nonlinear methods which are suitable to analyze
the non-stationary, dynamic, and nonlinear EEG time series
[54], including, for example, assessing the level of chaos
in time-series data by using the concepts of entropy, frac-
tural dimension (FD), largest Lyapunov exponents (L1), or
Lempel-Ziv complexity (LZC) [55].

4.1.1 Effect of Fatigue

Fatigue is a multidimensional concept that combines
psychological and physiological aspects and results in vigi-
lance deterioration, reduces the wellness to exert effort, and
declines in physiological capabilities [56,57]. Fatigue is
categorized into physical, muscular, mental, and visual fa-
tigue. Physical fatigue is a temporary inability of the mus-
cle to perform the optimal work or expected force [58]. The
notion of physical fatigue is much broader thanmuscular fa-
tigue. The term physical fatigue is more complex than mus-
cular fatigue since it includes the interactions between mus-
cular and other several central factors [59]. During a phys-
ical task, not only the human muscles become fatigued, but
also the central nervous system is affected. As defined by
Zadry et al. [60], “If the muscles begin to fatigue, the brain
also begins to fatigue”. Liu et al. [61] demonstrated that the
human brain avoids fatigue by shifting the brain activities
toward the right anterior and inferior hemispheres, which
means the brain requires more resources to complete the
task when fatigue occurs. Accordingly, understanding the
neuromuscular fatigue by analyzing the coherence between
EEG signals (i.e., brain) and electromyography (EMG) sig-
nal (i.e., muscles) [62–65] became an exciting area of neu-
roergonomics research.

It was reported in the literature that after completion
of the physically demanding and fatiguing task, the PSD
of theta activity in the posterior brain region has increased,
which is an interesting phenomenon since mental fatigue
has been also associated with an increase in the PSD of theta
activity in the frontal brain region [66,67]. A study by Ng
and Raveendran et al. [68] found an increase in the PSD
of lower alpha and beta activity at the left motor cortex,
whereas delta activity did not show any significant change.
They concluded that beta activity is associated with motor
control. Furthermore, Baumeister et al. [69] reported a re-
duction in the lower and upper alpha activity in the frontal
cortex of the brain during a knee joint reproduction task
which might be an indication to the existence of physical
fatigue.

Physical fatigue has also been assessed by the ratio of
EEG power. Aryal et al. [59] reported an increase in the
ratio of the power of (α+θ/β) under the condition of fatigue
induced during a material handling task carried on a con-
struction site. That study concluded that monitoring the in-
dividual physical state using brain data is a very promising

method compared to subjective methods (i.e., surveys and
questionnaires). Another EEG index used to calculate the
power changes of the EEG signals is the RMS, a measure
of the bio-signal strength. During a hand movement fatigue
task, an increase in the RMS for gamma, beta, and the alpha
bandwas evident in the left motor cortex [70]. Furthermore,
it was shown that the mean rectified amplitude, which is
conceptually similar to RMS, increases in the primary mo-
tor and sensory regions during a squat task [71]. Ng and
Raveendran [72] also reported a significant decrease in the
PAF of the motor cortex region as an indicator of muscular
fatigue during the handgrip task.

The PSD of EEG frequencies have been applied as an
input parameter for estimating physical fatigue. For exam-
ple, Jain et al. [73] used the PSD of delta, theta, alpha, and
beta activity for detecting muscular fatigue with the help
of an Auto-Regression (AR) model. Abdul-latif et al. [70]
combined the EEG ratio index along with both the heart rate
and skin temperature data and used these as an input param-
eter to the Boosted tree, decision trees, and Support Vector
Machine (SVM)with kernel function algorithm. It has been
suggested that the above knowledge will help in the devel-
opment of the smart warning alarm systems that can prevent
the occurrence of physical fatigue by monitoring changes in
the task error rates [73], or task precision [69]. Another ex-
citing study proved that hyperthermia could be an indepen-
dent cause of brain fatigue but not muscle fatigue during a
cycling task [74]. Thus, high body temperature inhabits the
adequate neural drive to the muscles. A linear increase in
the alpha/beta index over the frontal, motor, visual cortex
was reported under the condition of hyperthermia (40 °C)
compared to normal temperature levels (18 °C). Whereas
the root mean square, amplitude, and median spectral fre-
quency of EMGdid not change, the index of PSD alpha/beta
reflected the sensation of the core temperature [74,75]. A
similar study investigated a decline in beta activity and a
higher level of alpha/beta index in the frontal cortex during
hyperthermia (42 °C), demonstrating a reduction of arousal
level in the frontal cortex due to exercise in relation to the
core temperature (i.e., cognitive fatigue) [76]. Périard et
al. [77] found that an increase in alpha and beta activity
is localized in the brain primary somatosensory and motor
cortices during exercise under the controlled and hypoxic
conditions, and increase in beta activity due to hot temper-
ature. The connectivity between EEG electrode pairs has
also been analyzed after computing the spectrum power of
EEG [78] and it was shown that the muscle fatigue strength-
ens the functional connectivity in the left motor cortex to
maintain the same level of force.

The motor-related cortical potential (MRCP) is an
ERP component that is locked to the initiation of move-
ment [79]. MRCP has been extensively used to reflect the
magnitude of the neural activity before and after physical
task by using three components: (1) Bereitschaftspotential
(BP) or readiness potential (RP), which is a slow negative
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segment that occurs before the movement within 2 seconds
in the pre-supplementary motor area [80]; (2) Motor po-
tential (MP), which is a negative potential following the
RP approximately 150 ms before voluntary movement; (3)
Movement Monitoring Potential (MMP), which is a com-
plex negative-positive potential following the onset of a
given voluntary motor [81]. The RP, MP, and MMP po-
tentials are associated with movement planning or prepa-
ration, movement execution, and performance control, re-
spectively [81,82].

An increase in the RP values at the supplementary
motor area (SMA) (Cz, C3, and C4 electrodes) was found
with a small level of physiological fatigue during the ex-
ertion of highly repetitive forces on the construction tasks
[83]. Furthermore, when fatigue occurred during the grasp-
ing task, an increase in the MP amplitude at precentral and
contralateral, and an increase in BP amplitude at precen-
tral were also observed [84]. The above studies indicate
that the brain accomplishes the required level of contraction
force by increasing the cortical motor activity over the sup-
plementary motor and contralateral sensorimotor areas. In
a simple repetitive unilateral button press task, a negative
amplitude of post-movement potential PMP over the sup-
plementary motor and contralateral sensorimotor areas was
reported with the onset of muscular fatigue [85]. However,
different changes in the MRCP were observed in a large
group of muscles on different tasks, leading to the conclu-
sion that one should analyze the similar levels of forces ex-
erted by the same muscle groups when comparing related
neurophysiological brain responses [86].

Combining the PSD and MRCP to compare fatigue
between the sustained and preparation phases of maximal
voluntary contraction (MVC) showed no change for PSD
in the preparation phase, but a significant reduction in the
sustained phase of the contraction force. It was also demon-
strated that MRCP-negative potential (NP) slightly changes
in the preparation phase [87] above the left sensorimotor
brain area [61].

For nonlinear method indices, a higher value of FD
was reported during a fatigued handgrip contraction task
comparing to the resting state [88], whereas L1 reduced
with fatigue [89]. Few studies have combined the PSD
frequency along with non-linear methods to assess the ef-
fect of physical fatigue states. The PSD of alpha, beta, and
gamma, along with the sample measures of entropy, were
used with and without a magnetic stimulation to study the
effect of physical fatigue and the impact of different force
levels [42]. Muscular fatigue was also accompanied by an
increase in the alpha activity in C3, and C4 brain areas, with
no changes in the PSD of the beta and gamma signal.

4.1.2 Effect of Force and Torque

Muscular fatigue can be defined as the temporary in-
ability of the muscle to reach the MVC [90]. The PSD
of gamma (in C3, C4, Cz, Pz, and Fz), and beta (for C3)

were significantly higher in 50% MVC,75% MVC than in
25% MVC during the fatigued state [91]. A direct rela-
tionship between the force exerted and the amplitude of
MRCP exists [92]. For instance, as the force levels in-
crease, the Bp during a repetitive hand contraction task in-
creases [93] Also, the negative slope of MRCP is highly
correlated with joint forces [94]. Moreover, the amplitude
of the RP increases when both the force production and the
rate of force development torque increase [81]. This means
that the more force is required, the more neurons are be-
ing recruited by the brain. However, during a finger move-
ment task, when the force level increases, the amplitude of
MRCP components, mainly BP andMP, decreases [95]. Fi-
nally, Schillings et al. [83] found no significant changes in
RP signal due to the repetitive forceful grip contraction task.

4.1.3 Effect of Stress and Emotion Exhaustion
Negative emotions that occur in the workplace can af-

fect human performance and increase the probability of er-
rors and injuries. A considerable number of studies have
addressed the psychosocial problems, including emotional
exhaustion, stress, and burnout at work using subjective
measurements, physical and biometrics measurements such
as EMG, skin temperature, electrodermal activity, heart
rate variability, or the variation between heartbeats. How-
ever, studying brain signals might provide rich information
on quantifying human psychosocial conditions [96]. The
frontal lobe is known as the emotion control center [97].
However, recent studies found evidence of the activation
of the motor cortex area under stressful working conditions
[96,98]. After performing the stressful physical work, the
PSD of the beta band in the right hemisphere was higher
than that in the left hemisphere [99]. Other investigations of
stressful occupation conditions have been conducted to de-
termine the worker arousal and valence levels. The authors
reported different working conditions with distinct hazard
levels, for which they developed mathematical equations
based on the PSD of the alpha and beta ratio to quantify the
arousal and valence levels. The results revealed that work-
ers’ emotions were negatively influenced by a poor working
environment [100]. Time pressure, defined as “the differ-
ence between the amount of available time and the amount
of time required to solve a task” [101], is another signifi-
cant factor that affects human performance. During a time
pressure visuomotor task, an increase in the frontal midline
theta activity and gamma activity in different regions was
found [101]. The RMS of the alpha band increased with
the time-stress of the task [102]. The results also demon-
strated the high occurrence of the errors in time pressure
conditions, indicating mental fatigue associated with time
stress. This research area will open new insights into work-
place design by avoiding negative emotions and hazardous
environments to maintain workers’ well-being.
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4.1.4 Effect of Observation, Imagination, Planning, and
Execution

The brain is activated before the task execution, a time
where there is no muscle movement [103]. Still, the person
remains aware of what is going to be performed in the fu-
ture (i.e., task observation) [82]. The task observation is
activated by the mirror neurons [104], mainly in the mo-
tor cortex and the posterior frontal cortex [105]. An essen-
tial and relevant parameter in this respect is derived from
EEG signal power is an ERD/ERS. A reduction in power is
called event-related desynchronization (ERD), while its in-
crease is referred to as event-related synchronization (ERS)
[106]. During the motor task observation, imagery, and
execution, the ERD/ERS can be found in alpha, mu, and
beta activity [107]. It should be noted that the alpha ERD
is non-task specific, while the upper alpha ERD is a task-
specific [108]. A similar phenomenon has been observed
in beta ERD [109]. The mu rhythm, which was first intro-
duced by Gastaut et al. [110], falls between 8 and 12 Hz
over the motor cortex, mainly in Cz, C3, and C4 EEG elec-
trodes. The mu has been extensively used during both the
task observation and execution [111] since it is suppressed
during and after motor action [110]. A reduction in the am-
plitude of mu rhythm was observed during the observation
of a precision grip contrasted to a simple hand extension
[112]. The reduction of mu rhythm reflects desynchroniza-
tion, indicating that the brain became more active, process-
ing the observation of precision grip task. Furthermore, Ba-
biloni et al. [113] and Muthukumaraswamy et al. [112]
found an increase in the alpha ERD in the primary senso-
rimotor during the preparation and execution of movement
tasks. The alpha ERD showed an asymmetric pattern in the
preparation of finger and foot movement [114]. However,
different behaviors of lower and upper alpha ERD/ERSwas
found after performing the movement task. Calmels et al.
[115] found a higher power of ERD in alpha and beta for
the pre-movement than in post-movement. Zaepffel et al.
[116] detected an increase in beta ERD during a cueing
task, followed by a reduction in beta ERD during move-
ment preparation and execution. Finally, Nakayashiki et
al. [107] found that the mu and beta ERD is insensitive to
kinetics conditions in an isometric contraction hand grasp-
ing task, but they appear sensitive to the kinematics con-
ditions. Cochin [105] demonstrated a reduction in alpha
PSD during the observation and execution of finger move-
ments. Significant changes in PSD were found over the
right sensorimotor regions of the brain during the left arm
movement. In contrast, dominant changes in the PSD over
the left sensorimotor regions were obtained during the right
arm movement [117]. Furthermore, ERD for alpha activ-
ity was slightly higher over the contralateral central brain
regions and, secondarily, the ipsilateral motor and mesial
regions compared to ERD for the beta activity. Overall, the
spectral coherence for both alpha and beta signals was re-
duced during arm movement and during the execution of

grasping and reaching [118]. Similarly, Fallani et al. [119]
found an increase in the alpha partially-directed coherence
during the movement preparation, which implies a higher
exchange of information in the cortical brain regions of in-
terest when performing the subsequent movements. Differ-
ent ERD patterns appeared during motor imagery and exe-
cution. Less significant mu ERD was found at contralateral
during motor execution compared to ipsilateral movements
[120]. The MRCP and mu ERD reflect different aspects
of sensorimotor cortical processes [113]. In particular, al-
pha ERD reflects changes in the cortical sensorimotor areas,
whereas MRPs increased in task supplementary motor area
and contralateral primary sensorimotor. However, negative
potential MRCP in motor preparation tasks demonstrated
minimal changes [87].

A study revealed that FDs of EEG signals increased
linearly with handgrip force during the holding and the
movement, with no significant change nor correlation dur-
ing the preparation period of the movement task [121].
Yang et al. [122] investigated the EEG time-dependent
EEG source strength during the preparation, execution, and
sustaining phases of isometric hand exertions. Results
demonstrated a reduction in the nonlinear source strength
during the sustaining phase but an increase during the
preparation phase. Similarly, there was an increase in
the alpha partial directed coherence during the movement
preparation, which reflects the higher exchange of informa-
tion for movement execution [47]. A Bayesian model was
applied to investigate the effect of the coupling strength dur-
ing motor execution and motor imagery. A higher strength
coupling was found between the dorsolateral prefrontal cor-
tex to the pre-motor cortex duringmotor execution than dur-
ing motor imagery. However, the coupling strength of the
pre-motor cortex to the supplementary motor area and the
primary motor cortex to the pre-motor cortex was higher in
the motor imagery than in motor execution [120].

4.1.5 Effects of Perceived Exertion and Effort

The rate of perceived exertion (the perception of ef-
fort) is defined as “the conscious awareness of the central
motor command sent to the active muscles” [123]. Guoa et
al. [124] demonstrated that the amplitude of MRCPs and
the subjective ratings increase with the increase of mus-
cle fatigue in the primary motor area and prefrontal cortex
of the brain. Slobounov et al. [125] found an increase in
MRCP in frontal, central, and parietal cortical areas associ-
ated with the development rate of force. Furthermore, they
found that the amplitude of the early MRCP component in-
creased with the perception of effort, whereas the MMP in-
creased with force level. De Moree et al. [123] showed a
significant correlation between the amplitude ofMRCP and
the perception of effort. Two years later, the authors studied
the effect of caffeine intake and time spent on the task over
the perception of effort [126]. Results revealed a reduction
in MRCP amplitude and the Borg Rating of Perceived Ex-
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ertion after caffeine intake in the premotor and motor cor-
tex, whereas the time spent on task was linked to an in-
crement in the amplitude of MRCP. Nybo and Nielsen [74]
found that the frontal cortex, mainly the values of PSD of al-
pha/beta in the F3 location, are the best predictors of the rate
of perceived exertion. Therefore, since the perceived exer-
tion is associated with cortical activity, new perspectives
have opened for developing rehabilitation technologies and
progress in BCI. A study by Comani et al. [127] found a
predominant frontal-motor coupling in the alpha band and
a frontal-occipital coupling in the beta band during a cycling
task.

4.1.6 Effect of Motor Learning and Practice
Generally, human performance can be improved

through practice and training. Evaluating motor learning
based on neural changes has been a challenging area for
sports medication, rehabilitation, and kinematic prediction
in the neuroergonomics area [128]. Practice reduces the
theta ERS in the frontal area, indicating the deterioration in
the attention after training. This reflects the easiness of the
task after training [129]. Therefore, it has been suggested to
use the alpha ERD neurofeedback to train the frontal alpha
rhythms to produce a strong ERD for better human perfor-
mance [130]. The MRCP, ERD, ERS were found to change
with motor training. For instance, Jochumsen et al. [131]
compared the MRCP, ERD/ERS for an alpha, mu, and beta
activity between single and multiple training sessions. An
increase in the amplitude of MRCP after a single training
session was observed, while a reduction was found after
multiple training sessions. The ERD/ERS for only the beta
band showed a significant increase after the single training
only. The amplitude and latency of the ERP increase af-
ter training in the premotor cortex [132], indicating that the
motor cortex (neuron network) changes after training and
practice.

Finally, the Gamma Band Activity (GBA) was used
to quantify the EEG signals in the motor cortex after a hand
movement training task [133]. Results showed a significant
increase in GBA after performing the hand moving task.
These findings demonstrate that the EEG indices are useful
for monitoring the cortical changes in the motor learning
processes.

4.1.7 Effect of Strength Capability
Aljuaid and Karwowski [134] investigated the neural

signatures of manual material lifting tasks, including the re-
lationship between the maximum acceptable weight of lift
and the EEG signals. Significant differences in PSD under
different lifting frequencies were observed, mainly in the
frontal, central, and parietal brain regions. The EEG sig-
nals during the isokinetic and isometric strength tests for
both arms and legs were also studied. The observed lev-
els of PSD of alpha, beta, and gamma for isometric arm
strength were significantly lower than those in the isomet-

ric leg strength test in the frontal, central, and partial brain
regions.

4.1.8 The Effect of Physical Workload

The human workload is defined as the ratio between
human capacity and task demand [135]. It is a multidi-
mensional concept reflecting human mental ability, phys-
ical limitations, task difficulty, task engagement, and effort
[136]. The workload can be classified into mental workload
(i.e., monitoring, attention, and decision-making) and phys-
ical workload (i.e., pushing, carrying, lifting, and handling).
Despite wide-spread automation, many tasks performed in
the manufacturing sector, such as assembly-line activities
and the hospitality industry, require significant physical ef-
fort. Many EEG studies have demonstrated that a high level
of workload activatesmore brain regions than lowworkload
[137]. For instance, in a light assembly task, the PSD of
alpha is higher at a low workload task than at a high work-
load task [138]. The PSD levels of alpha in the Fz-Pz chan-
nel are higher at a low workload than at a high workload.
The PSD of alpha for the O1-O2 channel is lower at low
workload than the high workload [60]. Other studies have
found a positive correlation between the normalized PSD
of EEG and workload [139,140]. Engchuan et al. [141] re-
ported an increase in the PSD of beta and gamma signals in
a weight pressing task. Furthermore, the PSD of beta ac-
tivity increased with the exercise duration, while the PSD
of alpha decreased [142]. Different task difficulty levels
activation different topological brain regions. In a simple
hand movement task, changes were found in sensorimotor
areas by a reduction in the PSD of alpha and beta. In a
complex hand movement task, changes were observed in
the right frontal, prefrontal, posterior parietal, and left tem-
poral areas [143]. Enders et al. [144] reported a significant
increase in the PSD of EEG in the frontal area of the cortex
during physical exercise and demonstrated the connectiv-
ity between parietal areas and motor areas during exercise.
The amplitude of the ERP component, namely, P300, in-
creases with the exercise frequency [145]. The location of
changes in the cortical activities before, during, and after a
physical task has also been an area of considerable interest.
A study of EEG density using low-resolution electromag-
netic tomography (LORETA) demonstrated that the motor
cortex activity is elevated with high levels of physical effort
intensity [146]. Porter et al. [147] reported an increase in
the PSD of theta activity of the cortical region when com-
bining both physical and mental exertion tasks.

4.2 EEG indices for Physical Work Accompanied by
Cognitive Work

As stated byMehta [11], “The human action is orches-
trated by the mind (brain) and body interactions”. In nat-
uralistic work conditions, several cognitive skills such as
attention, decision making, perception, and working mem-
ory, as well as physical abilities, are required to perform
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a task. For assessing human performance at work, both
physical and cognitive behavior must be considered [148].
High cognitive demand influences the physical work, and
vice versa [149]. Our literature search discovered 16 stud-
ies that reported EEG activity during the combined physical
and cognitive work process components.

Smith et al. [150] have addressed the effect of both
the mental and physical efforts on the attention level. After
the mental effort, an increase in the PSD of theta was found.
Additionally, they reported an increase in PSD for alpha and
lower beta after the physical effort. The study concluded
that mental effort deteriorates the alertness level, while
physical effort increases the need for attention. Accord-
ing to Jagannath and Balasubramanian [151], an increase in
the PSD of theta, alpha, and the ratio of (alpha+theta)/beta
activity, with a reduction in beta activity, are signs of the
attention deterioration due to physical and mental fatigue
during a driving task. Another study analyzed the attention
levels of human operators while handling boxes and solving
cognitive riddles [67]. The PSD of theta and alpha activity
was used to quantify the cognitive state, while the amplitude
of the P300 component was used to characterize the physi-
cal tasks. The results demonstrated a dominant increase in
the PSD of theta and alpha activity and the amplitude of N2
during a cognitive task, whereas the amplitude of P300 was
reduced during the physical task. Two years later, the same
authors replaced the solving of cognitive riddles task with
the Simon task [152]. Results revealed an increase in the
PSD of alpha activity with time spent on a task, reflecting
an increase in mental fatigue and motivation reduction.

Mijović et al. [153] compared two different age
groups of participants in a manual assembly task to analyze
the effect of age on attention performance. They found a
lower level of PSD alpha in the older group than the young
group, indicating that mental fatigue is more pronounced at
an older age. Since workers’ attention can be enhanced by
providing instructions, Zink et al. [154] experimented with
a ‘go’ or ‘not to go’ conditions. They reported a reduction
in the amplitude of P300 during the ‘go’ condition, which
demonstrates an increase in the cognitive load due to move-
ment, and the deterioration of attention. This phenomenon
was also confirmed by Yagi et al. [155]. However, Mijović
et al. [153] reported the contrary results. Porter et al. [147]
found an increase in cortical activity when combining both
physical and mental exertion tasks. An increase in the PSD
of theta activity and a partial correlation were found in the
frontal brain region. Similarly, Shaw et al. [156] observed
changes in the mental workload during dual-task walking.
Finally, Sengupta et al. [57,157] studied the synchroniza-
tion between different brain regions during physical, men-
tal, and visual fatiguing tasks using the spectrum power of
EEG. They reported an increase in the brain horizontal vis-
ibility graph-based synchronization in the electrode pairs
related to parietal and occipital brain areas under the condi-
tion existence fatigue. Effect of physical activity on cogni-

tive processes.
To assess the mental workload, Albuquerque et al.

[158] investigated different physical activities using three
EEG indices, namely, the PSD for nine frequency bands,
the amplitude modulation rate of change, and phase co-
herence. During a medium level of physical activity, the
amplitude modulation features become more important in
the parietal brain region, while in the high physical activ-
ity, the magnitude coherence becomes more important in
other brain regions. A significant difference between high
and low mental workload states across the three levels of
physical activity was found from the EEG features. These
results demonstrated that the increase in the intensity of the
physical activity elicits more mental resources, increasing
the individual’s drowsiness.

In a manufacturing processes task, Ma et al. [148]
have monitored the operator’s mental and physical work-
load during a production line operation. Comparing an im-
proved and non-improved workstation designs, the EEG
features mainly PSD of theta, and sensory-motor response
(12–15 Hz) showed higher values in the non-improved de-
sign indicating the presence of mental workload. Another
study by Xu et al. [159] has addressed the effect of physi-
cal activity on mental fatigue. The spectral coherence value
(SCV), Lempel-Ziv complexity (LZC), and wavelet packet
energy (WPE) were used to characterize the mental fatigue
during a cycling task. SCV was used to estimate the func-
tional connectivity between two pairs of EEG electrodes.
LZC was used to detect the complexity of EEG signals,
whereas WPE was used to decompose the EEG power into
frequency bands. The study revealed that physical activity
increases the mental fatigue by (a) a reduction in the rela-
tive energy in beta (Eβ) in central, parietal, temporal and
occipital brain areas after a physical and mental task; (b)
a slight rise in the energy ratio of alpha/beta (Eα/β) in the
central, parietal and temporal brain region after mental and
physical task; (c) a decrease in SCV beta band in the parietal
brain area after physical task, and (d) a reduction in the LZC
in frontal, parietal, and temporal brain areas after exposure
to both the physical and mental activities. Doppelmayr et
al. [160] demonstrated that prolonged physical activity re-
duces the attention level as manifested by a reduction in the
amplitude of P300 and a rise in the latency reflecting the de-
terioration of attention during physical tasks. Moreover, a
reduction in the difference between the standard and target
tones of both the ERP component N200b and low alpha-
band ERD was also found.

Exercise intensity significantly affects the attention
level. The amplitude of contingent negative variation
(CNV) decreased after high-intensity tasks compared to
medium intensity, whereas the relative power of theta ac-
tivity increased after the high-intensity exercise compared
to medium intensity [161]. Furthermore, exercise inten-
sity significantly alters information processing in the brain
A reduction in the amplitude of P300 was observed after
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high-intensity physical tasks compared to medium intensity
tasks. An inverted-U shape was also proposed to model the
interaction between vigilance and the amplitude of CNV.
A similar trend has been observed for the relationship be-
tween the amplitude of the P300 signal and exercise inten-
sity [162]. A new perspective to understand the perception
of risk using a new hybrid kinematic-EEGmethod has been
proposed by Wang et al. [163] during the execution of con-
struction tasks.

5. Limitations and Recommendation for
Future Work

This section is addressing research question 4, the cur-
rent review includes studies with randomized controlled tri-
als. However, studies considering non-randomized con-
trolled trials were not considered included in the current re-
view. We encourage future systematic reviews to consider
both randomized controlled trials and non-randomized con-
trolled trials to assess the methodological quality.

The application of EEG indices has advanced our
knowledge in characterizing the brain activity relevant to
human physical activity at work. Previous studies focused
on traditional linear methods; for instance, PSD was highly
used to characterize the effects of fatigue, while ERD/ERS
was applied during planning, observation, and movement
execution. Moreover, the MRCP was frequently applied in
studying the biomechanical properties of the human body,
such as force and torque. Since EEG data are complex and
contain dynamic information from the brain, they should
also be analyzed using nonlinear methods derived from
nonlinear dynamical systems and chaos theory [164–166].

The number of studies on physical tasks with men-
tal activities is significantly less than the number of stud-
ies dealing only with physical tasks. However, contempo-
rary ergonomic assessment of the workplace requires the
evaluation of physical tasks with a large variety of cogni-
tive components. Since cognitive demands affect physical
capabilities and physical demands affect cognitive process-
ing, future research in neuroergonomics should address the
interrelationship between physical activities and cognitive
functions.

The recent technological innovations of EEG systems
in portability, power storage, and wireless design allows
experiments to be conducted in natural working environ-
ments [23]. However, our review revealed that most of the
reported studies were focused on controlled laboratory ex-
periments due to the low signal to noise ratio in controlled
laboratory conditions. Few studies have investigated neu-
ral signatures under real workplace conditions, such as the
construction sites [59,98,167] ormanufacturing tasks [148].
The use of EEG outside a controlled laboratory will rely on
several additional factors, such as new class of dry elec-
trodes [168–172], sophisticated and intelligent algorithms
for online motion artifact correction, device shielding, and
integrated computational power that should be considered

in future studies. Until now, significant number of stud-
ies are using conventional EEG systems with limited porta-
bility and long preparation time. Future studies should
use ecologically friendly EEG systems with less prepara-
tion time, mobility, wireless, and even disposable headset
to overcome the laboratory controlled conditions [173]. A
number of challenges lie ahead for improving the signal
to noise ratio including using active EEG electrodes [174].
Another challenge inherent to the collection of EEG data in
the real-world application is a relative loss of experimental
control [175].

Most of the reviewed EEG studies covered the body
areas such as upper limbs, mainly finger movement, hand-
grip, and hand grasping tasks. Tasks that require the ac-
tivity of the shoulder, such as those of overhead drilling
operation or sewing machine operators, have been poorly
addressed. Moreover, typical assembly and manual load
handling tasks that are still commonly performed as essen-
tial components of many jobs in manufacturing, shipping,
healthcare, hospitality, and other service-related industries
have not been studied. A few studies dealt with lower limb
activities such as cycling. The neural signatures of tasks
that involve the torso, spine, and lumbar area, which are es-
sential for the prevention of work-related musculoskeletal
disorders, should also be investigated in the future studies.

EEG data are spatiotemporal with an excellent tempo-
ral resolution but poor spatial resolution. The EEG elec-
trode reference and volume conduction significantly in-
fluence spatial resolution. Therefore, localizing the EEG
source to correlate the activity of the brain regions using
current source density (i.e., Laplacian ([176])) or LORETA
has provided successful results in reducing the volume con-
duction and improving the EEG spatial resolution [177].
Selecting the best reference is still a debate [72,178,179].
Four studies have applied EEG source localization meth-
ods in physical tasks, including the assessment of voluntary
muscle contraction tasks [122], muscle fatigue [61] , mo-
tor execution, and imaginary [120] and exercise intensity
[180]. The methods for assessing the human strength ca-
pabilities and perception of physical effort using EEG data
are needed.

The selection of the number of recording electrodes is
an open/raises research question. Several studies charac-
terized the EEG information from the individual electrode
source point of view, neglecting the integration and segre-
gation between EEG electrodes and their interactions. Con-
nectivity between brain regions provides useful information
regarding the functions of the human brain, an emerging
field of study known as connectome [181]. Connectome
studies have been widely applied in cognitive neuroscience
studies but to a minimal extent in the domain of physio-
logical neuroergonomics [47,117,128,182–186]. One re-
cent study has applied graph theory approach modelling the
force exertion levels during a physical task [187]. Results
of global network characteristics showed different network

11

https://www.imrpress.com


topological properties associated with different force exer-
tion levels.

All the reviewed articles did not explicitly take into
consideration the hybrid of EEG technique with other neu-
rophysiological. Combining multiple neurophysiological
techniques might provide an innovative approach that syn-
thesize the advantages of each technique while overcomes
the limitations. For instance, combining EEG and fNIRS is
one of the promising methods since it improves both tem-
poral and spatial resolution [188,189], which is crucial in
diverse of applications including BCI and motor imagery
[190–193], and cognitive workload [194]. Although, the
integration is very promising still few researchers have ex-
plored this integration [195].

6. Conclusions
This systematic review demonstrates the use of EEG

indices that are relevant and useful to the field of phys-
ical activities at both laboratory and real-world settings.
Our review demonstrates that EEG indices are reliable
and sensitive indicators for quantifying the neurophysio-
logical changes associated with a variety of work-related
physical activities, motor learning, and psychosocial con-
ditions. The findings from 81 experimental studies es-
tablished that EEG studies have primarily relied on lin-
ear methods mainly the power spectrum density. Conse-
quently, the Fourier transform has been widely used as fea-
ture extraction method. Most studies focused on evaluat-
ing the brain activity associated with muscular fatigue task
using few EEG channels. The upper anatomical body ar-
eas have been addressed in most of the reviewed articles
whereas the torso, spine, and lumber, which are the risk fac-
tors for musculoskeletal disorders are less addressed. Map-
ping brain patterns during physical activities is an open
challenge to understand the role of functional brain net-
works at work. Soon, the application of advanced math-
ematical algorithms to analyze EEG data should help de-
velop adaptive systems that are capable of monitoring the
human physical states to prevent fatigue and excessive
physical workload. Furthermore, detective systems and
prediction models to monitor the learning process should
help estimate the outcomes that might promote and facili-
tate the training and learning processes at work and every-
day activities.
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