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Abstract

Background: Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients. The purpose of
this study was to investigate the mechanism through which metformin improves postoperative cognitive function. Methods: In the in
vivo experiment, 18-month-old Sprague–Dawley (SD) rats were randomly divided into four groups (n = 12 in each group): the control,
metformin, operation, and operation plus metformin groups. The animals were pretreated with metformin by gavage once daily for two
weeks. The Morris water maze (MWM) was used to measure cognitive ability. In the in vitro experiment, BV2 cells were divided
into five groups: the control, metformin, lipopolysaccharide (LPS), LPS plus metformin, and LPS plus metformin plus compound C
groups. We stimulated microglia with LPS (500 ng/mL). Immunofluorescence and Western blotting were used to assess ROS (reactive
oxygen species) levels, autophagy-associated protein levels and adenosine monophosphate-activated protein kinase (AMPK)/regulator
factor 2-related enzyme 1 (SIRT1) signaling pathway activity in the rat cortex and microglial cells. Results: In the MWM test, the
metformin-pretreated rats spent a higher proportion of time in the target quadrant. Immunofluorescence showed that the fluorescence
intensity of LC3 in the cortex was increased in rats pretreated with metformin. Western blotting indicated that metformin upregulated
the expression of autophagy-related and AMPK/SIRT1 signaling pathway-related proteins in the cortex after surgery. By activating
the AMPK/SIRT1 signaling pathway in vitro, metformin reduced microglial activation and oxidative stress and promoted autophagy.
Conclusions: Through the AMPK/SIRT1 pathway, metformin can boost autophagy and reduce oxidative stress in cortical microglia in
older rats, in turn improving postoperative cognitive function.
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1. Introduction

Postoperative cognitive dysfunction (POCD) is char-
acterized by decreased attention and consciousness and im-
paired learning, memory and cognition after surgery and is
especially common among elderly patients [1]. The mech-
anism is still unclear. Therefore, there is a lack of effective
prevention and treatment methods.

Autophagy is essential for maintaining homeostasis
and related activity, such as the breakdown of metabolic
waste and misfolded proteins [2]. Studies have shown that
a sufficient level of autophagy, especially in the brain and
heart, is essential for extending life and maintaining or-
gan function [3,4]. Several studies have found that au-
tophagy dysfunction occurs in the brain after surgery [5–
7]. Moreover, a declining level of autophagy is strongly
associated with cognitive impairment in multiple neurode-
generative diseases, while enhancement of autophagy can
maintain normal cognition [8,9]. Beclin1, p62 and LC3 are
considered the core regulators of autophagy in mammals

[10,11]. Thus, the levels of these proteins were assessed in
our study to evaluate the level of autophagy in the cortical
layer in rats with POCD and cultured microglia stimulated
with lipopolysaccharide (LPS).

Metformin is one of the traditional first-line medica-
tions for the treatment of type 2 diabetes mellitus (T2DM).
As research on metformin has increased, it has been found
to have even more therapeutic effects. For example, met-
formin has been confirmed to protect against cognitive de-
cline in many neurodegenerative diseases [12–14]. It is still
unclear exactly howmetforminworks at themolecular level
to produce its effects. Metformin has been shown to easily
cross the blood‒brain barrier (BBB) and to reach areas such
as the hippocampus, cortex, and pituitary [15]. According
to previous studies, it primarily has antineuroinflammatory
and antioxidative effects and can ameliorate tau pathology
and maintain synaptic function to protect cognition [16–
19].

The major target of metformin is adenosine
monophosphate-activated protein kinase (AMPK),
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which is a ubiquitous serine/threonine protein kinase
that controls cellular energy metabolism. An increasing
body of evidence suggests that rats with cognitive decline
exhibit lower levels of AMPK [20–22]. In Alzheimer’s
disease and diabetes, activation of the AMPK-mTOR
pathway can reduce neuronal death and improve cognitive
function [23,24]. Moreover, AMPK can participate in the
entire process of autophagy [25]. A study confirmed that
AMPK and autophagic flux are strongly related [26]. One
of the important downstream targets of AMPK is silent
information regulator factor 2-related enzyme 1 (SIRT1),
which can also regulate cell energy metabolism and other
physiological activities. Similar to AMPK, SIRT1 plays a
vital role in age-related neurodegenerative diseases [27].
Activating the AMPK/SIRT1 pathway in Alzheimer’s
disease can improve behavior, lower oxidative stress, and
reduce neuroinflammation [28]. Similar results were found
in Parkinson’s disease [29].

To confirm the effectiveness and potential mecha-
nism of metformin in preventing POCD, we assessed the
biomarkers of the AMPK/SIRT1 pathway, autophagy, neu-
roinflammation, and oxidative stress in the cortex of rats
with POCD and in cultured BV2 cells (microglia) with LPS
stimulation. Besides, we observed whether metformin pre-
treatment had an ameliorative effect on cognitive function
in POCD-model rats by neurobehavioral test.

2. Materials and Methods
2.1 Experimental Materials

Metformin (CAS: 1115-70-4), compound C (CAS:
866405-64-3), and LPS (L2880) (all from Sigma–Aldrich,
St. Louis, MO, USA) were utilized in this experiment.
Metformin was dissolved in normal saline and used in
the animal experiments. For the cell experiments, met-
formin, compound C (an AMPK inhibitor) and LPS were
dissolved in PBS and used to treat microglia. AMPK
(polyclonal, 2532), p-AMPK (recombinant, 2535), SIRT1
(recombinant, 9475), LC3 (polyclonal, 2775), Beclin1
(polyclonal, 3738), and p62 (polyclonal, 5114) antibod-
ies were purchased from Cell Signaling Technology (Dan-
vers, MA, USA). A CD68 (monoclonal, ab955) antibody
was obtained from Abcam (Cambridge, MA, USA). A
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) an-
tibody (monoclonal, 60004-1-Ig) was purchased from Pro-
teintech (Wuhan, China). Dulbecco’s modified eagle’s
medium (DMEM) and fetal bovine serum (FBS) were ob-
tained from Thermo Fisher Scientific, Inc (Waltham, MA,
USA).

2.2 Animals
Male Sprague‒Dawley (SD) rats aged 18 months and

weighing 500 g each were purchased from the Shanghai
Laboratory Animal Center of the Chinese Academy of Sci-
ence (Shanghai, China) and housed in accordance with in-
dustry standards at 22–24 °C on a 12-hour light–dark cycle.

All procedures were approved by the Shanghai Huadong
Hospital’s Animal Research Committee (approval number:
2022110029S) and carried out in accordance with the Na-
tional Institutes of Health’s Guide for the Care and Use of
Laboratory Animals. All rats were randomly divided into
four groups (n = 12 per group): the control, metformin, op-
eration, and operation plus metformin groups. The rats un-
derwent splenectomy to establish a POCD animal model.
Before surgery, the rats were fasted for 12 hours. The an-
imals were pretreated with 200 mg/kg metformin by oral
gavage once daily for two weeks.

2.3 Splenectomy Procedure
After anesthetization via intraperitoneal injection of

2% pentobarbital sodium (Sigma-Aldrich, St. Louis, MO,
USA) (40 mg/kg), the rats were placed on a sterile oper-
ating table. The skin on the abdomen was prepared, and
after disinfection, we made a 1.5 cm incision along the mid-
line of the abdomen. The spleen was located, and then the
blood vessels of the root of the spleen were ligated. After
successful splenectomy, we closed the abdominal incision
with sterile sutures. Finally, the rats were placed on a heated
blanket for recovery. The Morris water maze (MWM) test
was conducted three days later.

2.4 MWM Test
To prevent infection after surgery, the training and test

phases of the MWM test were performed from postopera-
tive day 3 to postoperative day 8. The protocol was carried
out as described previously [22]. The MWM consisted of a
circular pool with a diameter of 180 cm and height of 50 cm.
The pool was filled halfway with water, and the tempera-
ture of the water was maintained between 21 and 23 °C.
The circular pool was divided into four quadrants (north-
east, northwest, southeast, southwest). The platform, which
had a diameter of 12 cm, was placed in the northwest quad-
rant slightly below the water surface. In our research, the
process of training and testing in water maze was performed
between 8 AM and 11 AM. There are opaque curtains that
completely block the circular pool, so it can avoid visual
interference. The animals’ movements were captured by
a camera placed above the maze’s center, and Any-Maze
software was used to analyze the data, which included the
swimming speed, escape latency, and amount of time spent
in the target quadrant. The test lasted for six days. The
rats were placed in the water in a randomly selected quad-
rant near the pool wall on the first five days, i.e., during
the training phase. If a rat could not locate the platform
within 60 seconds, it was placed on the platform and kept
there for 20 seconds to help it develop a memory of the plat-
form location. On the final day, the platform was removed,
the rats were placed in the water in the southeast quadrant,
and the percentage of time spent in the target quadrant was
recorded. After completing the water maze test, the rats
were killed for sampling with inhaling excess carbon diox-
ide.
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Fig. 1. Metformin alleviated surgery-induced learning and memory impairment. (A) Timeline of metformin intervention and the
MWM test (n = 12 each group). Before splenectomy, the rats received metformin by oral gavage once daily for two weeks and then
underwent behavioral tests. (B) The escape latency refers to the average time required to find the target platform in the training phase.
(C) During the testing phase, the metformin-treated rats spent a greater percentage of time in the target quadrant. (D) The average
swimming speed was used to assess differences in athletic ability in the MWM test. The data are shown as the mean± SEM; *p < 0.05
compared to the control group; &p< 0.05, the operation group compared to the operation+metformin group. Statistical differences were
considered significant at *p < 0.05, &p < 0.05, **p< 0.01, or ***p < 0.001. D, Day; MWM, Morris water maze; Con, Control; Met,
metformin; OP, operation.

2.5 Cell Culture and Grouping

BV2 microglial cells were purchased from the Shang-
hai Laboratory Animal Center of the Chinese Academy
of Science (Shanghai, China). The cells were identi-
fied in terms of morphology, phenotype, and function.
The mycoplasma testing has been done for the cell lines
used in the experiments. The cells were cultured in
high-glucose DMEM containing 10% FBS and 1% peni-
cillin‒streptomycin. The cells were grown in a 37 °C in-
cubator containing 5% CO2. As described in a previous
study, the microglia were stimulated with 500 ng/mL LPS
[30]. The concentration of metformin used to treat the LPS-
stimulated microglia was 2 mM, as described in previous
research [31]. In the present study, the microglia were di-
vided into five groups: the control, metformin, LPS, LPS
plus metformin, and LPS plus metformin plus compound C
groups.

2.6 Western Blotting

Following the in vitro and in vivo interventions, pro-
tein was extracted from rat cortex samples and BV2 cells
using 4 °C RIPA buffer (Beyotime Institute of Biotechnol-
ogy, Shanghai, China). The proteins were then centrifuged
at a speed of 12000 ×g for 20 min at 4 °C. A BCA protein
assay kit (Beyotime, Shanghai, China) was used to deter-

mine the protein concentration. The proteins were sepa-
rated by electrophoresis (8%~12% SDS–PAGE) and trans-
ferred to PVDF membranes. The membranes were blocked
with 5% bovine serum albumin (BSA) for one hour and
the incubated with LC3 (1:1000; item No. 2775), Beclin1
(1:1000; item No. 3738), p62 (1:1000; item No. 5114),
AMPK (1:1000; item No. 2532), p-AMPK (1:1000; item
No. 2535), SIRT1 (1:1000; item No. 9475), CD68 (1:1000;
item No. ab955), and GAPDH (1:5000; item No. 60004-
1-Ig) overnight at 4 °C. The membranes were washed with
tris-buffered saline with 0.1% Tween (TBST) before being
incubated with secondary antibodies for two hours. Finally,
an ECL assay kit (Tanon, Shanghai, China) was used to vi-
sualize the protein bands. We used QuickBlock™ Primary
and Secondary Antibody Dilution Buffer for Western Blot
to dilute the primary and secondary antibody (Beyotime,
Shanghai, China). The concentration of secondary antibod-
ies was diluted 1:5000. ImageJ version 1.38 (NIH Image
J system, Bethesda, MD, USA) was used for quantitative
analysis.

2.7 Immunofluorescence
In addition to Western blotting, rat cortex samples

were used for immunofluorescence. They were removed
immediately, stored in 4% paraformaldehyde, embedded
in paraffin, and sliced into approximately 5 µm sections
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for staining. A primary antibody against LC3 (1:200) was
used. The cortical sections were washed with 4 °C PBS
and placed in a wet box. After that, they were incu-
bated with the LC3 antibody. Following a second wash
in PBS, the sections were incubated at room temperature
with a FITC-conjugated anti-rabbit IgG secondary anti-
body. DAPI (4′,6-diamidino-2-phenylindole) was used to
stain the nuclei. The secondary antibody was Alexa Fluor
555-labeled Donkey Anti-Rabbit IgG (H+L) (1:500, Bey-
otime, Shanghai, China).

2.8 Measurement of ROS (Reactive Oxygen Species)
Levels

To measure the ROS level, we used Reactive Oxy-
gen Species Assay Kit (Beyotime, Shanghai, China). BV2
microglia were incubated with antibodies against oxidative
stress indicators in 6-well plates for 30 min. The cells were
then removed and washed 3 times with PBS for 3 minutes
each. After that, we used a fluorescence microscope (TC-
SSP5, Leica Microsystems GmbH, Wetzlar, Germany) to
determine the fluorescence intensity.

2.9 Statistics
Statistical analysis was performed with GraphPad

Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA).
The continuous variables in our experimental data have
been tested for normality. And all data in this study con-
form to normal distribution. The means and standard error
of the mean (SEMs) are displayed for all data. Multiple
group comparisons were analyzed with repeated measures
analysis of variance (ANOVA), followed by a Bonferroni’s
post hoc test. An unpaired, two-tailed Student’s t-test was
applied to compare between two groups. The results were
considered significant at p < 0.05.

3. Results
3.1 Metformin Alleviated Surgery-Induced Cognitive
Impairment

The experimental layout is depicted in Fig. 1A. The
rats were pretreated with metformin for two weeks. Three
days after the operation, cognitive tests, including the po-
sitioning navigation and spatial exploration experiments,
were performed. According to a previous study [21,32],
surgery and inhalation anesthetics can both lead to cognitive
dysfunction in rodent models, especially in aged animals,
and the same result was found in our study. The operation
clearly had a significant impact on the learning and mem-
ory abilities of old rats, as evidenced by the fact that the
escape latency was significantly longer (Fig. 1B) and the
percentage of time spent in the target quadrant was lower
in the operation group than in the other groups (Fig. 1C).
The rats pretreated with metformin did not display signifi-
cant cognitive impairment, and they spent more time in the
target quadrant (Fig. 1C) and had a shorter escape latency
(Fig. 1B) than the rats in the operation group. Swimming

speed was not significantly different among the four groups
(Fig. 1D), indicating that the surgery had no impact on the
motor ability of the aged rats. These results suggested that
metforminmay prevent age-related cognitive decline in rats
after surgery.

3.2. Metformin may Exert its Effect by Increasing
Autophagy and Inhibiting Microglial Activation in the
Cerebral Cortex

To elucidate the possible mechanism by which met-
formin can prevent POCD, we investigated whether mi-
croglial autophagy occurs in the cerebral cortices of aged
rats. Autophagy was activated in the cortical homogenates
of rats pretreated with metformin, as demonstrated by a sig-
nificant increase in LC3 and Beclin1 levels (Fig. 2A,B).
In contrast, p62 expression in the cortex was significantly
higher in the operation group than in the other groups
(Fig. 2A,B). One of the most commonly used autophagy
markers is LC3, and the LC3II/I ratio was used to assess
the level of autophagy in the present study. We used im-
munofluorescence staining to evaluate the immunoreactiv-
ity of LC3 (Fig. 2E). Consistently, the operation group
showed a lower fluorescence intensity, while metformin
pretreatment reversed the surgery-induced reduction in au-
tophagy (Fig. 2E). Microglia are important immune cells in
the central nervous system that can be activated by external
stimulation, and one of the markers of microglial activa-
tion is CD68. Once activated, microglia release inflamma-
tory factors such as IL-1β. The findings demonstrated that
the operation group had significantly higher levels of mi-
croglial activation in the cortex and IL-1 expression than
the other groups (Fig. 2C,D). However, these changes were
mitigated by metformin pretreatment (Fig. 2C,D).

3.3 Metformin Decreased Microglial Activation and
Oxidative Stress

Microglia typically have a round or oval shape under
physiological conditions. After pretreatment with 2 mM
metformin, microglia had a nearly identical morphology
as those in the control group, indicating that at this dose,
metformin had little effect on cell viability. After LPS
stimulation, microglial cells underwent obvious morpho-
logical changes, exhibiting an irregular shape and protru-
sions. However, metformin prevented these morphological
changes in microglia to some extent (Fig. 3A).

Microglial state, in addition to cell morphology, was
changed. LPS can induce oxidative stress in cells. The re-
sults are displayed in Fig. 3B. The fluorescence intensity of
ROS was measured to determine ROS levels. In the LPS
group, ROS levels were the highest. Although the ROS
fluorescence intensity in the metformin pretreatment group
was comparable to that in the control andmetformin groups,
the comparison between the metformin pretreatment group
and the LPS group suggested that metformin had a protec-
tive effect, lowering the levels of ROS.
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Fig. 2. Metformin increased autophagy and inhibited microglial activation in the cerebral cortex. (A,B) Western blot analysis
and quantification of Autophagy associated proteins (LC3, p62, Beclin1) expression in the cortex in the control, metformin, operation
and operation+metformin groups. (C,D) Western blot analysis and quantification of IL-1β and CD68 levels in the cortex in the control,
metformin, operation and operation+metformin groups. (E) Immunofluorescence staining of LC3 in each group. The data are shown as
the mean± SEM. The scale bar represents 50 mm. Statistical differences were considered significant at *p< 0.05, **p< 0.01, ***p<
0.001 or ****p < 0.0001. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DAPI, 4′,6-diamidino-2-phenylindole.
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Fig. 3. Metformin changed the morphology and oxidative stress status of microglia. (A) Images of microglial morphology. (B)
Immunofluorescence staining of ROS in each group. The scale bar represents 50 mm. Met, metformin; LPS, Lipopolysaccharide; ROS,
reactive oxygen species.

3.4 Metformin Increased Autophagy in vitro by Activating
the AMPK/SIRT1 Signaling Pathway

Microglia were stimulated with LPS in vitro to sim-
ulate neuroinflammation in rats with POCD, and changes
in autophagy in the cells were assessed. The results were
similar to those observed in vivo. Western blotting revealed
that the levels of LC3 and Beclin1 were significantly in-
creased in microglia pretreated with metformin, indicat-

ing that autophagy was triggered in these cells (Fig. 4A–
E). However, LPS significantly inhibited autophagy in mi-
croglia (Fig. 4A–E).

According to a previous report, the regulation of au-
tophagy is intimately tied to the AMPK/SIRT1 signal-
ing pathway [26]. Thus, we further investigated whether
this signaling pathway participates in LPS-induced neu-
roinflammation in microglia. In this part of the ex-
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Fig. 4. Metformin increased autophagy and activated the AMPK/SIRT1 signaling pathway in vitro. (A–E) Western blot analysis
and quantification of LC3, p62, Beclin1 and IL-1β levels during LPS-induced neuroinflammation. (F–I) Western blot analysis and
quantification of phosphorylated and total AMPK and SIRT1 levels during LPS-induced neuroinflammation. Statistical differences were
considered significant at **p < 0.01, ***p < 0.001 or ****p < 0.0001. AMPK, Adenosine monophosphate-activated protein kinase;
SIRT1, Sirtuin 1.
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Fig. 5. During LPS-induced neuroinflammation, metformin promoted autophagy by activating the AMPK/SIRT1 signaling path-
way and alleviated microglial oxidative stress in vitro. (A,B) Western blot analysis and quantification of LC3, p62 and Beclin1 lev-
els during LPS-induced neuroinflammation in the LPS, LPS+operation, and LPS+operation+compound C groups. (C,D) Western blot
analysis and quantification of phosphorylated and total AMPK and SIRT1 levels during LPS-induced neuroinflammation in the LPS,
LPS+operation, and LPS+operation+compound C groups. (E) Immunofluorescence staining of ROS in each group. The scale bar repre-
sents 50 mm. Statistical differences were considered significant at *p < 0.05, **p < 0.01, or ***p < 0.001. CC, Compound C.
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periment, metformin pretreatment clearly enhanced the
AMPK/SIRT1 interaction in microglia, as shown by an in-
crease in AMPK and SIRT1 phosphorylation (Fig. 4F,H,I).
However, compound C (a popular AMPK inhibitor) inhib-
itedmetformin-induced activation of theAMPK/SIRT1 sig-
naling pathway, as evidenced by a reduction in AMPK and
SIRT1 phosphorylation (Fig. 5C,D). Additionally, in mi-
croglia treated with LPS, compound C increased the ex-
pression of p62 while decreasing the expression of LC3 and
Beclin1 (Fig. 5A,B). The ROS fluorescence intensity was
not significantly different between the LPS plus metformin
group and the compound C group (LPS+Met+CC). Never-
theless, the ROS fluorescence intensity in these groups was
lower than that in the LPS group. According to the afore-
mentioned findings, metformin activates the AMPK/SIRT1
pathway to reduce POCD-induced autophagy inhibition in
cortical microglia.

4. Discussion
The Morris water maze is widely used for the mea-

surement of visually relevant spatial and working memory
in rodents. Metformin pretreated rats did not show sig-
nificant cognitive impairment as they spent longer time in
the target quadrant and had a shorter escape latency com-
pared to rats in the surgical group. In in vitro experiments,
metformin decreased microglial activation and oxidative
stress and promoted autophagy in microglia by activating
the AMPK/SIRT1 signaling pathway. Our findings suggest
that metforminmay reduce surgically induced cognitive im-
pairment in old rats, presumably by enhancing autophagy in
the cerebral cortex and reducing microglial activation.

After surgical anesthesia, the body experiences a
stress response and neuroinflammation. Numerous studies
have shown that inflammatory factors and various neuro-
transmitters released in the central nervous system directly
affect the function of hippocampal neurons or indirectly af-
fect the function of neurons by regulating signal transmis-
sion pathways among neurons [33–35]. Inhaled isoflurane
can activate proinflammatory factors in the hippocampus
and result in neuronal damage [36]. To avoid the effects of
anesthetics, we did not use inhaled anesthetics in our exper-
iment. Leptin, which is produced by adipocytes in the body,
may be crucial for preserving the structure and function
of the central nervous system. According to several stud-
ies, postoperative cognitive impairment is associated with
leptin-related pathways [37]. Postoperative cognitive im-
pairment is frequently caused by metabolic syndrome [38].
In a mouse model of POCD, it was discovered that surgical
trauma causes metabolism to switch from oxidative phos-
phorylation to glycolysis in the hippocampus [39]. There-
fore, postoperative cognitive impairment is caused by a va-
riety of factors, and neuroinflammation and metabolic dis-
orders are believed to play major roles in its occurrence.

Metformin, as a classical drug used for the treatment
of T2DM, has been found to ameliorate many neurodegen-

erative diseases and cerebral ischemia. Asadbegi M et al.
[40] found that metformin can protect cognitive function
in rats fed a high-fat diet by inhibiting the accumulation
of β-amyloid peptide. Researchers have discovered that
metformin has a neuroprotective effect in an animal model
of Parkinson’s disease [41]. Twenty-four hours after mid-
dle cerebral artery occlusion, the cerebral infarct area was
found to be significantly smaller in animals administered
low-dose metformin for 3 consecutive days before stroke
modeling than in the control group 24 [42].

Multiple studies have suggested that metformin enters
the brain through the BBB. In the central nervous system,
metformin plays many roles, including regulating neuron
and glial cell proliferation, differentiation and migration in
the hippocampus; reducing neuroinflammation and the an-
tioxidant stress response; and improving insulin sensitivity
in the brain [43–48]. AMPK is a key target of metformin
and is tightly associated with mitochondrial function and
energy metabolism [49]. Metformin can inhibit mitochon-
drial respiratory chain complex 1 through the AMPK path-
way to reduce ROS levels and increase the expression of
antioxidant molecules [50–52]. These positive effects of
metformin may represent the mechanism by which it im-
proves cognition. Moreover, metformin dose-dependently
inhibits interleukin-6 and interleukin-1β expression [53].
In our research, we discovered that metformin dramatically
reduced IL-1 expression in vitro and in vivo. Additionally,
metformin inhibited microglial activation and significantly
reduced ROS levels, which was beneficial for alleviating
neuroinflammation. Nevertheless, metformin may have
other potential pharmacological mechanisms. According to
a previous study, insulin-related signaling pathways are re-
lated to neuronal function. The hippocampus and cortex,
which are the two brain regions most crucial for learning
and memory, contain a large number of insulin receptors
[54]. According to a preliminary study, metformin affects
the insulin signaling pathway in the central nervous system
after crossing the BBB [55]. Because metformin is an in-
sulin sensitizer, it may ameliorate insulin signaling abnor-
malities in the brain to alleviate neuronal dysfunction.

Autophagy is implicated in numerous complex neu-
rodegenerative diseases and neurodevelopmental disorders,
which suggests that autophagy is important for the devel-
opment and maintenance of a healthy central nervous sys-
tem [56]. There are many different signaling pathways that
control autophagy. Autophagy is largely regulated by the
AMPK/mTOR pathway, which is disrupted by neurode-
generative diseases and is inhibited with age [57]. Cellu-
lar growth, activation, survival, and death are all down-
stream processes that are influenced by AMPK/SIRT1 sig-
naling, which is an upstream pathway that controls nutri-
ent and redox status [58]. The AMPK/SIRT1 pathway and
autophagy are closely related processes [59]. Chuan dis-
covered that metformin inhibits the endoplasmic reticulum
stress response and activates AMPK-mediated autophagy
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to protect against brain damage following cardiac resusci-
tation [60]. Zhu et al. [61] also found that in a rat model of
cardiac arrest and resuscitation, metformin improves neuro-
logic outcomes via AMPK-mediated autophagy activation.
Similar results were obtained in our investigation, which
demonstrated that after metformin pretreatment, AMPK-
mediated autophagy was increased in LPS-stimulated mi-
croglia and the cortices of POCD model rats. Additionally,
pretreatment with metformin improved the cognitive func-
tion of POCD model rats. Our in vivo experiments showed
that autophagy level in cerebral cortex was significantly
reduced and microglia were significantly activated in rats
with POCD. When pretreated with metformin, autophagy
level in the cortex of rats increased, while microglia acti-
vation decreased. Therefore, we speculate that metformin
may play a role in improving POCD by increasing the au-
tophagy level of microglia in cortex and reducing its acti-
vation. Further in vitro experiments clearly confirmed that
metformin can increase the autophagy level of microglia
and reduce its activation.

5. Conclusions
Metformin pretreatment can reduce postoperative

cognitive impairment in elderly rats by increasing au-
tophagy in cortical microglia and inhibiting oxidative stress
via the AMPK/SIRT1 pathway.
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