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Abstract

Fluctuations in mechanical force vectors within living cells can substantially influence the behavior and functions of proteins. Tau protein
can spontaneously be raptured and entangled in refolding under picoNewton compressive forces that are biologically available in a living
cell: a hidden aggregation pathway due to stress and crowding. Our findings were achieved through a customized modification of atomic
force microscopy (AFM) for single-molecule manipulation. This previously hidden phenomenon of proteins rupturing collectively while
subsequently and spontaneously refolding into a complex entangled conformation, distinct from the Tau protein’s folded or unfolded
states, could potentially explain the early-event initiation of the aggregation of the Tau protein seen in various neurodegenerative diseases.
This article introduces our recent discovery of the missing Tau protein property that is of significant relevance to the Tau protein and
neurodegenerative disease research and medical treatment, aiming to stimulate the collective observation and a new perspective on the
Tau aggregation mechanism and disease mechanism studies.
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1. Introduction
Tau protein can undergo abnormal aggregation and

form insoluble fibrils, a hallmark of several neurodegenera-
tive diseases, including Alzheimer’s disease (AD), Parkin-
son’s disease (PD), and frontotemporal dementia. Litera-
ture has reported that increased oxidative stress and inflam-
mation can promote the pathogenesis of Tau protein aggre-
gation [1–8]. Although the detailed mechanisms of the Tau
protein aggregation are still not fully understood, it is gener-
ally believed that they involve the disruption of the Tau pro-
tein’s binding to microtubules, the induction of conforma-
tional changes, and the promotion of oxidative stress and in-
flammation [1–12]. Oxidative stress and inflammation can
increase the crowding in a living cell, which increases the
local-environment mechanical force fluctuation amplitudes
of the Tau proteins. Understanding the underlying reasons
for the emergence of Tau aggregates and the impairment
of their usual functions has been a primary area of inves-
tigation, aiming to enhance the development of improved
diagnostics and therapeutic approaches [1–14].

Recently, we have reported our discovery of a pre-
viously hidden property of Tau proteins: human neuronal
Tau proteins can be spontaneously ruptured and entangled
by picoNewton compressive force [15]. Under typical
physiological conditions, it has been observed that the ter-
tiary structure of human Tau protein can undergo abrupt
and spontaneous rupture like a balloon being compressed.
These tertiary-structural ruptures occur in response to bi-
ologically available picoNewton compressive forces. This
suggests that even relatively low forces within the physi-

ological range can cause significant structural changes and
potentially impact the function and behavior of the Tau pro-
tein. Understanding the mechanical properties and vulner-
abilities of the Tau protein under these conditions is cru-
cial for comprehending its role in neurodegenerative dis-
eases [15]. We made the experimental discovery by using
a home-modified single-molecule atomic force microscopy
(AFM) manipulation microscopic approach [15–20]. Ad-
ditionally, we have investigated the formation of an inter-
twined protein state that arises when proteins experience
overcrowding-induced ruptures. These crowded proteins
undergo simultaneous rupture and subsequently refold into
an entangled folding state. This unique state differs from
both the folded and unfolded states observed in individual
Tau proteins. It represents a potential pathway or triggering
mechanism for Tau protein aggregation, leading to bifurca-
tion events [15].

AFM equipped with advanced picoNewton sensitiv-
ity and accuracy is a powerful and valuable approach for
investigating protein conformation and fluctuation. AFM’s
high sensitivity and accuracy allow for precise measure-
ment and characterization of protein structures and dynam-
ics at the nanoscale level. WithAFM, it becomes possible to
probe and manipulate individual protein molecules, exam-
ine their mechanical properties, and explore their confor-
mational changes under various conditions, including the
application of forces. This technique provides valuable in-
sights into the behavior and stability of proteins, contribut-
ing to our understanding of their structure-function relation-
ships and facilitating the study of biological processes at the
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molecular level [19–26]. We have developed a new techni-
cal approach utilizingAFM that enables themanipulation of
compressive forces on individual proteins under physiolog-
ical conditions. This novel methodology allows for precise
control and application of compressive forces directly onto
a single proteinmolecule. By operating under physiological
conditions, we can investigate the response of proteins to
compressive forces in a biologically relevant context. This
advancement provides a powerful tool for studying the me-
chanical properties, stability, and conformational changes
of proteins, offering insights into their functional roles and
potential implications in various biological processes.

In recent years, we have reported compressive force
ruptures observed in several different protein molecules
like Calmodulin, 6-Hydroxymethyl-7,8-dihydropterin py-
rophosphokinase (HPPK), histone, Tau protein, and human
nucleosome [15–17,27,28]. We have employed a combi-
nation of single-molecule fluorescence resonance energy
transfer (FRET) microscopy and AFM to obtain precise
insights into the conformational changes occurring dur-
ing the rupture process. This innovative approach allows
us to monitor the rupture process in real time, with sub-
nanometer resolution [15–20]. The collective data from our
studies [10–15] have revealed a strong correlation, provid-
ing evidence that the rupture process is both spontaneous
and abrupt, driven by free energy [15–17,27,28].

Our experimental findings indicate that the Tau pro-
tein experiences a spontaneous rupture phenomenon trig-
gered by a compressive force. This rupture occurs when
the force applied reaches a specific threshold value, which
we have accurately measured. Notably, the threshold force
amplitudes align with the thermal fluctuation levels ob-
served in living cells under normal physiological condi-
tions. Moreover, the extent of rupture is contingent upon
the speed at which the force is applied. In addition, our re-
search has delved into the spontaneous and concurrent rup-
tures of multiple proteins when they are in proximity. This
phenomenon leads to the formation of an entangled protein
state, which could potentially serve as a mechanism or early
event in the aggregation of Tau proteins [15].

2. Spontaneous Rupture and Entanglement
of Human Neuronal Tau Protein Induced by
PicoNewton Compressive Force

Fig. 1A illustrates the characteristic force curve de-
picting the mechanical force applied to an individual Tau
protein molecule in an aqueous environment and its corre-
sponding response to an external compressive force [15].
As the force amplitude increases and reaches a specific
threshold value, the protein reaches its breaking point and
undergoes a spontaneous and abrupt rupture. This rupture
event is captured by a sudden release of the compressive
force, as shown in Fig. 1B. Additionally, Fig. 1C presents
a distribution of rupture forces observed in relation to the
varying degrees of compressive force loading [15].

3. Discussion
The fundamental landscape of molecular biology and

neuronal sciences is primarily based on quantitative chemi-
cal analysis of the concentration and number density of the
molecules in the rate processes. Our reported results on the
hidden protein properties strongly suggest a missing per-
spective to the scientific understanding: the basic physical
forces can also play a critical role in molecular rate pro-
cesses and dynamics in living cells. Such as in this case,
the specific mechanical compressive forces can be gener-
ated from the stress and inflammation [1–8] or other inter-
nal and external mechanical force sources, even including
external brain trauma events, such as Tau aggregation and
increased neuroinflammation in athletes after sports-related
concussions, repeated-head nocking, and in traumatic brain
injury patients [10,29–39]. Cells are complex beyond sim-
ply a chemical test tube for molecules, involving mechan-
ical force vector fluctuations. We are now seeing a com-
plete picture of the molecular rate processes and dynamics
in living cells in terms of understanding protein aggregation
under protein crowding and mechanical force fluctuations.

We have found that the Tau protein rupture behav-
iors are highly sensitive to the electrolyte environment in
the solution. The Tau proteins can have no rupture events
(Fig. 1D) or have rupture events (Fig. 1A–C) under com-
pressive force manipulation and analysis [15]. The di-
verse response behaviors observed under compressive force
can be attributed to the structural confinement and the in-
herent rigidity of the protein’s structural nature. These
behaviors are influenced by factors such as internal fric-
tional forces and interdomain attraction forces, including
hydrogen bonding and electrostatic forces. The structural
confinement, along with these molecular interactions, con-
tributes to the overall mechanical response of the protein to
compressive forces [15–17,40–44].

In our proposed comprehensive model, we classify
protein responses under compressive force into two cate-
gories: “balloon” and “cotton ball”. The “balloon” type
refers to proteins that may rupture when subjected to a com-
pressive force, while the “cotton ball” type indicates pro-
teins that undergo shape changes without rupturing. We
suggest that by modifying the electrostatic environment
through charge electric field manipulation, the rigidity of
the protein can be softened, resulting in a more flexible
form. This flexibility allows the protein to diffuse compres-
sive forces, like a “cotton ball”, by releasing stress to the
local environment and undergoing shape alterations [15].

We propose that there is a potential relationship be-
tween the electrostatic environment and the response of Tau
protein under compressive force. This relationship could
have significant implications for protein aggregation and
tauopathy, a group of neurodegenerative disorders associ-
ated with the aggregation of Tau protein. By understanding
and manipulating the electrostatic properties of the protein,
we may gain insights into mechanisms underlying protein
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Fig. 1. Single-molecule compressive force analysis of Tau proteins. (A) The force curve presented here depicts the characteristic
pattern observed during the rupture of a Tau protein under a compressive force. The sudden decrease in the force curve corresponds to
the spontaneous rupture of the protein molecule. To validate these spontaneous protein-tertiary structure rupture events, we conducted a
series of systematic control experiments [15,27,28]. (B) The cartoon scheme below illustrates the process of Tau protein rupture under a
compressive force: (i) At the initial stage, there is no physical contact between the atomic force microscopy (AFM) tip and the protein
molecule. (ii) As the contact is established, the molecule becomes squeezed under the applied compressive force. The black arrows in
the scheme represent the force vectors acting on the molecule, the AFM tip, and the cover glass. (iii) As the compressive force increases,
it eventually reaches a threshold value. Simultaneously, the molecular interaction weakens to a point where it can no longer withstand
the force. Consequently, the protein molecule undergoes rupture. (iv) The final state depicted in the scheme represents the spontaneously
ruptured state of the protein. Please note that this is a simplified cartoon scheme illustrating the concept and not an exact representation
of the molecular structure or the forces involved. (C) The distribution of threshold rupture force was plotted against the rupture force
loading distance using a force loading rate of 3000 pN/s. This analysis aimed to examine the relationship between the applied force and
the corresponding threshold force required for rupture. (D) A typical compressive force curve on a Tau protein under an Mg2+ (2 mM)
environment demonstrates the response of the protein to applied compressive forces. Adapted with permission from [15]. Copyright
2019 American Chemical Society.

aggregation and potentially develop therapeutic approaches
for Tau-related diseases [15,43,44].

The spontaneous rupture of proteins under compres-
sive force is a complex phenomenon influenced by var-
ious local factors, including the hydrophilic-hydrophobic
force field of the protein molecules and their surround-
ing environment. According to statistical thermodynam-
ics and the Boltzmann distribution, molecular state-to-state
change processes with activation energy barriers below 10
kBT (thermal energy at room temperature, approximately
298 K, 1 kBT = 4.1 pN nm) have non-negligible popula-
tions or are observable. This means that if a molecular rate
process has an activation barrier at or below 10 kBT, there
is a noticeable possibility that such a rate process can occur
spontaneously at room temperature. In other words, even
at physiological temperatures, the thermal energy is suffi-

cient for molecular events with low activation barriers to
take place and potentially contribute to protein rupture phe-
nomena.

In crowding, proteins that undergo simultaneous rup-
ture have multiple possible outcomes. They can either re-
fold back to their native states or into an entangled state, as
both pathways are energetically viable. When a protein is
ruptured, it can exist in a metastable state, where it remains
temporarily before undergoing refolding back to its origi-
nal conformation. This refolding process typically occurs
within a few milliseconds. However, based on our exper-
imental observations, we have also noted instances where
the protein can adopt different conformational states, poten-
tially remaining in a nonnative state for an extended period
[15–17].
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Under conditions of molecular crowding, such as the
accumulation of Tau proteins on neuronal microtubules,
fluctuations in compressive force can trigger rare events
involving the simultaneous ruptures of multiple protein
molecules. These simultaneously ruptured proteins can
then spontaneously fold into an entangled aggregation state.
This formation of the protein-entangled state may act as
a nucleation event, initiating the early stages of Tau pro-
tein aggregation and subsequent fibril formation. Within
the context of biological processes, the formation of the
entangled state can serve as a critical bifurcation point in
the pathways leading to Tau fibril formation. Under the
influence of biologically relevant compressive forces, Tau
protein molecules can undergo rupture in crowded environ-
ments, giving rise to the protein-entangled state. Eventu-
ally, this leads to the loss of protein activity and detachment
from the microtubule surface, ultimately contributing to the
degeneration of the microtubules.

Inflammation and oxidative stress have been sug-
gested to play a role in triggering or promoting Tau protein
aggregation [1–3]. In neurodegenerative diseases, includ-
ing AD, chronic inflammation is often observed in the brain
and is associated with the accumulation of abnormal Tau
protein aggregates [1–12]. For example, recent research
has compellingly shown thatmechanical stretching can trig-
ger phosphorylation-dependent Taumisplacement into den-
dritic spines, leading to associated synaptic dysfunction.
This dysfunction is thought to result from the presence of
soluble Tau oligomers. It is important to note that Tau pro-
tein aggregation and inflammation can influence each other
based on the molecular interplay perspectives in the litera-
ture [1–12]. Our discovery that Tau protein aggregation can
be triggered by compressive force fluctuations may provide
a new and previously missing perspective for understand-
ing the pathways and the mechanism of Tau protein aggre-
gation. Beyond that, the inflammation and oxidative stress
can increase the crowding in a living cell, which in turn in-
creases the mechanical force fluctuation amplitudes around
the Tau proteins. Such inflammation and oxidative stress
can also alter the protein’s local environment of solvation,
osmotic pressure, domain surface tension, as well as the
liquid-liquid phase separation in living cells [45,46]. Ad-
ditionally, inflammation-induced oxidative stress and the
release of reactive oxygen species can create a local envi-
ronment for the Tau protein to be sensitive to compressive
force fluctuations and get ruptured and aggregated.

It is noteworthy that Tau, an intrinsically disordered
protein, exhibits such behavior. It has been demonstrated
that Tau can exist in various conformational states, with
some being more compact than others [47–49]. The sponta-
neous tertiary-structural rupture of the protein at the thresh-
old compressive force provides further evidence that pro-
tein fluctuation dynamics, including intermolecular hydro-
gen bonding, inter-domain interactions, friction with sol-
vent molecules, and inter-domain frictions, can lead to

structural confinement capable of withstanding compres-
sive forces in the order of picoNewton, as applied by the
AFM tip apex [27,28,50]. In a biological neuronal system,
the Tau protein raptures and aggregates at their bounding
to the microtubule, which may significantly limit the Tau
protein’s structural flexibility. This inherent structural con-
finement may have significant implications for understand-
ing Tau protein aggregation.

4. Conclusions
In summary, our observations have revealed the oc-

currence of sudden and spontaneous ruptures of Tau pro-
teins when subjected to compressive forces within a range
of approximately 5 pN to 125 pN. Notably, these force am-
plitudes fall within the biologically relevant range of forces
observed in living cells [15,51]. Furthermore, our research
has uncovered a close relationship between the structural
response of proteins under compressive force and the lo-
cal electrostatic environment. We have specifically inves-
tigated the phenomenon of multiple-protein ruptures lead-
ing to the formation of entangled structures in crowded en-
vironments when subjected to compressive forces. These
findings highlight the intricate interplay between mechan-
ical forces, protein structure, and the surrounding electro-
static environment in governing the behavior of proteins
under compression in complex biological systems. The re-
sults of our experiment offer compelling evidence of entan-
glement interactions occurring between refolded Tau pro-
teins following simultaneous and spontaneous paired pro-
tein ruptures in crowded environments. Importantly, these
experimental conditions are achievable under physiologi-
cal conditions, such as the presence of Tau proteins on neu-
ronal microtubules. The findings reported in our study may
contribute to uncovering a previously missing piece of the
puzzle regarding the origin of Tau protein aggregation, a
phenomenon closely linked to neurodegenerative diseases.
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