
J. Integr. Neurosci. 2023; 22(5): 124
https://doi.org/10.31083/j.jin2205124

Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

The NEF-SPA Approach as a Framework for Developing a
Neurobiologically Inspired Spiking Neural Network Model for Speech
Production
Bernd J. Kröger1,*
1Department of Phoniatrics, Pedaudiology, and Communication Disorders, Medical School, RWTH Aachen University, 52074 Aachen, Germany
*Correspondence: bernd.kroeger@rwth-aachen.de (Bernd J. Kröger)
Academic Editor: Gernot Riedel
Submitted: 23 May 2023 Revised: 14 June 2023 Accepted: 3 July 2023 Published: 16 August 2023

Abstract

Background: The computer-based simulation of the whole processing route for speech production and speech perception in a neuro-
biologically inspired way remains a challenge. Only a few neural based models of speech production exist, and these models either
concentrate on the cognitive-linguistic component or the lower-level sensorimotor component of speech production and speech percep-
tion. Moreover, these existing models are second-generation neural network models using rate-based neuron approaches. The aim of this
paper is to describe recent work developing a third-generation spiking-neuron neural network capable of modeling the whole process of
speech production, including cognitive and sensorimotor components. Methods: Our neural model of speech production was developed
within the Neural Engineering Framework (NEF), incorporating the concept of Semantic Pointer Architecture (SPA), which allows the
construction of large-scale neural models of the functioning brain based on only a few essential and neurobiologically well-grounded
modeling or construction elements (i.e., single spiking neuron elements, neural connections, neuron ensembles, state buffers, associative
memories, modules for binding and unbinding of states, modules for time scale generation (oscillators) and ramp signal generation (inte-
grators), modules for input signal processing, modules for action selection, etc.). Results: We demonstrated that this modeling approach
is capable of constructing a fully functional model of speech production based on these modeling elements (i.e., biologically motivated
spiking neuron micro-circuits or micro-networks). The model is capable of (i) modeling the whole processing chain of speech production
and, in part, for speech perception based on leaky-integrate-and-fire spiking neurons and (ii) simulating (macroscopic) speaking behavior
in a realistic way, by using neurobiologically plausible (microscopic) neural construction elements. Conclusions: The model presented
here is a promising approach for describing speech processing in a bottom-up manner based on a set of micro-circuit neural network ele-
ments for generating a large-scale neural network. In addition, the model conforms to a top-down design, as it is available in a condensed
form in box-and-arrow models based on functional imaging and electrophysiological data recruited from speech processing tasks.
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1. Introduction

Different neural approaches exist for modeling speech
production. These modeling approaches can be classified
as cognitive-linguistic models or sensorimotor models. The
cognitive-linguistic neural productionmodelWEAVER [1–
3] represents the production pathway from the intention to
produce an utterance down to the activation of its phono-
logical form. The sensorimotor neural production models
DIVA [4] and GODIVA [5] represent further components
of the production pathway from the phonological form via
activation of motor programs down to motor execution and
include auditory and somatosensory feedback to allow mo-
tor corrections. These models use non-spiking rate-based
neuron models (second-generation neuronal networks [6]).
The basic operation unit here is a node, representing an av-
eraged neural activity rate (time window, 5 ms to 25 ms) as
it could be generated by an ensemble of neighboring spik-
ing neurons. These nodes are connected by edges or links
characterized by specific link weights. Time is introduced

in these models indirectly by defining discrete time steps
(up to 5 ms) and by defining neural activation decay con-
stants for the nodes.

The architecture of the production-perception model
WEAVER [1–3] comprises different neural layers (layers
of nodes) for activating concepts, lemmata, phonological
forms, syllables, and phonemes. The neural links between
these neural layers allow activation spreading, while con-
nections within specific neural layers allow inhibition pro-
cesses so that here, exclusively, one node is activated per
layer and per time step (winner node orwinner neuron). The
model simulates activation spreading top-down as well as
bottom-up, e.g., from concept via lemma to phonological
form level and from phonological form via lemma to con-
cept level. These spreading activation processes are always
active; top-down activation spreading thus also plays a role
during speech perception and bottom-up activation spread-
ing processes are also active during speech production.

The sensorimotor production models DIVA and GO-
DIVA allow the generation of articulatory patterns (speech
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articulator movements) from the phonological specifica-
tions of an utterance. The DIVA model [4] starts with acti-
vating motor programs followed by the generation of mus-
cle activation patterns for direct articulatory execution (top-
down motor signal generation), while the expected audi-
tory and somatosensory states (sensory expectations) are
compared with the actual sensory states in order to gener-
ate potential sensory error signals (difference between es-
timated and produced sensory states) followed by a poten-
tial activation of correction signals that are used as feed-
back signals for the top-down motor signal generation. The
GODIVA model [5], in addition, provides a motor plan-
ning module for selecting bunches of phonological sound
sequence for which motor programs are directly available
(already learned) or can be generated quickly on the basis
of available sensorimotor knowledge. This approach in-
cludes a cortico-basal ganglia-thalamus-cortical loop which
is involved in motor planning and motor execution, but
the model still uses non-spiking neuron models (nodes and
links) for modeling neural activity (second-generation neu-
ral network [6]).

The nodes of the adaptive neural networks building
the DIVA and GODIVA models are called cells or neurons.
Both models are composed of modules, each exhibiting one
central neural map, i.e., a layer or set of cells. Each of these
layers represents a specific state, e.g., motor program state,
auditory or somatosensory state, or primary motor state.
The neural connections between modules are called map-
pings, and each mapping represents a specific transforma-
tion of one neural state activated in one map to another neu-
ral state activated in the next neural map. Both approaches
(DIVA and GODIVA) include the modeling of time for (i)
representing the time-flow of speech items at the auditory,
somatosensory, and motor program level; (ii) executing a
sequence of speech items, where a GO signal was used in
early versions of the DIVA model [7], later replaced by
the timing modeled within the cortico-cortical control loop
approach including the basal ganglia and thalamus (motor
loop, see [5], p. 1517); and (iii) processing motor plan-
ning using a time-dependent competitive queuing approach
(planning loops).

Furthermore, the comprehensive model of speech pro-
cessing [8,9] uses spiking neuron models and thus repre-
sents a third-generation neuronal network (e.g., [6,10]) de-
veloped by applying the Neural Engineering Framework
and Semantic Pointer Architecture (NEF-SPA) modeling
framework [11,12], which allows the modeling of temporal
processing in a more straightforward way by using spiking
neurons and not classical connectionist rate-based, node-
edge models (second-generation neuronal networks). Spik-
ing neurons control basic temporal parameters defining the
rapidity for increasing membrane potential and thus the
time span for reaching the firing threshold before a post-
synaptic spike is generated. This defines the latencies and
processing time intervals of all functional processes of neu-

ral micro-circuits and all neurofunctional processes of the
large-scale neural network. Moreover, in contrast to other
neural simulation toolboxes (e.g., NEURON [13], NEST
[14], BRIAN [15]), the NEF-SPA approach provides mod-
eling elements not only at the neuron-level for simulating
the flow of neural activation within neural micro-circuits
(as described in the Neural Engineering Framework (NEF)
component of this approach, see [11]), but also provides
modeling elements for higher-level cognitive processing
(the Semantic Pointer Architecture (SPA) component of the
approach, see [12]) for constructing large-scale neural mod-
els capable of modeling higher-level cognitive functions
and higher-level sensorimotor functions, and thus devel-
oping brain-scale (also called large-scale) neural models.
The SPA is built on top of the NEF and allows the mod-
eling of higher-level cognitive processing, which is needed
in speech processing for representing higher-level auditory,
motor, or somatosensory states of syllables and cognitive
states of phonological or semantic forms of words. The
repertoire of neural modeling elements or building blocks
for constructing a brain-scale neural model as it is needed
for simulating speech production is described in the follow-
ing sections.

In section 2, the repertoire of neural modeling el-
ements is listed, and the neurofunctional modeling ap-
proaches of the NEF (section 2.1) and the SPA (section 2.2)
are introduced. In section 3, the functional organization of
the speech production network model is introduced (sec-
tion 3.1), typical simulation scenarios are described (sec-
tion 3.2), and the implementation of a new component of
the model, i.e., the preparation and execution of syllable
sequences, is introduced (section 3.3). Section 4 provides
an overview of model performance during different speech
production and some speech perception tasks. In section
5, the modeling approach is discussed with respect to other
research endeavors in the fields of speech production and
speech perception.

2. Method: Neural Elements of the NEF-SPA
Approach for Constructing Neural Models

TheNEF [11,16] allows the creation of complex brain-
scale models. The approach uses a limited set of basic neu-
ral network elements (e.g., neuron ensembles, neural con-
nections, neural oscillators, neural buffers, neural associa-
tive memories, neural gaiting elements, neural ramp func-
tion generators) for constructing the neural network mod-
ules (e.g., modules for cognitive processing, auditory pro-
cessing, sensorimotor processing, action selection, etc.) of
the brain-scale or large-scale neural network. The basic
neuronmodel here is the leaky-integrate-and-fire (LIF) neu-
ronmodel. Thismodel allows the generation of neural spike
trains dependent upon neural input activity (input spikes)
reaching the neuron’s synapses. While the NEF introduces
basic neural elements for signal representation, signal trans-
formation, and the generation of neural oscillations (mainly
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neuron ensembles and neuron connections between ensem-
bles), the number of neural elements is extended by the
SPA in order to be able to model complex cognitive neu-
ral processes in a straightforward manner. Typical SPA
elements are neuron state buffers, associative memories,
and the elements constructing the action selection cortico-
cortical loop. These NEF and SPA elements allow the con-
struction of all modules needed for generating a large-scale
network, e.g., for simulating a wide variety of tasks such as
recognizing digits or letters, memorizing a sequence of dig-
its or letters, decision-making, and reacting by performing
hand-arm actions such as writing [11].

The NEF-SPA framework is implemented as a Python
package called Nengo [Neural EngineeringObjects [11,17],
version 3.2.0, see (https://www.nengo.ai/)] that assembles
the basic elements of each neural network model. All
Nengo elements that are needed for constructing a speech-
processing neural model are summarized in Supplemen-
tary Material A. The corresponing Python-Nengo source
code is given in form of iPython-Notebooks in Supplemen-
tary Material B.

2.1 NEF Principles and NEF Elements

Three basic principles (representation, transformation,
dynamics) and three basic construction elements (neuron,
neuron ensemble, neural connection) characterize the NEF
[11] (see Supplementary Material A1):

(i) Representation: signals (e.g., values of sensory pa-
rameters, such as the intensity of an auditory or visual sig-
nal, or motor parameters such as the intensity of a neuro-
muscular activity for the strengthening of a specific muscle)
can be coded as (time-dependent) neural states and, vice
versa, neural states can be decoded as signals. These neural
states are represented by the neural activity (spike patterns)
of a set of neurons, called neuron ensembles (see Fig. 1a).
Each neural ensemble consists of a specific number (N) of
leaky integrate-and-fire neurons (LIF neurons). Typically,
neuron ensembles consist of N = 20–100 neurons to repre-
sent a signal with sufficient precision.

(ii) Transformation: a neural connection of a neuron
ensemble ens_A with a neuron ensemble ens_B, by con-
necting each neuron from ens_A with each neuron from
ens_B, allows a transformation (or modification) of neural
states from ens_A to ens_B (see Fig. 1b). Neural connec-
tions between neuron ensembles exhibit N × N synaptic
units with variable synaptic weight values. This allows the
modeling of a wide range of transformations (i.e., math-
ematical functions y = f(x), where x and y represent the
neural activity of the neuron ensembles ens_A and ens_B).
Besides these neuron ensemble connections, single neural
connections can also be defined from neuron 1 to neuron 2
(see Supplementary Material A1).

(iii) Dynamics: A neuron ensemble that comprises
recurrent neural connections (i.e., neural connections that
start and end at neurons of the same neuron ensemble

ens_A) is able to simulate dynamic neural processes such
as (i) oscillation of neural activation (ensemble ens_A as
neural oscillator, Fig. 1c) or (ii) building (integrating) and
maintaining a neural activation pattern over a specific time
period (ens_A as an integrator or short-term memory for
ramp-signals, Fig. 1d). The type of neural transformation,
oscillation, or integration depends on the synaptic weights
of the recurrent connections.

2.2 Semantic Pointer Architecture and SPA-Elements

Additional principles for coding and transforming
cognitive states lead to further neural elements or model
construction elements such as state buffers, associative
memories, binding and unbinding buffers, neural circuits
for evaluating state similarity (dot-products), and S-pointer-
networks, etc. (see Supplementary Material A1). While
the NEF mainly regulates the processing of lower-level
states (e.g., states describing parameters such as signal am-
plitude or frequency in case of a simple sensory input signal,
e.g., an auditory signal), the SPA allows the processing of
more complex items such as auditory processing of whole
syllables or words, or such as visual processing of a fig-
ure or an object. Thus, the SPA is an important concept for
modeling, especially the higher-level cognitive and senso-
rimotor processing of speech.

(i) Neural state buffers: for neural modeling of com-
plex cognitive or higher-level sensory and/or motor pro-
cessing, the NEF has been augmented by the SPA [11,12,
18]. Neural states are defined here in the form of semantic
pointers (S-pointers). The neural activity associated with an
S-pointer can be realized in neural state buffers. S-pointers
and their neural activity pattern represent or point to cog-
nitive states or on mental objects, i.e., mental representa-
tions of concrete objects (e.g., things, persons, animals), ab-
stract objects (e.g., thoughts, categories for things or crea-
tures, intentions, emotions), or high-level sensory or mo-
tor patterns (e.g., a visually perceived object or creature,
a motor act such as grasping, writing a letter, or articulat-
ing a word). In the case of modeling speech processing,
cognitive-linguistic states play a major role. Thus, words as
concepts or lemmata; syllables as phonological forms, ges-
ture scores, or motor programs; and other linguistic items
such as phonemes or features etc., can also be represented
in the form of S-pointers. Mathematically, S-pointers are
D-dimensional vectors (typically D = 512 for coding an en-
tire lexicon of a particular language, see [19]). Therefore,
a neural state buffer consists of D neuron ensembles, and
each of the D values of the vector representing an S-pointer
is coded as a neural activity within one neuron ensemble.

(ii) The (time-dependent) neural activity within a neu-
ral state buffer can be visualized by similarity plots. A sim-
ilarity plot displays the dot-product of the current neural
activity with each S-pointer and thus represents the neural
activity of a buffer in terms of its degree of how strong the
neural activity within a buffer is represented by each already
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Fig. 1. Graphic representation of Neural Engineering Framework
(NEF) elements. (a) Neuron ensembles (N = 20) for coding a sensory
input signal (red) as a spike pattern and for decoding the spike pattern as
an output signal (blue). (b) Neural connections between two neuron en-
sembles (ens_A and ens_B). (c) Recursively connected neuron ensemble
for generating oscillatory signals (two values are coded within this neu-
ron ensemble by dividing the ensemble into two neural subpopulations;
the input signal pulse (red) acts on one subpopulation only and triggers
the oscillator). (d) Recursively connected integrator neuron ensemble for
generating a nearly constant hold signal; a ramp-signal appears as long
as a (constant) input activation is feeding this integrator neuron ensemble
(red: input; blue: decoded output). The input signal is also called a trig-
ger pulse or trigger signal (see section 3.3: trigger pulse ensembles feed
gesture ramp signal integrators).

defined S-pointer, i.e., by each S-pointer already represent-
ing a specific item or mental object (see Fig. 2a,b). The dot-
product is a scalar value and can be calculated for each pair
of S-pointers by using a specific small subnetwork (similar-
ity between states network, also called similarity network)
starting from two buffers carrying the neural activity rep-
resenting the two S-pointers and leading towards a neuron

ensemble carrying the resulting scalar. Such a subnetwork
is not only used for decoding purposes, but these similar-
ity networks, e.g., appear within the cortico-striatal com-
ponent of the action selection network for evaluating the
potential utility of all potentially applicable (pre-selected)
actions (see below).

(iii) Short-term memories: if a neural state buffer is
augmented by recursive neural connections, the buffer can
represent a short-term memory (see also: recursively con-
nected neuron ensembles). Here, a neural activity (an S-
pointer) can be held for a longer time interval (Fig. 2c).

(iv) Knowledge-repositories: long-term knowledge is
represented by a set of S-pointers in the SPA. Many S-
pointers represent mental objects that are learned during
the lifetime, e.g., during the speech and language acquisi-
tion period. These objects, as far as they can be concretized
by a word, are stored as lexical items in their phonological
form, lemma form, and semantic form in the mental lexi-
con. Thus, vocabularies can be defined directly in the SPA
as sets of S-pointers for different levels of word represen-
tations in the mental syllabary. Therefore, the SPA concept
allows a neurofunctional interpretable definition of lexical
levels as introduced in [20]. While the associations between
phonological form, lemma, and semantic form (also called
concept) are established by associative memories (see be-
low), the relations of items within each level, e.g., the re-
lations of concepts such as “cat” and “dog” which is “ani-
mals”, or “red” and “green” which is “colors”, are defined
by relation-S-pointers and the S-pointers, and the appertain-
ing set of S-pointers needs to be saved within an S-pointer
network. Thus, concepts, lemmata, and phonological forms
build three S-pointer networks. In each network, relation-
S-pointers are defined (concept level: “belong to concept
category”, e.g., “dog” and “cat” belong to concept category
“animal” while “red” and “green” belong to the concept cat-
egory “colors”; lemma level: “belong to word category”,
e.g., “dog” and “cat” belong to the word category “noun”
while “to bark” and “to meow” belong to word category
“verb”; phonological form level: “dog” and “dark” “be-
long to phonological forms starting with the same conso-
nant /d/”). These three different S-pointer networks exist
as part of the mental lexicon, i.e., concept network, lemma
network, and network of phonological forms (see [21,22]).
The degree of similarity of items within each S-pointer net-
work (concepts, lemmata, phonological forms) can be es-
timated by calculating the dot-products between all pairs
of S-pointers within each S-pointer network. As already
stated above, the most active S-pointers in a neural state
buffer and their similarity to other S-pointers can be visu-
alized by using similarity plots (see Fig. 2a for a set of S-
pointers without any S-pointer relations and Fig. 2b, which
includes S-pointer relations).

(v) Neural connections can be realized in the SPA ap-
proach by direct connections between buffers if the neu-
ronal information needs only to be passed from buffer to
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buffer. This type of neural connection represents the sim-
plest form of neural processing. Neural connections that
transform neural states, e.g., through the conversion of an
S-pointer A (e.g., concept or lemma of a word) into an S-
pointer B (e.g., a phonological form of the same word),
require the interposition of an associative memory (see
Fig. 2d). While Fig. 2d shows an associative memory di-
rectly transforming concepts into phonological forms, nor-
mally, two associative memories realize the lexical transi-
tions, i.e., firstly, a transformation from concepts to lem-
mata and, secondly, a transformation from lemmata to
phonological forms as part of the lexical processing within
the production pathway, and two further associative mem-
ories realize the vice versa transition from phonological
forms to concepts as part of the lexical processing within
the perception pathway [8,17,21].

Thus, associative memories (such as S-pointer net-
works) include long-term knowledge and can be labeled as
long-term memories. It should be noted that while asso-
ciative memories allow long-term storage of relations be-
tween different sets of S-pointers, i.e., the relations be-
tween different lexical levels, such as between concepts and
lemmata or between lemmata and phonological forms, S-
pointer networks allow long-term storage of relations be-
tween S-pointers or items within a lexical level, e.g., se-
mantic relations (e.g., “is an animal” or “is a color”), word
relations (e.g., “is a noun” or “is a verb”), or phonological
relations (e.g., “starts with the sound /d/” or “starts with the
sound /b/”).

(vi) A further type of neural transformation that is
used in the SPA context is the binding and unbinding of
S-pointers. Binding and unbinding processes allow short-
term storage of relations between S-pointers, e.g., bind-
ing a specific object with a specific color currently of in-
terest: “blue ball” or “red ball” (e.g., SP_Red * SP_Ball
-> SP_currentObject). Unbinding processes can also be
implemented, e.g., to find the answer to questions such
as “what is the color of a currently focused ball?” (e.g.,
SP_currentObject *−1 SP_Ball -> SP_Red). Binding and
unbinding processes are implemented by binding networks
(see Fig. 2e) and can be used especially in S-pointer net-
works, e.g., to activate all objects belonging to a specific
group of objects (e.g., all “fruits”) or to extract a specific
feature of an object, e.g., “apple is a fruit”; see [8]).

All elements introduced here can be interpreted as
building blocks for the development of neural network
models and cover elementary neurobiological functions
such as holding and forwarding neural states, transforming
and processing neural states, and storing states and relations
between states, etc. These basic functional bundles of neu-
rons and functionalmicro-circuits are highly optimized, and
thus it can be hypothesized that, somehow, similar natural
bundles of neurons and similar neural micro-circuits fulfill-
ing these neural functions as defined above could be a result
of evolutionary processes, even if their specific anatomical

organization in the brain is different to the highly idealized
organization of neurons and neural micro-circuits currently
proposed in the NEF-SPA approach.

(vii) Thus far, we have mentioned neural processes
such as forwarding and modifying neural activity from
buffer to buffer. These neural processes are implemented
as network elements defining local networks (or neural mi-
crocircuits) consisting of input and output buffers as well as
processing buffers such as associative memories or binding
and unbinding buffers. The selection and activation of a
neural process is an action. The action selection process
is realized by the cortico-cortical feedback loop, including
a model of the basal ganglia and thalamus. This control
loop is a component of the SPA (see [11,12,23,24]). Ac-
tion selection (e.g., calculation of utility values for available
actions) is realized within a cortex to basal ganglia neural
network and by further subprocesses appearing within the
basal ganglia. The activation for the execution of an action
is a neural disinhibition process taking place in the thala-
mus. Actions are coded by action S-pointers.

Depending on the scenario to be simulated, a set
of actions needs to be defined (listen_and_hold, ex-
tract_meaning, form_answer, produce_answer, etc.; see
[8,21,22]). At each point in time, i.e., for each internal and
environmental state of themodel, a utility value is estimated
for each potential action by activating the dot product be-
tween specific S-pointers representing potential actions and
the current state of the model. The action which exhibits the
highest utility value at a specific point in time (i.e., in a spe-
cific situation the model is exposed to) is selected, i.e., dis-
inhibited at the thalamus. It should be stated that the delay
time that is needed for action selection appears as a natu-
ral byproduct in our spiking neuron model. It results from
the detailed neurofunctional modeling of the basal ganglia
and thalamus. This delay time (decision time) is normally
approximately 50 ms, but can be longer if two utility val-
ues are of comparable magnitude, i.e., if the model benefits
nearly to the same degree from two different actions in a
specific situation.

3. Results I: The Implemented
NEF-SPA-Model for Speech Production
3.1 Model Architecture

Speech processing is a component of the cognitive and
sensorimotor system of humans and comprises speech per-
ception (i.e., listening and comprehension) and speech pro-
duction (i.e., utterance formulation and articulatory execu-
tion). The architecture of a neurobiologically based model
of speech production comprises a cognitive-linguistic and a
sensorimotor component (Fig. 3; and see [8,9]). Both com-
ponents of the model include knowledge repositories, i.e.,
the mental lexicon and the mental syllabary. The mental
lexicon contains the semantic, grammatical, and phonolog-
ical information of all words already learned and known by
the model and thus allows the processing of meanings to-
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Fig. 2. Graphic representation of Semantic Pointer Architecture
(SPA) elements. (a) Neural state buffer for hosting a neural activity pattern
over time; the decoding of activity appearing within a neural state buffer
can be performed using similarity networks and by displaying the result in
similarity plots (the set of S-pointers used here comprises C_Dog, C_Cat,
C_Horse, C_Goose, C_Dad, C_Mom, C_Luke, C_Sid; C_etc. indicates
that these S-pointers represent the concept or meaning of the word). (b)
Same as (a), but the set of S-pointers now includes S-pointer relations –
the set of S-pointers is implemented here as S-pointer network including
the categories C_Group_Animal and C_Group_Human). (c) Short-term
memory (recurrently connected neural state buffer holding an input activ-
ity over a longer time interval – the input neural activity is displayed in
blue). (d) Associative memory for transforming neural activity of buffer
A (neural activity of word concepts C_Dog and C_Dad) into the neural
activity of buffer B (neural activity of phonological forms of words P_dog
and P_dad). (e) Binding network including input and result in buffers and
binding buffer for binding process SP_a * SP_b -> SP_c (the same net-
work structure is used for unbinding processes SP_a *−1 SP_b -> SP_c;
buffer activities are displayed in light red; here, SP means S-pointer).

wards phonological forms as a component of speech pro-
duction for further sensorimotor processing within the pro-
duction pathway. The vice versa process, i.e., processing
of phonological forms towards meanings based on an ac-
tivation of phonological forms from sensory processing, is
part of the perception-comprehension pathway (here, sim-
ply called the perception pathway, see Fig. 3). The men-
tal syllabary contains phonological forms, motor plans, and
motor programs and thus allows the processing of phono-
logical forms towards motor programs that are ready to be
articulated. Furthermore, the sensorimotor component al-
lows the processing of auditory forms, which results in ac-
tivation of phonological forms in order to allow a higher
level of cognitive-lexical processing within the perception
pathway. The sensorimotor component of the perception
pathway constitutes the feedback pathway during speech
production and thus plays an important role, especially dur-
ing speech learning [9]. A grammatical component for sen-
tence generation is not part of our model thus far, and the
tasks (scenarios) performed by the models based on this ar-
chitecture are mainly word production, syllable production,
and word comprehension tasks.

Fig. 3. Architecture of a neurobiologically based model of speech pro-
cessing following and including additions from current further model
development. Text between arrows indicate SPA-buffers for state repre-
sentation. Solid black arrows indicate neural pathways for forwarding and
processing states. Dashed black arrows in the sensorimotor network part
indicate the transfer of learning results towards mental syllabary. Dashed
black arrow in the cognitive-linguistic network part represents direct for-
warding of phonological input on perception side to output on production
side (shortcut). Orange arrows indicate neural pathways of cortico-cortical
loop for action selection (including basal ganglia and thalamus). Repro-
duced with permission from Bernd J. Kröger, published by Frontiers [8,9].

The mental lexicon associates three different levels of
word representations, i.e., the concept, lemma, and phono-
logical form level. All words of a language are represented
by an S-pointer at each of these three levels leading to three
sets of S-pointers. Each concept, lemma, or phonological
form of a word can be activated in a corresponding neural
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state buffer (i.e., three buffers on the perception and three
buffers on the production side of the model; see Fig. 3).
Four associative memories allow the transformation of S-
pointers from level to level on the production as well as on
the perception side (indicated by arrows in Fig. 3). While
these associativememories carry the knowledge of how lex-
ical forms are associated with each other from level to level
(i.e., between levels), the sets of S-pointers representing
each of the three lexical levels is further laid out as an S-
pointer network in order to include knowledge concerning
associations of words within each level (by using relation
S-pointers). Activation of lexical forms in speech produc-
tion can start from the activation of auditory forms in the
case of verbally presented words or word repetition tasks,
or from the activation of visual forms in the case of picture
naming tasks.

The phonological level interfaces the cognitive-
linguistic component and sensorimotor components of the
model. At this level, phonological forms of syllables can be
activated basically in the form of phoneme sequences, but
a coactivation appears in the form of a raw gesture score
that is forwarded to the motor plan level (see Fig. 3) and,
in addition, S-pointer relations exist for which the similar-
ity relations are based on syllable type and on the type of
phoneme or gesture that appear in a specific position of a
syllable (for the definition of syllables and gestures see [9]).

The sensorimotor component of the model comprises
the mental syllabary as a knowledge and skill repository
concerning motor and sensory states of all frequent sylla-
bles, and it comprises different buffers for hosting motor
programs, and auditory and somatosensory states of acti-
vated syllables. Sets of S-pointers exist for motor plans,
motor programs, and auditory and sensory motor states for
all learned syllables. Associative memories exist for the
motor plan to motor program association and for the au-
ditory state to phonological form association (arrows in
Fig. 3). Moreover, at the motor plan level, each motor plan
S-pointer is associated with S-pointers describing compo-
nents of the syllable, i.e., syllable onset, syllable center, and
syllable offset. In addition, each of these components of
syllable S-pointers is associated with S-pointers describing
the types of gestures (i.e., consonantal, vocalic, velopha-
ryngeal, and glottal gestures; see Fig. 4). The buffers and
associative memories describing this structure of each mo-
tor plan are the basis for quantifying gesture parameters at
the level of motor programs. At the motor program level,
gestures are no longer specified only phonologically as raw
gestures, but now in a concrete phonetic way as articula-
tor movement shapes (see [9]). This quantification allows
the activation of motor plan execution (see Fig. 4). While
the dimensionality of S-pointers and the number of neuron
ensembles making up the associated neural state buffers is
high (D = 512) at the cognitive-linguistic level (here, ap-
proximately 60,000 items need to be stored for a language),

the dimensionality is low (D = 32) for gestures because the
number of gestures appearing in a language is not more than
approximately 50 to 100 gestures.

The specification of raw gesture scores towards pho-
netic gesture scores (fully specified gesture scores that are
ready for execution) is carried out by activating syllable pa-
rameter values and gesture parameter values (one neuron
ensemble holds one parameter; parameters for each gesture
appearing in a syllable: gesture onset time, gesture offset
time, both relative to syllable oscillation cycle, gesture tar-
get value; all parameters are scaled in relative values 0–1).
The parameter values are learned and stored in the mental
syllabary for each syllable trained during speech acquisi-
tion. If a motor program is not available, parameter val-
ues are assembled from subsyllabic units of phonologically
similar syllables (see control action in the form of a dashed
red arrow between a mental syllabary and motor plan level
in Fig. 3). Themotor program now allows a concrete activa-
tion of neuromuscular units for the articulatory realization
of the activated syllable [25].

Fig. 4. Structure of neural subnetwork for motor preparation and
execution: motor plans (case CVC syllables) and motor programs, in-
cluding motor program execution. CVC, consonant-vowel-consonant.

The S-pointers representing auditory states comprise
24 × 64 dimensions (D = 1536), where 24 rows of 64 neu-
rons represent the frequency scale (bark scaled center fre-
quencies) and 64 columns of 24 neurons represent a time
scale (time steps of 10 ms, [26]). The S-pointers represent-
ing somatosensory states comprise 4 × 64 dimensions (D
= 256), where 4 rows of 64 neurons represent the relative
articulator to articulator distance for lips, articulator to vo-
cal tract wall distance for tongue tip and tongue dorsum,
and a relative displacement value for the lower jaw [26].
The appropriate neural state buffers (Fig. 3) are of the same
dimensionality. Two neural state buffers exist for activat-
ing learned auditory and somatosensory targets from men-
tal syllabary. A dot-product comparison can be made for
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S-pointers of sensory target and current state buffers (i.e.,
S-pointer similarity calculation) in order to estimate the cur-
rent difference (error) appearing between stored auditory
and somatosensory target states and those appearing from
current articulatory execution (Fig. 3). The result of this
sensorimotor level monitoring process is evaluated by the
action control component and stops or halts further articu-
latory execution in case of a too large difference of states (a
dot-product greater than 0.3 for auditory or somatosensory
similarity; see dashed arrows starting from blue shaded er-
ror buffers within the sensorimotor component of the model
in Fig. 3). These halts force the model to repeat the cur-
rent syllable or word, allowing for improvement, thus up-
dating the motor program parameters of the currently mis-
pronounced syllable or word.

Visual processing, as well as auditory processing, is
not included in the current version of the model. It is as-
sumed that all words that are verbally presented in the form
of an acoustic-auditory speech item or that are visually pre-
sented in the form of a picture are correctly recognized and
correctly activate the word’s phonological realizations.

Action control (red shaded box in Fig. 3) gets its in-
put from many buffers or components of the cognitive-
linguistic as well as the sensorimotor component of the
speech processing model and, vice versa, from action con-
trol to these buffers of the cognitive-linguistic and sensori-
motor component of the model (see red arrows in Fig. 3).
One typical action selection process is the already men-
tioned process of interrupting the word or syllable produc-
tion process by information based on S-pointer similarity
calculation of feedback sensory states and stored sensory
states. In this case, the execution of a syllable or word will
be repeated with slightly modified parameter values. Ac-
tion control also triggers the production process of a syl-
lable or word as a result of the activation of auditory or
visual input. The activation of lexical buffers in the per-
ception and the production pathway appears in a straight-
forward way and results directly from the existing neural
connections between these buffers. The only influence of
action control here is a phonological and semantic monitor-
ing process as implemented in our model for activating halt
actions during speech production in case of discrepancies
between phonological or semantic states between the pro-
duction and feedback perception pathways [21]. Besides
the linguistic-cognitive components, all sensorimotor com-
ponents shown in Fig. 3 are cortical components. Subcor-
tical neural activity (muscular, sensory, and other periph-
eral components) is included with the articulatory-acoustic
model level in Fig. 3. Thus, the information needed for ac-
tion control is generated in different cortical buffers or com-
ponents. These buffers or components are marked by red
arrows in Fig. 3, which are directed towards the action con-
trol component. Dashed red arrows indicate the initiation
of learning actions.

Cognitive processing (see the topmodule in Fig. 3) de-
pends on the task to be performed by the model (see below).
The tasks mentioned below mainly forward the concept ac-
tivated during perception towards the production pathway.
Complex cognitive processing needs to be modeled only in
some of the tasks mentioned below (e.g., a task involving
verbal cues) [22,27].

The basic elements or building blocks defined in the
NEF-SPA approach (see section 2 of this paper) can be used
not only to develop speech processing models; in particular,
the cognitive component of our large-scale neural network
model could be extended in order to perform other tasks
such as those described for the Semantic Pointer Architec-
ture Unified Network (SPAUN) model [28]. This model
is capable of performing tasks such as copy drawing, digit
recognition, memorizing lists of objects, counting, question
answering, and decision making, etc. Our model could be
included as a part of the SPAUN model because the basic
architecture of our model conforms to that of the SPAUN
model. In that case we only have to add the mental lexicon
and mental syllabary, as developed in the framework of our
large-scale model, as well as an artificial ear, auditory input
processing, and an artificial articulatory model for produc-
ing articulatory-acoustic speech output.

3.2 Simulating Different Speech Production Tasks

Different scenarios or tasks for speech production and
speech perception (as far as it is closely connected with
word production and word comprehension) are listed in Ta-
ble 1 (Ref. [8,9,21,22,27,29,30]). These scenarios or tasks
have already been simulated and discussed in earlier pub-
lications (see Table 1), but have never been collated in one
paper together with an overview of the model architecture.

In the case of picture naming, the model is primed to
name an object displayed on a picture that is exposed to
the model (to the test person). During this task, the visual
perception pathway and the speech production pathway are
open. If the picture is exposed to the model, the model au-
tomatically selects a concept that is forwarded to the cog-
nitive processing component. This automatically activates
the top-down process of word production [8,21]. It should
be kept in mind that the top-down production process from
activation of concepts via lemmata to phonological forms,
as well as the bottom-up perception process from phono-
logical forms via lemmata towards concepts, are directly
activated if a concept is activated in the production path-
way or if a phonological form is activated in the perception
pathway. No further action selection process is needed here
from the action control component (if the model is primed
on the task “picture naming” or “word repetition”).

In the case of a picture naming task including distrac-
tor words, a distractor word is presented following onset
of the picture presentation. The distractor word is phono-
logically or semantically similar, but not identical, to the
target word displayed as a picture [21]. The distractor word
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Table 1. Involvement of the action control component in the execution of different tasks.
Task (scenario) Control module gets input from Control module acts on Reference

Picture naming (PN) Visual state buffer Cognitive processing: allow an already
activated concept to pass

[8]

PN with distractor words
(halt scenario)

Visual state buffer and auditory
state buffer; phono and concept

error estimation

Cognitive processing as in PN; motor
execution: can be stopped if an error signal

appears at phono or concept level

[21]

PN with retrieval aids
(second/third trial sce-
nario)

Visual state buffer and auditory
state buffer

First trial: cognitive processing as in PN;
second and third trials: cognitive processing
by suppressing the direct cue (activating

co-activated concepts only)

[8,22]

Single word repetition Auditory state buffer Cognitive processing as in PN [8]

Single logatome repeti-
tion

Auditory state buffer Cognitive processing as in PN; open the
direct pathway at the phonological form level

[8]

Word list repetition (se-
rial/free recall task)

Auditory state buffer Cognitive processing: short-term storage,
binding and unbinding processes

[27]

Syllable repetition (mul-
tiple times: diadochoki-
nesis)

Motor program buffer (all
production tasks)

Motor execution [29,30]

Word comprehension
(auditory input)

Auditory state buffer Cognitive processing as in PN; in addition:
stop with concept activation

[8]

Word learning Auditory state buffer and visual
state buffer

Cognitive processing: simultaneous
activation of visual and auditory input

[9] (partial modeling)

Syllable learning Auditory error buffer and
somatosensory error buffer

Cognitive processing: simultaneous
activation of motor, auditory, and

somatosensory states

[9] (partial modeling)

Syllable execution (as
part of all tasks)

Motor program buffer (all
production tasks)

Motor execution [9] and this paper

is verbally presented by the task instructor and thus is ac-
tivated in the auditory perception pathway during the visu-
ally induced lexical retrieval process and word production
process of the visually presented target word. It is known
that such auditory input as produced by distractor words
may stop target word production processes because an in-
ner speech loop permanently monitors the speech produc-
tion process by inner perception, i.e., by evaluating the sim-
ilarity between neural activations within the production and
perception pathways at different levels (conceptual level
and phonological level, see [21,31]). Thus, distractor words
may activate a stop or halt action during the word produc-
tion process if the distractor word is identified as an incor-
rect auditory feedback signal of the current word production
process [21].

A picture naming task, including semantic or phono-
logical cues is performed as a sequence of word production
tasks [8,22,27]. The first word production task or trial is ini-
tiated by picture presentation (normal picture naming task).
The second and third task or trial, which directly follow the
first trial, is the same task but, in addition, a phonological or
semantic cue is given verbally by the task instructor (e.g.,
in order to find the target word “bike”, the retrieval aids can

be: “the word we are looking for starts with the sound /b/”
or “the object we are looking for has twowheels”). The sec-
ond and third trial are only initiated if word production does
not lead to a correct result in the preceding task or trial. The
activation of the cue in the second or third trial leads to a
co-activation of specific phonological or semantic features
of the target word, which now increases the activation of the
target word for potential lexical selection at the beginning
of the production pathway. Thus, in the case of this task
comprising up to three trials, it is important to ensure that
the concept and phonological S-pointer networks include
all similarity relations [22,27].

Single word repetition is similar to the picture naming
task, but now the input is activated at auditory input leading
to phonological form activation and further to lemma and
concept activation within the perception-comprehension
pathway [8]. Visual perception directly leads to activation
at the concept level of the perception-comprehension path-
way in the case of our model.

Word list repetition starts with auditory input ac-
tivation leading to concept activation at the end of the
perception-comprehension pathway. Because the task now
is word list repetition, the action control component is
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primed in a different way by firstly keeping the list of words
and then reproducing the list of words as far as the model
was able to memorize the word list [27]. Thus, cognitive
processing is more complex in the case of this task in com-
parison to a single word repetition task.

Logatome repetition does not activate the lemma and
concept level of the mental lexicon because a logatome is
defined as a nonsense word or non-word (i.e., a syllable or
a sequence of syllables that is not included at the lemma
and concept level of the mental lexicon of the target lan-
guage). In this case, the action control component directly
activates a neural connection (a shortcut connection) from
the perception to the production pathway of the model at the
phonological level [8] (see the dashed line in Fig. 3 at the
phonological form level of the mental lexicon). The per-
formed task now is to repeat a phonological form without
involving higher levels of the mental lexicon (i.e., to repeat
an auditory impression, processed only up to the phonolog-
ical level of the phonological system of the target language
learned by the model).

The multiple repetition task of syllables—also called
diadochokinesis—likewise does not involve the mental lex-
icon. This results from the task’s priming procedure be-
cause the model is only instructed to repeat syllables and
not words of a specific language. The simulation here starts
with pre-activation of the motor program of one syllable
or of a sequence of syllables (such as /badaga/ or similar,
see [29,30]). The action control component of the model
is primed here on production of multiple repetitions of one
syllable or of a sequence of syllables.

The word comprehension task (which is also a compo-
nent of word repetition) is based on the auditory activation
of the syllable sequence representing a target word (word
is acoustically presented by the test supervisor). The se-
lected and activated concept at the end of the perception-
comprehension pathway is decoded by similarity calcula-
tion processes. Here, that concept is chosen (i.e., is compre-
hended) which exhibits the highest dot product, i.e., which
exhibits the highest activation in the concept buffer (see
similarity plot of the concept buffer [17]).

The following “tasks” are special because there are
no direct performance tasks like those discussed above.
Rather, here we illuminate speech and language learning
processes in order to increase the language and speech com-
petence of the model. So far, speech and language learning
processes are simulated using rate-coding neuron models
(the spatio-temporal activity averaging [STAA] approach,
see [32] and for a speech processing model see [9]), but
the mechanism of action control in learning scenarios can
be modeled in our spiking neuron NEF-SPA approach. In
the case of word learning (lexical learning), specific com-
munication scenarios are needed. For example, the model
(i.e., the speech learning child) points to an object (e.g., a
ball) and looks at the communication partner to motivate
him to utter the word. Thus, a simultaneous activation of

concept and auditory form appears. If themodel has learned
to convert auditory forms into phonological forms (see be-
low: syllable learning), it is now capable in addition to co-
activate the lemma form and the concept of that new word.
This simultaneous activation of word forms at different lev-
els of the mental lexicon now allows lexical learning, i.e.,
the synaptic weight adjustments within associative memo-
ries between phonological forms, lemmata, and concepts.

In the case of syllable learning (to increase the number
of learned syllables within the mental syllabary), the spe-
cific learning scenario is a production-and-(self-)perception
event for a new syllable realization. Thus, we have a simul-
taneous activation of phonological form, motor plan, mo-
tor program, as well as of auditory state and somatosensory
state, activated by the feedback sensory loop. If the pro-
duction trial is judged as “successful”, i.e., if the produced
syllable is labeled as correct, the neural states currently and
simultaneously activated in the phonological form buffer,
motor plan buffer, motor program buffer, and auditory and
somatosensory state buffer are used to adjust the synaptic
weights acting in the associativememories connecting these
state buffers with each other. These associative memories
form the core knowledge of the mental syllabary.

3.3 Modeling Neural Premotor Activations for Syllable
and Gesture Execution

Besides selecting and executing task specific actions
such as listening to auditory items (e.g., generated by a
task supervisor), visually perceiving and identifying objects
from a picture, memorizing a list of items (words or visual
objects), (re-)producing and articulating syllables or words,
etc., a further complex neural functioning that needs to be
processed by the action control component is the sequenc-
ing, premotor preparation, and execution of the syllables of
a word or utterance under production. Word or utterance
production and execution becomes complex if more than
one syllable needs to be executed, i.e., if syllable sequenc-
ing and its temporally ordered execution come into play.
The simulation of the execution of single syllables has al-
ready been described [9,33]. In this paper, we present for
the first time the neural preparation and execution processes
for a succession of four syllables. Here, a syllable oscilla-
tor is implemented for each learned syllable, and the sylla-
ble oscillator triggers gesture activation and execution of all
gestures building the word or utterance [9,25]. However, it
is not possible to simulate a repetition of the same syllable
with this older version of the model because syllable oscil-
lators for a sequence of syllables need to be independent of
each other due to the inherent overlap of the life-time cy-
cle of temporally adjacent syllable oscillators during sylla-
ble sequence production and execution. Starting a syllable
oscillator means preparing the syllable at a premotor level
before the first articulatory gesture is activated and thus al-
ways starts within the lifecycle of the syllable oscillator of
the preceding syllable.
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It can be seen from our new simulation results shown
in Fig. 5 that syllable oscillators (i) generate exactly a sin-
gle oscillation cycle per syllable (the lifecycle of a syllable
including syllable preparation at premotor levels and exe-
cution of its inherent articulatory gestures (see also [9,25])
and (ii) overlap in time for nearly half of the oscillation cy-
cle (new simulation results). This overlap in time of sylla-
ble lifecycles can even become stronger with a rapid speak-
ing rate. In that case, the oscillation cycle or lifecycle of
up to three subsequent syllables may overlap in time. The
oscillator of each syllable defines the timing of all articula-
tory gestures appearing in a syllable as a type of premotor
temporal setting for all gestures of a syllable that is acti-
vated and, thus, that will be executed. This defines premo-
tor movement estimates for all speech gestures appearing in
that syllable (row “speech actions”; middle row in Fig. 5),
and these movement estimates or movement patterns are
activated in NEF ensembles called gesture ramp signal in-
tegrators (see Supplementary Material A2). These ramp
signal integrators are triggered by syllable oscillators (see
Fig. 6). It can be seen from Fig. 5 that the movement ve-
locity (i.e., the speed with which a gesture executing an ar-
ticulator reaches its target region; target regions are indi-
cated by thick bold black horizontal lines in Fig. 5, row c;
the thick upper line represents the beginning of the target
region for vocalic and consonantal gestures, and the thick
lower line for glottal and velopharyngeal gestures) is lower
for vocalic gestures (sa_vow_I, sa_vow_A, sa_vow_U ac-
tivation patterns in a row c in Fig. 5) in comparison to con-
sonantal constriction gestures for labial, apical, and dorsal
consonants (sa_lab_constr, sa_api_constr, sa_dor_constr;
Fig. 5). Moreover, the movement velocity of velopharyn-
geal abduction gestures (sa_vel_abduc; Fig. 5) is lower than
the movement velocity of glottal abduction (opening) ges-
tures (sa_glott_abduc). Furthermore, in comparison to the
ramp signal generation produced by other neural integra-
tors, which are used as short-termmemories for signals (see
Fig. 1d), here the ramp signal decreases if the input sig-
nal, i.e., the trigger pulse or trigger signal feeding the in-
tegrator ensemble, ends (trigger signal pulses are shown in
rows d and e of Fig. 5). The parameters for adjusting the
ramp signal, i.e., the gesture movement estimates, can be
adjusted by the parameters of the recurrent neural connec-
tions of the neural integrator ensemble itself, together with
the amplitude parameter of the neural connection between
gesture trigger signal ensemble and gesture ramp signal en-
semble for each articulatory gesture, also called speech ac-
tion (see Supplementary Material A2). The gesture trig-
ger signals for the vocalic and consonantal gestures of each
syllable processed by each syllable oscillator (constr-, vow-
, constr-gesture, i.e., lab_constr, vow_A, lab_constr for syl-
lable /bap/) are displayed in rows d and e of Fig. 5.

The difference between these two last rows in Fig. 5
is that the activation of gesture trigger signal ensembles for
each gesture is given in the last but one row, while the trig-
ger signals of the last row reflect the connection of each
gesture to syllables. While the neural activities shown in
the last but one row (row iv of Fig. 5) are no longer reflect-
ing the origin of a gesture with respect to a specific syllable
(trigger pulse ensembles for “gestures only”; see Fig. 6),
the neural activities in the last row (last row of Fig. 5) re-
flect the trigger signal pulses generated by each syllable os-
cillator for each gesture as part of a syllable (trigger pulse
ensembles for “gestures*syllables” in Fig. 6). A typical dif-
ference between the activations displayed in the last but one
and in the last row of Fig. 5 can be seen at the end of the
second from last syllable /dip/ and last syllable /bap/. Be-
cause the labial consonantal constriction gesture of /p/ in
/dip/ temporarily overlaps with the first consonantal con-
striction gesture of /b/ in /bap/, these two gestures melt into
one labial constriction gesture (see blue trigger pulse sig-
nals in the second last row of Fig. 5). This is modeled in
our neural architecture by introducing two levels of trigger
pulse ensembles (see Fig. 6 and Supplementary Material
A2).

Because the start and end times of gesture trigger
pulses are stored in values of a relative time scale, i.e., rel-
ative to the time scale defined by the oscillation cycle of
a syllable oscillator, it seems reasonable to define a sylla-
ble oscillator ensemble for each learned syllable (approxi-
mately 2000 syllable oscillators for languages such as En-
glish or German). However, as already mentioned above,
this would still cause problems if a syllable were repeated
in a near temporal neighborhood (repetition of the same syl-
lable in a direct neighborhood, as, e.g., in “bye bye” or in
an indirect neighborhood as, e.g., in “my arms, my legs” if
the speech rate is not too low). Thus, it can be assumed that
syllable oscillators need to be defined from the viewpoint of
utterance production as a sequence of oscillator ensembles
that can be filled by syllables generated by the cognitive-
linguistic component of the model. However, this concept
causes another problem because now each syllable oscilla-
tor could be activated by each syllable, and thus, each syl-
lable oscillator needs to be equipped with connections to-
wards syllable trigger pulse ensembles for each type of syl-
lable. This can be modeled using neural connection ensem-
bles (also called gaiting ensembles), which normally are all
inhibited (not activated and not capable of forwarding any
neural activity) despite those connection ensembles that re-
flect connections towards gesture trigger pulse ensembles
for all articulatory gestures that are needed to produce a
specific syllable (i.e., disinhibited connection ensembles;
for details see Supplementary Material A2). This inhibi-
tion/disinhibition process is controlled by the action control
component, which thus realizes the assignment of a specific
syllable and its parameters stored in the mental syllabary to
a specific syllable oscillator as part of the syllable oscilla-
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Fig. 5. Neural activation patterns for syllable sequences and articulatory gestures at the premotor stage (new simulation results). (a) Trigger
signals for a sequence of four syllable oscillators (SPA buffer: syll_phrase_trans; see SupplementaryMaterial A2). (b) Four NEF ensembles for syllable
oscillators: activation is displayed for each oscillator ensemble for its two signal components (x and y-signals) – syllable oscillators are displayed in one
graph (osc_SYLL0i_x, osc_SYLL0i_y, i = 1 to 4) representing the sequence of four syllables: /bap/, /gum/, /dip/, and /bap/ again. (c) Overlayed activation
patterns for the neural ramp integrator signals of three vocalic gestures, three consonantal gestures, and one velum and one glottal abduction gesture (also
called speech actions: sa_vow_aa, sa_vow_ii, sa_vow_uu, sa_constr_lab, sa_constr _api, sa_constr _dor, sa_abduc_vel, sa_abduc _glott). Neural ramp
signal integrator ensembles are triggered by the activation pattern of trigger pulse ensembles displayed in rows (d) and (e) of this figure, i.e., “speech
action pulses”. The difference between the activation patterns displayed in these rows is explained in the text.

tor ensemble (sequence of syllable oscillators, see Fig. 6).
This neural architecture realizes the activation of syllable
articulation at the premotor level. The forwarding and pro-
cessing of gesture movement estimate towards the primary
motor level for direct control of muscle group activation
(see [25]) is beyond the scope of this paper.

Despite the high number of potential connections be-
tween each syllable oscillator and each type of syllable
stored in the mental lexicon, the number of neurons and
the number of neural connections that are needed here to
implement the potential connections between each syllable
oscillator and all syllables stored in the mental lexicon re-
mains in a convenient range and can be easily handled by
the premotor component (located in the frontal cortex if the
brain scale model components are compared with box-and-

arrowmodels generated from neurophysiological data, e.g.,
[34,35]). An estimation of the number of neurons needed
for implementing this syllable programming component at
the premotor level is given in Fig. 7. Some 2500 LIF neu-
rons are needed for implementing a syllable oscillator that
guarantees a stable oscillation cycle. If we assume that 50
types of syllables (e.g., C1VC2 with C1 = voiced plosive,
C2 = voiceless plosive, V = vowel, characterizes one type
of syllable, representing approximately 10× 3× 3 = 90 syl-
lables such as /bap/ or /dut/ or /gik/ in the case of 10 vowels,
three initial and three final consonants) with a mean of eight
gestures per syllable is sufficient to represent the variety of
syllables occurring in a language, then 400 gesture trigger
pulse ensembles are needed. Trigger pulses are modeled
with sufficient precision by ensembles comprising 50 neu-
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Fig. 6. The process of syllable sequencing (see main text). “*” means:
a gesture as part of a syllable; all gestures can be concatenated in principle
with all syllables.

rons. The same holds for the inhibiting/disinhibiting con-
nection ensembles as well as for all other trigger pulse en-
sembles needed before the gesture ramp integrator ensem-
bles can be connected. The gesture ramp signal integrator
ensembles need 1000 neurons each in order to guarantee
a stable generation and representation of a gesture move-
ment estimate. The number of 30 different gestures is suf-
ficient in order to model all needed gestures appearing in a
language (e.g., approximately 10–15 vocalic gestures, two
glottal gestures, two velopharyngeal gestures, 10–15 con-
sonantal gestures). In total, the premotor component of
our model is sufficiently equipped with approximately 111
thousand neurons (approximately 105) and approximately
201 million neural connections (approximately 2× 108). If
we assume that a cortical neuron is connected with approx-
imately 103−5 other cortical neurons (the total number of
cortical neurons is approximately 1011, e.g., as in [11]), our
model is in the correct magnitude of connections to neu-
rons and, at the premotor level, the within-module neural
connections are still at the lower edge (approximately 2 ×
103 connections per neuron).

3.4 Number and Setting of Basic NEF-SPA Elements,
Neurons, and Their Connections

The main modules of this model are the cognitive-
linguistic component (CL), the sensorimotor component
(SM), and the action selection control loop, including
the basal ganglia and thalamus (AS). A neural pathway
connects buffers and/or associative memories, and each
pathway comprises many neuron-to-neuron connections.
Buffers include short-term memories (i.e., recurrently con-
nected buffers). The dimension of buffers and associative
memories is D = 64 in the case of a vocabulary of 1200
words [22]. The number of dimensions needs to be ex-
tended up to approximately 500 (e.g., 512) in the case of
modeling a complete vocabulary of a language (approxi-
mately 100,000 items on each lexical level). All parameters
defining the synapses and the built-up membrane voltage of
LIF neurons; the size and organization of neuron ensembles

and neuron buffers; the detailed structure of neuron path-
ways (of connections) between ensembles, buffers, ormem-
ories; and other elements of our large-scale neural network
are set to the default values given by [11,12,17]. The total
number of buffers and associative memories etc., for con-
structing our whole large-scalemodel for speech production
is listed in Table 2. This listing includes all buffers, mem-
ories, and connection pathways of the model, including the
cognitive processing for complex picture naming with cues
(see [22,27]) and including all clean-up processes at all lev-
els of the model (not all indicated in Fig. 3). The number of
neurons will increase above the number of neurons stated
in Table 2 if the vocabulary of the model increases and thus
the number of dimensions for each S-pointer needs to be
increased above the level of D = 64. Our current model
represents the vocabulary of a 5–6-year-old child (approx.
1200 words). Thus, the model represents the vocabulary
of a child in the middle of his/her word acquisition process
[22].

The model (cognitive, sensorimotor, and action se-
lection components) comprises 331,500 neurons plus
111,500 neurons for the syllable preparation and execu-
tion component (443,000 neurons in total) and approxi-
mately 58,000,000 normal neural connections plus further
200,000,000 connections for different gaiting paths in the
syllable production component, from which only approx-
imately 2,000,000 connections are permanently connected
during the syllable production process.

A more efficient coding strategy for syllable prepara-
tion and syllable execution (in order to reduce the number
of neural connections here) is under development. The syl-
lable preparation and execution processes are currently not
integrated into the main simulation model in order to hold
the real-time factor for calculating a simulation at a factor
of approximately 600:1 (i.e., 10minutes processing time for
calculation of one second of simulated behavior on standard
personal computers).

4. Results II: Performance Features of the
Model in Different Speech Processing
Scenarios

A typical word production task is picture naming. This
task can be performed by the model, in principle, for all
words that are already included in the mental lexicon. Be-
cause learning is still a challenge for spiking neuron net-
works, word learning has been modeled in earlier versions
of our model of speech production using an STAA neuron
model ([36] and see [25]). The mental lexicon, including
semantic and phonological word associations, is modeled
in our current spiking-neuron based NEF-SPA version of
the model of speech production in the form of hand-written
S-Pointer networks [21,22]. The performance of word pro-
duction is nearly 100% in the case of a model version repre-
senting a healthy subject (no ablated neurons in any buffer
of the model, i.e., no insertion of any neural dysfunction in
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Fig. 7. Estimation of the number of neurons (red) needed for the mental syllabary and premotor component of speech production.

the model). The production of no word (no answer) or of an
incorrect word or syllable happens in 0.6% of all production
trials (approximately 1000 trials in total) and is caused by
a too low word form activation at the phonological or se-
mantic buffer level in the production pathway of the neural
model [21,22]. In these rare cases, a second picture nam-
ing trial can be initiated by the action selection loop of the
model (in the case of no answer) or by the task supervisor
(in the case of production of an incorrect word), which then
leads to an increase of up to an almost 100% correct produc-
tion rate. These picture naming trials that need initiation of
a second production process would appear as a correction
process or, in the case of no word production, as a produc-
tion process with a longer latency period. Word production
in healthy subjects normally leads to an error rate of approx-
imately 0.1% [37].

Because semantic and phonological similarities of
words are included in the model in the form of S-Pointer-
networks, the model is capable of simulating picture nam-
ing (visual input) in the presence of auditorily presented
distractor words. These distractor words were chosen as
phonologically similar, semantically similar, phonologi-
cally and semantically similar, or not at all similar to the
visually presented target word. Simulations produced qual-
itatively and quantitatively similar results as those from ex-
periments conducted on humans [21]. More speech errors
were generated in the case of semantically similar distrac-
tor words compared with phonologically similar distractor
words, but most errors were produced in the case of seman-
tically and phonologically similar distractor words. This re-
sult is due to the existence of a phonological and semantic

feedback or monitoring loop, monitoring the results of the
production pathway on the perception pathway side [21].

With regard to simulating the speech production of
children suffering from lexical access dysfunctions or lexi-
cal acquisition problems as a result of delayed or disordered
speech acquisition processes, the percentage of speech er-
rors is much higher even in normal picture naming tasks.
Here, the delay in lexical knowledge acquisition is mod-
eled by including only approximately 50% of the typical vo-
cabulary of normally developed 5;6 to 6;5-year-old children
[22]. Furthermore, neural dysfunctions were introduced in
the form of ablation of a defined percentage of all neurons
at the level of semantic, lemma, or phonological buffer, as
well as for the neural connections modeled in the form of
associative memories between these buffers, to model the
lexical access disorder. Simulation experiments indicated
that these neural distortions reduced the rate of correct word
productions even more. At the same time, the adding of se-
mantic and/or phonological cues increased the rate of cor-
rect word production in a qualitative and quantitative simi-
lar way to that in experiments on humans [22].

Word production, word comprehension, and logatome
repetition tasks (logatome = nonsenseword)were simulated
in cases of different degrees of neuron ablation in differ-
ent model buffers allocated to different levels of the men-
tal lexicon at the production or perception pathway (con-
cept, lemma, or phonological form level) or to the neu-
ral associations between these levels (associative memo-
ries) in the production or perception pathways [8]. Abla-
tion of neurons was inserted in different buffers or associa-
tive memories to model different subtypes of aphasia. Fur-
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Table 2. Number of network elements, neurons and neural connections used in large-scale model of speech production in case of
a model vocabulary of approximately 1,200 words.

Model com-
ponent

Name of NEF-SPA model
element

Number of
elements

Number of neurons or connections per
element

Total number of neurons or
connections

CL Buffer 12 64 × 50 = 3250 neurons 39,000 neurons
CL Associative memories 14 64 × 100 = 7500 neurons 91,000 neurons
CL Neural pathways (between

buffers)
20 approx. 1,500,000 connections 30,000,000 connections

SM Buffer 10 64 × 50 = 3250 neurons 32,500 neurons
SM Associative memories 12 64 × 100 = 7500 neurons 78,000 neurons
SM Neuron ensembles 1500 50 neurons 75,000 neurons
SM Neural pathways (between

buffers)
18 approx. 1,500,000 connections 28,000,000 connections

SM Neural pathways (between
ensembles)

2000 approx. 2500 connections 5,000,000 connections

AS Neuron ensembles 8 2000 neurons 16,000 neurons
AS Neural pathways (between

ensembles)
16 approx. 25,000 connections 400,000 connections

CL, cognitive linguistic component; SM, sensorimotor component; AS, action selection control loop; NEF-SPA, Neural Engineering Frame-
work and Semantic Pointer Architecture; approx., approximately.

thermore, different degrees of ablation (different percent-
ages of ablated neurons) were inserted for each subtype of
neural dysfunction to model different levels of severity for
each subtype of aphasia. Thus, a group of model instances
modeling 11 different degrees of severity (0 to 100% abla-
tion) for six different subtypes of aphasia (Broca, Wernicke,
transcortical motor, transcortical sensory, conduction, and
mixed aphasia) were simulated for testing the model per-
formance of 66 instants of the model in the case of three
different production-perception tasks for 18 target words
(and 18 target logatomes respectively). Simulation results
agree with results found by testing natural speakers suffer-
ing from these different types of aphasia as well as by sim-
ulation results reported from another neural modeling ap-
proach [3]. As expected, the performance rate decreases
for word comprehension in the case of increasing sever-
ity (increasing percentage of ablated neurons) of Wernicke,
transcortical sensory and mixed aphasia, and word produc-
tion in the case of Broca, transcortical motor, and mixed
aphasia. The performance of logatome repetition decreases
as expected in the case of Broca, Wernicke, and conduction
aphasia [8].

In addition, we were able to model a syllable sequenc-
ing task in the case of varying dopamine levels affecting the
D1 and D2 synaptic receptors of the striatal neurons within
the basal ganglia model of the action selection module of
our neural model [29,30]. It was shown that in the case
of low dopamine levels, syllable sequencing becomes er-
roneous, and effects such as syllable freezing appear as re-
ported in patients suffering from dysarthria as a result of
reduced dopamine levels, as seen in Parkinson’s disease
[29,30].

To summarize, the main goal of our modeling efforts
was to deliver performance rates in the simulated tasks com-
parable to natural data. For all the production and per-
ception tasks listed in Table 1, the performance rate was
nearly 100%, as in natural speech production. When intro-
ducing distractor stimuli in picture naming tasks [21], our
simulations produced error or halt rates up to approximately
50% of all word productions in accordancewith natural data
[21]. In the case of neural dysfunctions at different levels of
the model (see word production tasks with additional cues
[22] and production and perception tasks for screening pa-
tients with aphasia [8]), we were able to simulate error rates
up to 100% if the degree of ablated neurons in a specific
buffer was above 30%, depending on the exact functional
location of the buffer in the production or perception path-
way [8,22].

5. Discussion
A neurofunctional model of speech production has

been described herein, which is based on a limited set
of neurobiologically well-grounded construction elements
such neural ensembles, neural buffers, associative memo-
ries, and neural connections. The model has been devel-
oped within the NEF-SPA framework, which has already
proved capable of modeling a general purpose neurobiolog-
ically inspired model of the brain [11].

Modeling of different production-perception tasks
such as picture naming, picture naming in the presence of
verbally inserted distractor words, picture names including
phonological and semantic cues, word comprehension (as
it is needed in word production tasks such as word repe-
tition), and syllable sequencing showed high performance
rates in a model instance without insertion of any neural
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dysfunctions. Neural dysfunction modeling typical speech
disorders led to a decrease in task performance rates, and
the model qualitatively and quantitatively showed results
that were comparable with results generated by experiments
in normal speaking subjects and patients suffering from
speech and language disorders such as lexical access dis-
orders, delayed or disordered speech acquisition (leading
to reduced lexical word range), different subtypes of apha-
sia, and dysarthria of speech as a result of Parkinson’s dis-
ease. Thus, the neurobiologically grounded modeling of
speech production introduced here by using a spiking neural
network approach, including the NEF-SPA concept, allows
for not only an explanation of the processes appearing in
normal (healthy) speech production but also the identifica-
tion of the potential underlying neural dysfunctions appear-
ing in specific modules, buffers, and associations between
buffers, helping to explain, and thus elucidate, the etiology
of different types of speech disorders.

While the overall organization and architecture of the
neural model have already been described in detail in other
papers (e.g., [9]), this does not hold for the complex neural
processes appearing during syllable and gesture execution,
which is described in this paper for the first time. We im-
plemented a hierarchical structure for representing motor
command generation, including a comparably small num-
ber of neural elements, model components, neurons, and
neural connections, to be able to fulfill the required task of
syllable generation and syllable sequencing.

The neural (construction) elements to construct our
neural model of speech production are based on a limited set
of neurobiologically grounded neural functional principles
and their corresponding neural realization: (i) ensembles
for neural representation of simple states (sensory or mo-
tor signals) and buffers for neural representation of higher-
level sensory, motor, or cognitive states or items; (ii) neural
connections between single neurons or between ensembles
and buffers for forwarding neural states; (iii) recurrent neu-
ral connections between ensembles for ramp signal gener-
ation, short-term memory generation for simple states (sig-
nals), and the generation of neural oscillators and recurrent
neural connections between buffers for the generation of
short-term memories of states; (iv) associative memories
and neural connections between ensembles or buffers for
transforming neural states; and (v) neural modules for ac-
tion selection and action execution. This limited set of neu-
rofunctional elements is sufficient for constructing a neural
model of speech production, as described in this paper.

Both a quantitative and qualitative comparison with
other models of speech production (e.g., [3–5]) is diffi-
cult because one of these approaches mainly models the
cognitive-linguistic component of speech production [3]
while the two other approaches mainly model the senso-
rimotor component of speech production. Moreover, all
these models are second-generation neural network models
in terms of [6], while our approach uses spiking neurons (a

third-generation neural network [10]) and thus comprises
straightforward modeling of all temporal relations in our
large-scale neural network.

The main limitations of our current version of the neu-
ral model of speech production are its limited vocabulary,
lack of capability for sentence processing, and the incom-
plete implementation of front-end modules. Moreover, the
simulation of learning in a third-generation neural network
is still a challenge (c.f. [38]); first- and second-generation
neural networks are typically favored for simulating learn-
ing and these types of neural networks are mainly used for
modeling speech acquisition (c.f. [4,36]). Thus, currently,
the generation of the whole set of lexical items (concepts,
lemmata, and phonological forms), as well as all within
and between relations, needs to be transcribed and imple-
mented manually in the form of three S-Pointer networks in
our spiking neural network model and the vocabulary used
for simulating word production is still limited to approxi-
mately 1200 items (see [22]). The development of learning
scenarios mimicking specific situations of language acqui-
sition for constructing the mental lexicon automatically is
now necessary, and the development of algorithms for mod-
eling learning in a wider rangewithin the NEF-SPA context,
e.g., learning and storing a whole set of lexical items from
simulations of supervisor-model interactions, is therefore
also necessary (see [9]).

The simulation scenarios implemented so far comprise
word production and, to some extent, word comprehension.
The model still needs to be augmented by a sentence com-
prehension and sentence production module, including syn-
tactic and semantic processing. This module should be im-
plemented beside the mental lexicon because it interacts
closely with the mental lexicon buffers on the production
and perception side by using a lemma and concept infor-
mation for each word of a sentence.

Speech perception is not included in our current ver-
sion of the model due to the complex lower-level acoustic
and phonetic processing, i.e., acoustic and phonetic feature
recognition aswell as for sound, syllable, andword recogni-
tion in a neurofunctional plausible way. On the perception
side, our modeling currently starts at the phonological level.
Acoustic input is generated in an artificial way by defin-
ing an auditory S-pointer for each syllable or word and by
directly forwarding and transforming these auditory forms
into phonological forms. On the production side, the artic-
ulatory front-end is already developed [25] and can now be
coupled with the speech production neural network, which
is now capable of generating and executing motor programs
(see section 3.3 of this paper).

6. Conclusions
Due to the successful functioning of our neuronal sim-

ulation model in the case of simulating both normal and
disordered speech production, it cannot necessarily be con-
cluded that the neuronal architecture in this model also
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reflects the neuronal architecture that has evolved in hu-
mans. However, the neural (construction) elements avail-
able in the NEF-SPA context form a minimal set that allows
the construction of neurofunctional “large-scale” or “brain-
scale” models. Therefore, as we attempted to build an ar-
chitecture with a minimal number of neuronal components
and as this attempt includes the effort of using only a min-
imal number of neurons and neuronal connections, which
is able to fulfill the required behavioral functions, we can
assume that the neural architecture created here represents
a neurobiologically probable architecture.

All model components (e.g., mental lexicon or word
selection, mental syllabary for phonological form gener-
ation, premotor component for motor command prepara-
tion, primary motor component for articulatory execution,
cortico-cortical loop including basal ganglia and thalamus
for action selection) are motivated from available neu-
rophysiological data (e.g., the components of our model
are based on components of typical box-and-arrow mod-
els derived from imaging data such as functional magnetic
resonance imaging (fMRI) or from electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) data; see
[20,34,35,39]).

Thus, in contrast to modeling efforts which try to copy
the brain structure in a still more detailed fashion (e.g., [40])
our approach already delivers a practicable model which
allows us to understand how a complex behavioral model
can be constructed based on elementary neurofunctional el-
ements. Moreover, our model enables a quantitative testing
of its behavioral results with respect to human behavioral
data and thus our model allows an evaluation of its reality
by evaluating its performance.
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