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Abstract

Pyroptosis is a type of regulated cell death that relies on caspases, vesicles, and the cleavage of gasdermin proteins (which create pores in
the cell membrane). The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which is involved
in this process, is the most widely studied inflammasome. Caspase-1 activates pro-inflammatory cytokines, such as IL-1β and IL-18.
Gasdermin D (GSDMD) is the most important executive protein. GSDMD, a substrate rather than an upstream protease, determines the
occurrence of pyroptosis. Pyroptosis is essential for maintaining body homeostasis, but excessive or poorly regulated cell death can
aggravate the inflammatory response. Undoubtedly, this will be an important direction for future research on Alzheimer’s disease (AD).
Here, we review recent research progress on the morphological characteristics, molecular mechanisms, and role of pyroptosis in the
context of AD, thereby providing new directions for identifying potential disease biomarkers and treatment strategies for AD.
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1. Introduction
Alzheimer’s disease (AD) is a disorder that causes

people to gradually lose their memory and cognition. The
pathophysiological process of AD is thought to begin years,
or even decades, before symptoms arise [1]. Despite
decades of research, our knowledge of AD pathogenesis
remains unclear, and our ability to intervene via the pre-
vention or treatment of dementia is still limited. There is
still much we don’t know about the molecular mechanisms
that lead to AD, and this is important because it would help
us develop more sensitive diagnostic markers and find new
ways to treat the disease.

Pyroptosis is an inflammatory form of regulated cell
death and a critical and necessary host-defense immune
mechanism. Increasing evidence shows that dysfunctional
pyroptosis participates in neurological disorders such as
Parkinson’s disease [2], amyotrophic lateral sclerosis [3],
and Huntington’s disease [4]. There are emerging evi-
dences that the inflammatory responses in the central ner-
vous system (CNS) may be a major cause and common fea-
ture of AD [5,6]. Pyroptosis is also involved in β-amyloid
(Aβ) protein deposition and the hyperphosphorylation of
tau [5,7]. Thus, pyroptosis is important to the development
of neuropathological lesions in AD. In our review, we sum-
marize the process of pyroptosis, particularly in AD, to bet-
ter understand the pathogenesis of AD and provide a novel
strategy for more effective prevention, diagnosis, and treat-
ment measures for AD.

2. Overview of Pyroptosis
2.1 Morphological Characteristics of Pyroptosis

There are two main ways for cell death to oc-
cur: ordered (programmed-like, regulated) and nonordered
(necrosis). To date, over 20 forms of regulated cell death
have been identified and studied, including apoptosis, au-
tophagy or autophagic death, pyroptosis, and ferroptosis,
but they are not all equally well characterized. Studies have
shown that substrates, rather than their upstream proteases,
determine the nature of cell death. Because gasdermin fam-
ily members are indispensable executors of pyroptosis, py-
roptosis is also known as gasdermin-mediated regulated cell
death [8,9].

Pyroptotic cells display DNA fragmentation, which
can be detected by terminal deoxynucleotidyl transferase
dUTP nick-end labeling, but at a lower intensity than apop-
totic cells. Chromatin condensation also occurs in pyropto-
sis, but the nucleus remains intact. Furthermore, pyroptotic
cells become annexin-V-positive because, in early mem-
brane rupture, the inner leaflet of membrane is exposed
to the outside [10,11]. During pyroptosis, the cell mem-
brane breaks down to create small holes with a diameter
of 11–24 nm; this causes increased cell permeability and
the release of inflammatory cytokines, lactate dehydroge-
nase, and other intracellular substances. The small pores in
the cell membrane cause the cell to lose its salt and water
balance, and this causes it to swell. Finally, the cell mem-
brane is destroyed, and the cellular contents are released
into the extracellular environment. This causes the body’s
immune system to become active, drawing in more inflam-
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Fig. 1. Molecular mechanisms of pyroptosis. The canonical pyroptosis pathway depends on the inflammasome and GSDMD by
caspase-1. Activated inflammasome promotes the activation of caspase-1, which cleaves the pore-forming factor GSDMD. Active
caspase-1 also cleaves the proinflammatory cytokines such as IL-1β and IL-18. NLRP1 initiates inflammasome activation upon an-
thrax toxin. NLRP3 needs to be primed prior to activation. The activators of NLRC4 are flagellin and components of T3SS, the adaptor
protein ASC is not necessary for the assembly of NLRC4 inflammasome. The activators of NLRP6 are microbial metabolites and lipotei-
choic acid. Rotavirus infection lead to the activation of NLRP9b. AIM2 recognizes dsDNA in the cytosol. The non-canonical pyroptosis
pathway requires directly binding of LPS to caspase-11 (murine) or caspase-4/-5 (human) and release ofGSDMDN-terminus. Caspase-8
mediates the cleavage of GSDMC and GSDMD. Chemotherapy drugs and TNF-α promotes the activation of caspase-3, which cleaves
the GSDME. Gzm B in NK cells and cytotoxic T lymphocytes can also directly cleave GSDME. Gzm A from cytotoxic lymphocytes
could cleaves GSDMB. Human pathogen group A Streptococcus secretes SpeB, which induces GSDMA-dependent pyroptosis. DAMP,
damage-associated molecular pattern; PAMP, pathogenassociated molecular patterns; ASC, apoptosis associated speck-like protein con-
taining a caspase recruitment domain; LPS, lipopolysaccharide; GSDM, Gasdermin.

matory cells, and inducing a serious inflammatory reaction
[12,13]. Unlike necrosis, pyroptotic cell death and the con-
sequent inflammatory responses are reversible and control-
lable. Thus, pyroptosis has attracted increasing attention in
the study of infectious diseases, various neoplastic diseases
and metabolic diseases, and represents a new research di-
rection.

2.2 Gasdermins in Pyroptosis

Members of the gasdermin family have been recently
identified as having pore-forming activity and are found
in many different cells and tissues. Currently, this family
comprises six homologous genes in humans: gasdermin A
(GSDMA); GSDMB; GSDMC; GSDMD; GSDME; and pe-
jvakin. All gasdermins except for pejvakin contain a cy-
totoxic N-terminal (GSDMNT ) domain and a C-terminal
(GSDMCT ) repressor domain. TheGSDMNT fragment has
the ability to form pores in the cell membrane, which can

disrupt its integrity. The expression of GSDMNT alone
can induce pyroptosis [8,14,15]. The GSDMCT fragment
can bind to the GSDMNT domain and act as a repressor,
whereas overexpression of GSDMCT can block cell death
[8].

Pore formation by the gasdermin family is a charac-
teristic of pyroptosis [16,17], the binding of the GSDMNT

domain tomembrane lipids causes it to change shape, which
leads to the formation of pores. Experimental evidence in-
dicates that theGSDMNT domain can directly interact with
lipid molecules in cells. The GSDMDNT domain prefer-
entially targets acidic phospholipids such as phosphoinosi-
tides and cardiolipin [18–21]. The N-terminal domains of
other gasdermins, such as GSDME and GSDMA, have a
similar way of forming small holes in the cell membrane
[18].

At present, the mechanism by which GSDMD in-
duces pore formation in the membrane (which constitutes
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Fig. 2. Neuron-glia crosstalk in Alzheimer’s disease. Microglia, working as both phagocytic cells and innate immunocyte, can recog-
nize and clear Aβ. However, in AD, the canonical pyroptosis pathway is activated in Aβ-induced reactive microglia. Meanwhile, Aβ
species can also induce pyroptosis in neurons. Activate NLRP3, caspase-1 and downstream IL-1β, IL-18 promote the aggregation of
hyperphosphorylated tau, neurofibrillary tangles in turn trigger the activation of NLRP3 inflammasome. The interaction between NLRP3
and hyperphosphorylated tau promotes neuroinflammation and neuronal injury. Activated microglia induces A1 astrocytes by secret-
ing IL-1α, TNF-α and C1q, and Aβ species induce the activation of NLRP3 infammasome and caspase-1 in astrocytes, which futher
triggering the release of IL-1β and IL-18.

cell pyroptosis) is relatively clear, but it is still a mat-
ter of debate how caspases recognize and cleave GSDMD.
In studies on apoptosis, caspases have been shown to ac-
tivate the substrate protein by recognizing a tetrapeptide
sequence in the substrate and cleaving after the aspartate
residue [22,23]. However, this process is different in py-
roptosis. Recently, it was found that autocleavage at the
Asp289/Asp285 location in caspase-4/11 creates p10. To
carry out a tetrapeptide sequence-independent cleavage,
the p10-form promotes the binding of caspase-4/11 to the
GSDMDCT domain; caspase-1 employs a similar structural
mechanism for targeting GSDMD [24].

2.3 Molecular Mechanisms of Pyroptosis
2.3.1 Regulatory Mechanism of Canonical Pyroptosis

The canonical pyroptosis pathway is mediated by
caspase-1. Proteins called pattern recognition receptors
(PRRs) assist the body in recognizing two groups of sub-
stances: damage-associated molecular patterns (DAMPs),
which are linked to cell components, and pathogen-
associated molecular patterns (PAMPs), which are linked
to microbial infections. Inflammatory signaling cascades
are thereby initiated. Several families of PRRs, including
NOD-like receptors (NLRs), toll-like receptors (TLRs), and

RIG-I-like receptors, play vital roles in the immune sys-
tem [25]. The inflammasome is activated by various stim-
uli, which induces the activation of caspase-1. On the one
hand, GSDMD which is cleaved and activated by activate
caspase-1 causes cell membrane to form pores, and lead to
pyroptosis; on the other hand, caspase-1 can rapidly process
pro-interleukin-1β (pro-IL-1β) and pro-IL-18 into their ac-
tive proinflammatory cytokines, while IL-1 and IL-18 flow
out of the pores and trigger inflammation [26] (Fig. 1).

A collection of multiprotein signaling complexes
called inflammasomes are found in the cytoplasm. Several
inflammasomes, includingNLRP1, NLRP2, NLRP3, AIM2,
and NLRC4, have been discovered [27]. The immune re-
ceptor protein NLRP3, adaptor protein ASC (apoptosis as-
sociated speck-like protein containing a caspase recruit-
ment domain), and inflammatory protease caspase-1 make
up the most extensively studied inflammasome, which re-
acts to microbial infections, endogenous danger signals,
metabolic risk factors, and environmental stimuli [28,29].
An earlier investigation revealed that the gene expression
of NLRP3 was so low that it was insufficient to activate the
assembly of an inflammasome during resting conditions.
Therefore, the canonicalNLRP3 inflammasome is activated
when two steps are completed [30–32]: the first step is the
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Table 1. Studies on pyroptosis in CNS cell types in AD.
Experimental model Cellular location Comments Reference

AD mice microglia Activation of NLRP3-caspase-1-GSDMD axis by ASC-Aβ composites [44]
AD mice astrocytes Activation of NLRP3 and caspase-1 by Aβ1−42, but GSDMD was not detected [45]
AD rats and PC12 cells neurons Activation of NLRP1-caspase-1-GSDMD axis by hyperphosphorylated tau [7]
AD mice neurons Activation of NLRP3-caspase-1-GSDMD axis by Aβ1−42 [5]
AD mice neurons Activation of NLRP1-caspase-1-GSDMD axis by Aβ [46]
AD mice oligodendrocytes Activation of NLRP3-caspase-1-GSDMD axis by Aβ1−42 [47]

priming step, through the myd88-NF-κB pathway, the lig-
ands of TLRs, NLRs, and cytokine receptors cause the pro-
duction of pro-IL-1 andNLRP3 [33–35]. The second step is
the activation step, which happens when a variety of foreign
objects (PAMPs or DAMPs) cause NLRP3 inflammasome
to assemble and activate [36].

2.3.2 Regulatory Mechanism of Noncanonical Pyroptosis
The noncanonical pyroptosis pathway is mediated by

caspase-4/5/11. Bacterial lipopolysaccharide stimulates
and activates caspase family proteases (caspase-4/5 in hu-
mans and caspase-11 in mice), and activate caspase-4/5/11
cleaves GSDMD, which forms pores in the cell mem-
brane and eventually leads to pyroptosis [14,37]. Unlike
the canonical signaling pathway, IL-1α and high mobility
group box 1, not IL-1β or IL-18, are released by caspase-
4/5/11-mediated pyroptosis. Caspase-4/5/11 activates the
transmembrane channel pannexin-1, causing an efflux of
cellular ATP, which promotes P2X7 receptor-dependent py-
roptosis [38]; the activation of pannexin-1 channels causes
potassium efflux, which is essential for the activation of
NLRP3 inflammasome. Therefore, noncanonical pyropto-
sis can also induce an inflammatory cascade.

2.3.3 Other Caspase-Induced Pyroptosis
In addition to the two different pyroptosis pathways

described above, recent research has revealed some new
mechanisms. GSDME is specifically cleaved by caspase-3,
and thereby induces the switching of caspase-3-mediated
apoptosis to pyroptosis [39]. Caspases-3/7 which are
thought to play a role in apoptosis, could induce GSDMD-
associated microglial pyroptosis under neuroinflammatory
conditions [40]. Caspase-8 is a caspase that is involved in
apoptosis and necroptosis, however, recent evidence sug-
gests that caspase-8 plays a critical role in pyroptosis [41].
The RIPK1- and caspase-8-dependent cleavage ofGSDMD
results in cell death; no other caspase is involved in the
whole process [42]. Additionally, the lysosomal Ragulator-
Rag complex initiates caspase-8-mediated pyroptosis by
Yersinia [43].

3. Pyroptosis in CNS cell types
Pyroptosis has been assessed in the CNS using a vari-

ety of assays; here, we review the evidence for pyroptosis
in each CNS cell type (Fig. 2; Table 1, Ref. [5,7,44–47]).

3.1 Microglia
Microglia is a type of resident macrophage present in

the CNS. But the mechanism by which it works in the rest-
ing state is still poorly understood. Activated microglia can
not only promote the repair of tissue damage, but also pro-
mote the inflammatory response of the CNS. However, the
effect of inflammatory microglia on brain injury and dam-
age is closely related to the pathogenesis of AD [6,48]. The
NLRP1, NLRP3, and AIM2 inflammasomes have been re-
ported to be activated in microglia, astrocytes, and neu-
rons [49–51], and the NLRP3 inflammasome is highly ac-
tivated in microglia [52]. Activation of the NLRP3 inflam-
masome triggers the release of several proinflammatory cy-
tokines, including IL-1β and IL18. Importantly, studies
on microglia have shown that gasdermins are recognized
and cleaved by caspases, leading to cellular swelling, mem-
brane rupture, and other features of pyroptosis [44,53–58].

3.2 Astrocytes
Astrocytes are the most widely distributed in the brain

and play an important role in normal central activities.
Studies have shown that astrocytes play an important role
in the inflammatory response of the CNS. Together with
other glial cells (e.g., microglia, oligodendrocytes), astro-
cytes compose and maintain a regulated microenvironment
[59,60]. Their activation states vary, ranging from neu-
roprotective (decreases inflammatory response, promotes
repair) to neurotoxic (intensifies inflammatory response,
causing neurodegeneration) [61]. Aβ and extracellular
ATP, which are capable of activating LPS-induced astro-
cytes and interacting with the NLRP3 inflammasome, cre-
ate a neuroinflammatory environment by the excessive pro-
duction and release of proinflammatory cytokines and pro-
mote pyroptosis in astrocytes in vitro and in vivo [45,62–
64]. However, inconsistent results have been reported in
studies with human astrocytes [65]; astrocytes in the brain
exhibited NLRP3, cleaved GSDMD and strong caspase-8
immunoreactivity, but not ASC, caspase-1, or IL-18 [66].

3.3 Neurons
Pyroptosis is of great significance for the pathogen-

esis of AD. However, most studies have focused on glial
cells, and there have been few experiments on the interac-
tion between neurons and pyroptosis. The latest research
suggests that pyroptosis is not restricted to glial cells; neu-
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rons are immunoreactive to cleaved GSDMD [66]. Studies
have showed that the inflammasomes ofNLRP3 andNLRP1
may induce neuroinflammatory processes by pyroptosis in
neurons. Aβ1−42 can induce pyroptosis via the GSDMD
protein in neurons, and NLRP3/caspase-1 signaling is im-
portant for mediating GSDMD cleavage [5,67]. Tan and
colleagues [46] have showed that the NLRP1 inflamma-
some drives neuronal pyroptosis in AD mice, suggesting
that NLRP1/caspase-1 signaling is a key pathways respon-
sible for Aβ neurotoxicity. In addition, one study demon-
strated that hyperphosphorylated tau could induce pyropto-
sis in PC12 cells, the release of IL-1β and IL-18 in turn in-
creased hyperphosphorylated tau while spreading neuroin-
flammation [7].

3.4 Oligodendrocytes
Oligodendrocytes (OLs) are important for the func-

tioning of the CNS. Although there is increasing evidence
that OL damage and white matter degeneration are impor-
tant pathological changes in AD, their roles in the occur-
rence and development of AD are still unclear [68]. Zhang
et al. [47] reported that mature OLs in both AD patients and
AD mice undergo NLRP3-dependent GSDMD-associated
inflammatory injury, accompanied by demyelination and
neurodegeneration. In mature OLs, overactivation of Drp1
leads to impaired glucose metabolism, leading to NLRP3-
related inflammation and pyroptosis.

4. Association between Pyroptosis and AD
AD is a neurodegenerative disorder clinically defined

by gradually increasing cognitive impairment and alter-
ations in executive functions. The neuropathological hall-
marks of AD are the accumulation ofAβ and neurofibrillary
tau tangles (NFTs) [69]. Studies have confirmed that the
inflammatory response mediated by inflammasomes play a
key role in AD pathology. Rui et al. [70] have shown that
GSDMD-mediated inflammasomes and pyroptosis were ac-
tivated in peripheral blood mononuclear cells of patients
with amnesiac mild cognitive impairment and AD. How-
ever, the interaction between pyroptosis and the pathophys-
iology of AD is not clear yet. Here, we summarize the
relationship between pyroptosis and AD, focusing on Aβ
plaques and NFTs.

4.1 Aβ
Activation of the NLRP3 inflammasome by fibrillar

Aβ and soluble Aβ has been described previously [71,72].
Heneka et al. [28,73] demonstrated that AD mice exhibit
obvious inflammatory phenotypes in the cerebral cortex and
hippocampus. It was characterized by the activation of mi-
croglia associated with Aβ plaques, accompanied by exten-
sive vascular endothelial damage. NLRP3–/– or caspase-1–
/– mice, mainly due to reduced activation of caspase-1 and
IL-1β in the brain, increased Aβ content, thereby attenu-
ating the loss of spatial memory and other AD symptoms

[28,73]. In addition, in 5 xFAD mice aged 7–8 months,
whose brains contained the ASC+/– genotype, the amyloid
content in the brain was significantly reduced; inhibition of
inflammasome activation enhanced phagocytosis capability
of astrocytes and improves learning and memory [74]. Han
et al. [5] found that Aβ1−42 can cause pyroptosis through
GSDMD protein, and theNLRP3-Caspase-1 signaling path-
way is the key to mediateGSDMD cleavage. The role of the
NLRP3 inflammasome in AD has also been confirmed in
clinical research [75]. Aβ triggers the activation of inflam-
masomes and mediates pyroptosis in the brain; conversely,
pyroptosis also accelerates the formation of neuritic plaques
and is crucial for the development of AD.

4.2 Tau
Pyroptosis has been reported to act as a component

in the progression of AD by its interaction with Aβ, but
does pyroptosis affect tau pathology? Data on the correla-
tion between tau hyperphosphorylation and pyroptosis are
scarce. Previous studies have showed that the overexpres-
sion of proinflammatory cytokines increases neurofibrillary
tangles [76], but recent studies have found that this phe-
nomenon is caused by activation of the NLRP3 inflamma-
some and pyroptosis. Inhibition of the NLRP3 inflamma-
some reduced neurofibrillary tangles and significantly im-
provedmemory and cognition inADmousemodels [77]. Li
et al. [7] used two hyperphosphorylated tau rat models and
PC12 cells to study the correlation between tau protein and
pyroptosis. The authors found that the high level of hyper-
phosphorylated tau induce the release of caspase-1, IL-1β
and IL-18, and the degree of cell injury [7]. However, in
AD brain tissues, GSDMD-positive neurons had no NFTs,
but were found in close proximity to Aβ plaques [66].

5. Anti-Pyroptotic Therapies
With continuing research on pyroptosis, increasing ev-

idence shows that pyroptosis can be used as a new therapeu-
tic target for the treatment of AD (e.g., usingNLRP3 inflam-
masome inhibitors such as MCC950 and JC-124 [78,79]
and proinflammatory caspase inhibitors such as VX765)
[80,81]. However, none of them have been applied in the
clinic. At present, there is no relevant report on GSDMD
inhibitors as an AD treatment strategy. However, because
GSDMD is the main executor of cell pyroptosis, it is rea-
sonable to speculate that inhibitors of GSDMD might have
a place in the treatment of AD.

In recent years, Traditional Chinese Medicine (TCM)
has been widely used to treat AD, and research on the
anti-pyroptotic effects of the active ingredients of TCM
preparations has gained increasing attention. Because it
inhibits NF-κB activity and NALP3 inflammasome acti-
vation, artemisinin has protective effects on the pathology
of AD [82]. Dl-3-n-butylphthalide, also known as api-
genin, suppresses the TXNIP-NLRP3 interaction, inhibits
NLRP3 inflammasome activation, reduces proinflamma-
tory cytokine levels, and prevents Aβ production [83].
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Resveratrol has protective effects on AD pathology through
suppressing the inflammatory response [84]. Treatment
with Ginkgo biloba extract EGb 761 has been found to de-
crease microglial secretion of TNF-α and IL-1β, NLRP3
and caspase-1, and inhibit inflammatory activation, thereby
significantly improving cognitive function in mice [85].
Recent findings suggest that scutellarin inhibits neuroin-
flammation and microglial activation via regulation of the
reactive oxygen species/NLRP3 signaling pathway [86].
Scutellarin may be regarded as a caspase-11 inhibitor that
inhibits the generation of GSDMDNT , leading to reduced
pyroptosis [87]. Ginsenoside, triptolide, epigallocatechin-
3-gallate, curcumin, andrographolide, gastrodin, and the
combination of Panax ginseng and Angelica sinensis, all
have effect on inhibiting pyroptosis and alleviating the in-
flammatory response [88–95]. However, the therapeutic ef-
fects of these medications on alleviating pyroptosis in AD
have not yet been reported.

Despite the substantial research effort focused on find-
ing drugs for the treatment of AD, some therapeutics are
single-target drugs, and most of these clinical trials have
ended in failure. Therefore, a new approach to develop-
ing AD drugs is urgently needed. Considering the com-
plex multifactorial etiology of AD, TCMs, which have the
synergistic effects of binding multiple targets and activat-
ing multiple pathways, may be safe and ideal candidates as
therapies for AD. Therefore, TCMs have broad application
prospects in the treatment of AD.

6. Conclusions
All in all, Pyroptosis plays a pivotal role in the pro-

gression of AD. Our review highlights key developments
in understanding pyroptosis in different CNS cells and AD
pathology. Although the pyroptotic machinery has been
studied in great detail, it is still a novel research topic, and
there are many gaps and challenges in the regulatory mech-
anisms of pyroptosis during the AD process that should
be investigated in future studies. In this review, we con-
sidered several critical points, including key pyroptosis-
associated regulatory genes, noncoding RNAs, and even re-
sults from multiomics analyses. Perhaps pyroptosis-related
molecules, such as GSDMD, can be used as biomarkers for
diagnosis and prognosis. The exact pathogenetic mecha-
nisms underlying AD remain uncertain, as there are still no
drugs that can slow the progression of AD, let alone offer a
cure. The exploration of pyroptosis may lead to new ways
to treat AD. Overall, pyroptosis is a new perspective on the
pathogenesis of AD.
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