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Abstract

Although a critical link between non-rapid eye movement (NREM) sleep and epilepsy has long been suspected, the interconnecting
mechanisms have remained obscure. However, recent advances in sleep research have provided some clues. Sleep homeostatic plasticity
is now recognized as an engine of the synaptic economy and a feature of the brain’s ability to adapt to changing demands. This allows
epilepsy to be understood as a cost of brain plasticity. On the one hand, plasticity is a force for development, but on the other it opens
the possibility of epileptic derailment. Here, we provide a summary of the phenomena that link sleep and epilepsy. The concept of
“system epilepsy”, or epilepsy as a network disease, is introduced as a general approach to understanding the major epilepsy syndromes,
i.e., epilepsies building upon functional brain networks. We discuss how epileptogenesis results in certain major epilepsies following the
derailment of NREM sleep homeostatic plasticity. Post-traumatic epilepsy is presented as a general model for this kind of epileptogenesis.
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1. Introduction to the Basic Phenomena
Connecting Sleep and Epilepsy
1.1 Sleep Homeostasis

The concept of sleep homeostasis emerged from stud-
ies on sleep regulation by Borbély [1]. This on-demand
model connected sleep regulation with activity from the
preceding day, thereby confirming an exponential relation-
ship between the duration of wakefulness and the power of
sleep slow waves (0.75–4.0 Hz) in the subsequent sleep pe-
riod. In other words, the longer the previous waking time,
the greater the sleep slow wave power. The term “duration
of wakefulness” includes daytime activities, i.e., synaptic
use. This model is supported by studies showing that sleep
deprivation exponentially increased slowwave power in the
subsequent sleep period [2,3].

This model involved the notion of “use-dependent”
regulation [4], which is best seen in the realms of slow os-
cillation (SO) on the descending slopes of the first sleep
cycles- and prevailing in the frontal lobes and the left hemi-
sphere. This SO sweeps posteriorly from the frontal to the
occipital lobes [5].

Studies in anesthetized animals revealed an additional
cortical SO (≤1 Hz) characterized by peculiar “ups and
downs” on electroencephalography (EEG) and reflecting
the synchronized membrane polarization changes of pyra-
midal cells and interneurons [6–8]. The up-state (depolar-
ization) envelops several faster rhythms- sleep spindles and
ripples- and rich synaptic traffic near the waking level. The
hyperpolarized (down) state does not contain any unit or

synaptic activity and is a “black hole”, also termed “disfa-
cilitation” [9]. Similar up and down states of SO were also
found in naturally sleeping animals [10]. This rhythmicity
is assumed to have an essential role in sleep plasticity func-
tions.

There is abundant evidence for the importance of slow
wave activity. However, what is the function of slow waves
that are strongly protected by homeostatic forces?

Tononi and Cirelli [11,12] have elaborated upon their
popular “synaptic homeostatic hypothesis”, which pos-
tulates that synaptic facilitation builds up (upregulates)
throughout the day and is then downregulated during sleep.
An alternative concept is that cortical synapses are de-
pressed (downregulated) by waking activities and upregu-
lated by sleep SO via silent (down) states [13].

Another level of non-rapid eye movement (NREM)
sleep oscillation is an EEG micro-cyclicity termed the
cyclic alternating pattern (CAP) [14]. TheCAP has recently
been linked to brain structures [15].

Activity within the frame of CAP reflects an ongoing
spontaneous cortical activity during NREM sleep. This is
characterized by periodic EEG activity (CAP and non-CAP
periods) that recurs with a frequency of up to one minute.
The existence of CAP reflects the sleeping brain’s flexi-
ble adaptation to external and internal conditions. CAP
patterns are consistent with micro-arousals manifesting as
two types, depending on and indicative of the actual bal-
ance between sleep-promoting and arousal forces. A well-
known arousal pattern (A3 in CAP terms) emerges at low
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Fig. 1. Schematic representation of the distribution of different cyclic alternating pattern (CAP) responses for the descending
(D) and ascending (A) slopes of sleep cyclicity. On the D slope, a phasic auditory input evokes phasic slow wave responses (CAP
A1 phases, upward arrows) that provide instant homeostatic “delta injections”. On the A slope, the response is similar to the known
electroencephalography (EEG) + autonomic arousal response (A2 and A3 phases). The upper insert shows the distribution of CAP
phases during a typical night’s sleep. Black bars on the horizontal line represent rapid eye movement (REM) sleep phases. (A1 = slow
wave EEG response. CAP A2–3 response = traditional arousal) Note the exponential decay of A1 responses that follow the decrease in
homeostatic pressure, in contrast to A2 and A3.

homeostatic pressure and is characterized by the attenuation
of EEG activity with fast rhythms, muscle and autonomic
changes. When the homeostatic pressure is high, such as
in the deepening periods (descending slopes) of the first
NREM sleep cycle, a paradoxical (anti-arousal) slow wave
response (CAP A1) occurs [16] (Fig. 1).

Reactive CAP A1 slow waves provide immediate
homeostatic protection [17]. The continuous slow waves
of deep slow wave sleep show a prolonged and delayed
homeostatic response to synaptic up-scaling (exhaustion)
depending on previous use. In contrast, the phasic slow
wave reactions of CAPA1 occur instantly as slowwave “in-
jections”. Both types reimburse slow waves’ amount and
prevail over the frontal lobes.

1.2 Homeostatic Plasticity and Epilepsy

Plasticity is the general capability of the brain’s neu-
ral elements, from synapses to networks, to modify (up- or
down-regulate) their response in reaction to previous activ-
ity in the form of long-term potentiation (LTP) or depres-
sion (LTD). LTP is defined as a persistent increase in signal
transmission between two neurons by synapses, as observed
by recent patterns of activity [18], whereas LTD is the oppo-
site. In other words, as defined by Steriade [9], an “activity-

dependent alteration in the strength of connections among
neurons, through which information is stored”.

Plasticity and epilepsy are closely related but differ
in their effects on the brain. Plasticity is a building force,
whereas epilepsy is a disfigured and exaggerated caricature
that distorts the affected functions.

It appears that an intrinsic aim of cortical networks is
to achieve a slow wave “state”. Interestingly, isolated slabs
and even cortical cell cultures follow this rule, thus hinting
at homeostatic regulation [19,20].

Cortical deafferentation has been shown to lead to
a compensating (homeostatic) upregulation of neural ex-
citability. Greater damage induces stronger upregulation
that may result in epileptic excitation. Thus, while homeo-
static force can neutralize a small amount of harm, greater
damage needs stronger compensation. This may result in
derailment of paroxysmal activity, as seen in post-traumatic
epilepsy [21,22].

The isolated cortex and hippocampus “operate ex-
tremely close to the transition point between a quiescent
state and an abnormally active epileptic state” [9,23,24].
Wherever plastic processes occur, an epileptic shift is close
by.
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Fig. 2. Schematic illustration of the system epilepsy concept, wherein the epilepsy is built upon physiological systems that share
a common process of epileptogenesis.

Goddard and Douglas [25] first proposed that the plas-
tic process of the memory trace (engram)-formation is sim-
ilar to epileptogenesis.

LTP is the elementary model of long-term plastic-
ity and the basis of kindling, with daily electrical stimula-
tion resulting in hyperexcitation and the development of an
epileptic process leading to spontaneous seizures [26,27].
Similarly, experimental epileptic foci that bombard distant
regions with spikes may establish secondary spike foci that
subsequently become independent. Such secondary cor-
tical spots “learn to be epileptic” due to the plastic and
potentially progressive runs induced by recurrent interictal
epileptiform discharges (IEDs) [28,29].

1.3 System Epilepsy
The concept of system epilepsy considers epilepsy to

be a network disease. This concept may overcome the
untenable dichotomy between “focal” and “generalized”
epilepsies (Fig. 2). and reveal that epileptogenesis has
a common molecular and electrophysiological mechanism
that originates from the derailment of normal brain func-
tioning in systems that are most liable to plasticity [30–35].
According to this concept, the differences between epilep-
sies lie only in the localization and specificity of the af-
fected systems. Concerning seizure-triggers, besides ac-
cepted reflex epilepsies we incorporated seizures initiated
by the activation of the affected physiological brain system
(like falling asleep, or arousal).

2. Sleep-Related System Epilepsies are the
Result of Sleep Homeostatic Derailment

Non-rapid eye movement (NREM) sleep is initiated
by a switch to the burst-firing working mode of the tha-

lamocortical system. While the thalamus faithfully trans-
mits stimuli to the cortex during waking, during NREM
sleep a powerful γ-Aminobutyric acid ergic (GABAer-
gic) inhibitory machine released from the ascending retic-
ular inhibition stops this transmission, leading to the burst-
firing working mode of the thalamocortical network. Self-
sustaining inhibitory cycles during NREM sleep produce
sleep spindling and slow (0.75–4.0 Hz) oscillation [9].

The sleep EEG envelope is regulated by the use-
dependent homeostasis reflecting sleep need, providing
brain-wide synaptic refreshment and responding to local
needs. Thus, homeostatic power may promote an epilep-
tic transformation.

According to the system epilepsy concept, epilepsies
build on certain brain systems. IEDs, including spikes and
ripples, as well as seizures, move together and accumulate
during slow wave sleep [9,36].

Thus, epilepsy is deeply interwoven with sleep, and
even sleep constituents transform into interictal epilepsy
patterns. Epilepsy, therefore, deserves to be called the most
important sleep disorder.

2.1 Medial Temporal Lobe Epilepsy as Epilepsy of the
Declarative Memory System

Medial temporal lobe epilepsy (MTLE) may be con-
sidered system epilepsy since it affects the bilateral episodic
memory system with the hippocampi and manifests abun-
dant interictal and ictal memory disturbances. NREM sleep
is essential in the memory process, and the unstable hip-
pocampal memory engrams are replayed and transmitted to
the frontal lobe during NREM sleep [37–39].

Any injury to certain hippocampal sectors (a first hit)
may induce a 7–7.5 year-long “rewiring” process in synap-
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tic structure and connectivity [40]. The discharges from
a damaged hippocampus to produce nonsense informa-
tion, rather than useful memory fragments, may obstruct
the hippocampo-frontal memory correspondence [41,42].
Memory consolidation is accomplished by the interplay of
sleep slow waves, sharp-wave ripples, hippocampal spin-
dles, and ripples [36]. Slow waves orchestrate this team-
work by placing it under homeostatic regulation [43–46].

An essential step in epileptic transformation leading to
MTLE is the metamorphosis of hippocampal sharp-wave-
ripples to an epileptic pattern, epileptic spikes, and patho-
logical high frequency oscillations (HFOs) [36]. The mech-
anism underpinning this transformation was described re-
cently [47].

During the process of epileptic transformation, the
number of evolving hippocampal spikes correlates in-
versely with the number of spindles [42], with the decrease
in spindles also contributing to the memory disturbances of
MTLE patients.

The role of the homeostatic process is supported by
the circadian and night-time distribution of evolving inter-
ictal spikes. These prevail during high homeostatic pressure
periods such as the first part of night sleep and the evening-
afternoon time of day, as compared to the morning hours
[48].

Both the interictal and ictal symptoms of MTLE are
interwoven with memory disturbances [49,50]. The insidi-
ously evolving interictal memory impairment remained un-
detected for a long time because it can only be shown by
neuropsychological follow-up studies. In ictal symptoma-
tology, pure amnestic seizures, déjá- and jamais vu, as well
as psychic or intellectual auras (dreamy states) are consis-
tent with memory disturbances.

Disturbances of consciousness by focal onset temporal
lobe seizures may also be thought of as memory-knockouts
that evolve because of hippocampal involvement, i.e., a hip-
pocampal “knockout” by seizure, as revealed by deep elec-
trodes. Patients lose contact but not their muscle tone. They
do not fall, but cannot understand speech during the seizure.
This symptomatology can be understood as an acute mem-
ory loss, or a transient loss of the capacity to recognize
things, language, or people.

The memories evoked by stimulation of the exposed
temporal cortex of epileptic patients [51] also support the
association between epilepsy and the memory system.

2.2 Absence Epilepsy is the Epilepsy of the
Corticothalamic “Falling Asleep” Process

The corticothalamic network hosts the function of
falling asleep. Absence epilepsy (AE) is linked to this net-
work and is thus considered to be a corticothalamic system
epilepsy [52].

This notion is based on studies reporting that spike
wave discharges (SWD) emerge from the same circuit that
normally produces sleep spindles [53]. Using ablation ex-

periments, Steriade et al. [54] showed that “SWD origi-
nate in the neocortex and are disseminated through mono-,
oligo- and multi-synaptic intracortical circuits, and exhibit
generalized features”.

Experiments by Meeren et al. [55,56] confirmed the
focal onset of seizures deemed “primary generalized”. In
addition, several clinical and EEG reports have highlighted
the focal features of apparently generalized SWD. How-
ever, caution is needed when using the term “focal” in the
original sense (as in traditional focal epilepsies) because
absences build up (enrolled) step-by-step, mostly from a
fronto-cortical network in each seizure, in contrast to the
permanent epileptogenic zones of focal epilepsies [57]. It
is important to note that a genetic background allowing
epileptic transformation in those critical periods has been
shown both in animals [58] and humans.

The regulation of sleep spindling and other sleep
rhythms appears to be controlled by the thalamic reticular
nucleus [59] via mutual interaction between its GABAer-
gic neurons, thereby regulating the level of output inhibi-
tion exerted on thalamic relay cells [60]. Based on studies
with animal models, SWD of absence seizures also appear
to originate in the thalamus by a mechanism like spindle
generation [61] and which is based on reduced GABAergic
inhibition [62].

Absences are linked to transitional periods between
wakefulness and N2 sleep, and are referred to as “criti-
cal” vigilance levels. Whereas absences seemingly occur in
wakefulness, they actually emerge during falls of vigilance.
This vigilance level-dependence explains their distribution
throughout the 24-h sleep/wake cycle [63].

When arousals in sleep induce absences, EEG mi-
crostructural analysis can reveal the actual link with reac-
tive sleep-like (slow wave) anti-arousal responses because
there is a strong positive correlation between CAP A1 and
SWD. Additionally, SWD is prevalent in the first sleep cy-
cles and declines later with the decay of the delta power
from evening to morning [64]. Regarding the deepening
slopes of sleep dominated by subtype A1, the CAP-related
activation of SWD increases three-fold compared to as-
cending slopes containing more A2 and A3 events [65].

Further supporting the nature of “falling asleep
epilepsy”, more SWD occurs during fluctuations toward
NREM sleep than toward wakefulness or REM sleep [66].

The vigilance-level dependence of absences is also
supported by neuroimaging showing increased connectivity
in the anterior thalamic structures during the falling asleep
period of genetic juvenile myoclonic epilepsy patients [67].

The slow wave-dependence of SWD links absences to
homeostatic regulation and supports the notion of a cortico-
thalamic, falling-asleep system epilepsy underpinned by a
genetic predisposition, thus making AE another network
disease.
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Fig. 3. The overlap of state dissociation in DOA and SHE patients. (A) Dissociation state during DOA episodes (findings of SPECT,
EEG, and Loretta studies). Blue: fronto-dorsal sleeping part; Red: anterior cingular activated part. (B) The localisation of the onset
zones of sleep related hypermotor seizures, successfully operated on. Note the overlap between A and B activated zones. The red
arrows represents the role of salience network (SN) and Cannon-Selye acute stress response (in frame). DOA, disorders of arousal; SHE,
sleep-related hypermotor epilepsies; SPECT, single-photon emission computed tomography.

2.3 Sleep-Related Hypermotor Epilepsy, the System
Epilepsy of the Arousal System, and an Epileptic
Counterpart of Disorders of Arousal
2.3.1 Disorders of Arousal (Arousal Parasomnias)

Disorders of arousal (DOA) episodes are consistent
with dissociated arousals from NREM sleep, representing
partial sleeping and partial awake states, and confirmed by
brain imaging, Loretta, and Single-photon emission com-
puted tomography (SPECT) studies [68–70]. While fre-
quent in childhood, they also occur in adulthood where they
manifest as more violent forms compared to the childhood
variants [71,72]. DOA episodes form a spectrum from dis-
oriented arousals to sleep walking (somnambulism), sleep
eating, sleep sex, to sleep terror. The latter manifests as
panic-like alarm-behavior with high heart and respiratory
rates, emotional alarm symptoms, and disorientation.

Such episodes typically appear at the turning points of
the first sleep cycles between the through and the ascending
slope, linking with micro-arousals within sleep and result-
ing in a pathological state dissociation [73,74]. Sleep de-
privation is the most important trigger for DOA episodes.

2.3.2 The Epileptic Counterpart: Sleep-Related
Hypermotor Epilepsy

The concept and nomenclature of nocturnal dystonia
have changed from sleep-dependent movement disorder to
epilepsy [75,76].

While the etiology of most sleep-related hypermotor
epilepsies (SHE) is unknown, a small group termed auto-
somal dominant nocturnal frontal lobe epilepsy is charac-
terized by gene mutations. The best known is mutation
of the nicotinic acetylcholine receptor gene, which hyper-
sensitizes the cortex and allows exaggerated and patholog-
ical frontal arousals [77].

Both DOA events and SHE seizures link to sleep
micro-arousals. Moreover, both also emerge during peri-
ods of high homeostatic pressure such as in sleep after sleep
deprivation, as well as the descending slopes of sleep in the
first part of the night. The frequency of seizures decreases
across the night sleep, thereby paralleling the homeostatic
decay. Therefore, a homeostatic effect also occurs in SHE
and DOA.

The symptomatology of SHE and DOA indicates their
close relationship. Based on video-EEG studies [78], their
symptoms showed only severity/quantitative differences,
making them typically indistinguishable based on semiol-
ogy.

The strong link betweenDOA/SHE and arousal is sup-
ported by the finding that three-quarters of DOA events and
half of SHE events are preceded by arousal. Regarding their
order of severity (DOA milder, non-epileptic; SHE more
severe, epileptic), several SHE seizures occur per night,
in contrast to just one or two DOA events. Moreover,
one-third of DOA episodes were triggered by a stimulus,
whereas <10% of SHE seizures “required” a trigger.
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The symptomatic similarity of DOA and SHE and the
family/genetic links suggest a shared mechanism [79–82].

The localization of brain-activation in the two groups
provides further evidence of their shared relationship. In
DOA the anterior cingulate cortex is “awake”, the fronto-
dorsal cortex is “sleeping”, and similar regions (the ante-
rior cingulum, the prefrontal cortex and the anterior insula)
host the seizure onset zones of successfully operated SHE
patients [83–87] (Fig. 3).

Of note, this region overlaps with the cingulo-frontal
region of the salience network (SN) [88] with direct links
to the Cannon-Selye-type stress reaction [89]. The salience
network can mobilize fight-flight reactions and is remark-
ably similar to the most severe phenotypes (sleep terrors
and hypermotor seizures) of the two syndrome spectrums.

Fig. 4. The human perisylvian language network. M1, primary
motor area of speech expression (flesh-colored); PM, premotor
area; PF, prefrontal area working memory (pink); A1, AB, PB, au-
ditory areas. The purple arrows represent interconnections among
areas that exist only in humans. Reproduced with permission from
Schomers MR, Neurocomputational Consequences of Evolution-
ary Connectivity Changes in Perisylvian Language Cortex, 2017
[90].

The symptomatology of SHE seizures is consistent
with a dissociated state reflected by EEG, autonomic, emo-
tional alarm and motor arousals without awareness of a par-
tially sleeping brain and disoriented mind.

It is striking that two similar conditions exist which are
both strongly associated with the arousal system’s hyper-
function and manifest NREM sleep dissociation during pe-
riods of high homeostatic pressure. Although there have
been efforts to find features with differential diagnostic val-
ues, the heuristic similarity of these two conditions must be
emphasized [81,82].

A cholinergic origin has been demonstrated only in the
epileptic group. However, the many similarities as well as
family and individual overlaps between the two conditions
support a common origin of arousal.

2.4 The Spectrum of Self-Limited Focal Childhood
Epilepsies, a System Epilepsy of the Perisylvian Human
Communication Network

The anatomical regions around the Sylvian fissure
are termed the perisylvian network (PN). The PN covers
the lower lateral surface of the frontal lobe from the pre-
frontal areas including the Broca area, through the opercu-
lar structures and the parieto-temporal areas with the Wer-
nicke field, the first and second temporal gyri, and par-
tially the occipital cortex. The abundance and complexity
of the involved regions occupying an important central part
of the cortex reflect the high phylogenetic advance of hu-
man communication. This network organizes writing, read-
ing, speaking, and calculation with the auxiliary machinery
of hearing, sound production, articulating, and even vision
[90] (Fig. 4, Ref. [90]).

The spectrum of self-limited focal epilepsies (SeLFE)
comprises the most frequent childhood epilepsies that can
be considered system epilepsies, i.e., network diseases of
the PN. The focus here is only on the part of the spectrum
where the spectral cohesion is clear.

In this paper involved conditions include: (1) non-
epileptic pattern-carriers of centrotemporal spikes (CTS),
involving mainly the relatives of SeLFE children; (2)
typical SeLFE with centrotemporal spikes (SeLECTS;
Rolandic epilepsy) and presenting with rare focal sensory-
motor seizures and CTS during NREM sleep; (3) atyp-
ical SeLECTS characterized by more seizures and fre-
quent CTS over both hemispheres, as well as early onset,
more prominent cognitive deficits, and occasional opercu-
lar status epilepticus in sleep; (4) developmental epileptic
encephalopathies developmental/epileptic encephalopathy
with spike wave activation in sleep (DEE-SWAS) where
spikes and slow waves cover widespread regions of both
hemispheres more or less continuously in slow wave sleep,
as well as electrical status epilepticus in sleep (ESES)
and Landau-Kleffner syndrome, with a regional ESES-like
EEG pattern.

Recent neuropsychological research has revealedmild
cognitive deficits even in “benign” SeLECTS children,
mainly affecting their language functions. The language
deficit is more important in atypical forms and culminates
at the encephalopathic end of the spectrum. CTS-activity
that accumulates in NREM sleep appears to increase from
asymptomatic CTS carrier relatives, through SeLECTS and
atypical SeLECTS children, to DEE-SWAS patients (Fig. 5,
Ref. [91]). The degree of CTS-activity parallels that of
HFO (ripples), considered to be the best markers of epilep-
togenicity [92]. Thus, no ripples associate with CTS in
non-epileptic CTS carriers, and HFO activity parallels the
severity of epilepsies in the spectrum. The mechanism of
metamorphosis from sparse or frequent spiking to the ESES
EEG pattern is still unclear. In ESES, a bilateral tsunami
of spikes floods both hemispheres and tends to be continu-
ous during NREM sleep. IEDs are rare during waking, and
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Fig. 5. Three forms (A, B, C) of the centrotemporal spikes (CTS) across the self-limited focal childhood epilepsy spectrum. Left
(A), CTSwithout epileptic seizures; middle (B), self-limited childhood focal epilepsy with centrotemporal spikes (SeLECTS) with ripples
superimposed on CTS (spectrogram: top, averaged spikes; middle, spectral frequencies superimposed on spikes (red arrow)). Right (C),
the electrical status epilepsy in sleep (ESES) discharge pattern assumed to be consistent with augmented CTS with pathological ripples
(not shown). Reproduced with permission from Kobayashi K, Epilepsy with electrical status epilepticus during slow sleep and secondary
bilateral synchrony. 1994 [91]. LKS, Landau-Kleffner syndrome.

REM sleep is free of discharges. Anti-seizure medication
does not always work, and a permanent mental handicap
may occur if the ESES duration exceeds 18 months [93].

Although it is assumed that the electrical pattern of
electrical status epilepticus in sleep/Landau-Kleffner syn-
drome is consistent with exaggerated CTS discharges, this
requires further study. A large body of literature supports
the notion of a focal origin and secondary bilateral synchro-
nization behind the bilateral manifestations [94–98].

Bölsterli et al. [99–101] reported a deficit of sleep
slowwave downscaling in ESES patients. This finding sug-
gests that a sleep homeostatic disorder underpins the cog-
nitive loss related to the extraordinary increase in epileptic
EEG manifestations. The remaining PN epilepsies are also
shown to link with sleep homeostasis, even bi-directionally.

The concept of system-epilepsy links epilepsies to a
derailment of physiological brain functions, i.e., seizures
manifest the disfigured features of the hosting brain-
systems. This concept also appears to be valid for SeLFE.
Such epilepsies can be considered network diseases of the
PN, where the high-level plasticity required for communi-
cation is sensitive to epileptic derailment.

3. A Closer Look at the Paroxysmal
Derailment of Homeostatic Plasticity

Stimulation of the thalamus or cortex with spindle-like
frequencies in experimental settings can evoke augmenting
(an increase of amplitudes) or recruiting (runs of repeated

potentials) responses [102]. The parameters of the evoked
potentials resemble spindles, thus allowing them to be con-
sidered as potential spindle-models. Like spindling, aug-
menting responses generate plastic changes in thalamic and
cortical neurons that outlast the stimulation. They reach
their highest amplitudes during slowwave sleep and are dis-
rupted by arousal. These experimental data indicate the tha-
lamocortical system can perform short-, mid- and long-term
synaptic changes, which may eventually lead to the gener-
ation of self-sustained paroxysmal discharges [103,104].

Sleep SO in the thalamocortical system induces long-
term neuronal facilitation. In the waking period follow-
ing NREM sleep, evoked somatosensory synaptic and lo-
cal field potentials are higher than during previous waking
[105].

These results suggest that LTP occurs during slow-
wave sleep, with the latter providing the conditions for
homeostatic plasticity as well as potential epileptic derail-
ment.

Post-Traumatic Epilepsy as a Model for Epileptic
Transformation

Post-traumatic epilepsies are well-known complica-
tions of brain injuries. Acute symptomatic seizures of-
ten evolve shortly after the trauma, and chronic epilepsy
may develop later. Between 20–60% of epilepsies origi-
nate from traumatic injuries [106], while 86% of early acute
symptomatic seizures are followed by epilepsy within two
years [107].
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Fig. 6. The cortical undercut model of penetrating wound epileptogenesis. (A) Cat brain depicting localization of the undercut
(arrows). Left: global view; middle: frontal section; right: middle and sagittal sections. (B) Intracellular and field potential recordings
during different states of vigilance. The epochs indicated by horizontal bars are expanded below. Note the presence of large amplitude
hyperpolarizing potentials (indicated by the shadowed area) during NREM and REM sleep, as well as in the waking state. (C) Intracellular
neuronal recording in the intact cortex (Reproduced with permission from Timofeev I, Posttraumatic epilepsy: the roles of synaptic
plasticity. 2010 [22]). NREM, non-rapid eye movement; REM, rapid eye movement.

The homeostatic origin of trauma-induced epileptoge-
nesis has been revealed by cortical undercut models. The
partial deafferentation of the cortex caused by the trauma
results in the inability to maintain neuronal activity, as re-
flected by the prolongation of silent (down) states during
slow-wave sleep, as well as in waking and REM sleep.
This requires a homeostatic recovery with the potential for
epileptic derailment [22,108].

The cortical undercut is an accepted model for pene-
trating wound epileptogenesis and works well in rats, mice,
and cats. It reproduces the paroxysmal pattern seen in brain
injuries, with acute symptomatic seizures first being trig-
gered by the trauma, followed by a latent period, and then
spontaneous and unprovoked seizures evolving later [109].

This theory proposes that an increase in overall
network-silence would increase excitability. Indeed, the
duration of silent states was shown to correlate with the in-
stantaneous firing rates [110], with the intrinsic and synap-
tic excitability increasing within and around the undercut
cortex (Fig. 6, Ref. [22]).

4. Highlights and Conclusions
NREM sleep homeostatic regulation provides a strong

protection and repair mechanism that enables brain plastic-
ity and allows change and development.

Exaggerated homeostatic plasticity in NREM sleep
enables the epileptic transformation of physiologic net-
works to epileptic systems. Up-and-down states of sleep
SO may play a key role in this process.

Pathological HFO mark epileptogenesis and epileptic
progression in certain brain systems.

MTLE, AE, SHE, and SeLFE are hosted by brain sys-
tems with high plasticity, thus making them network dis-
eases linked to sleep homeostatic plasticity.

Abbreviations
CAP, Cyclic alternating pattern; CTS, centrotem-

poral spike; DEE-SWAS, Developmental/Epileptic En-
cephalopathy with Spike Wave Activation in Sleep; DOA,
Disorders of arousal; EEG, electroencephalography; ESES,
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