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Abstract

Background: In recent years, road traffic safety has become a prominent issue due to the worldwide proliferation of vehicles on roads.
The challenge of driver fatigue detection involves balancing the efficiency and accuracy of the detection process. While various detec-
tion methods are available, electroencephalography (EEG) is considered the gold standard due to its high precision in terms of detecting
fatigue. However, deep learning models for EEG-based fatigue detection are limited by their large numbers of parameters and low
computational efficiency levels, making it difficult to implement them on mobile devices. Methods: To overcome this challenge, an
attention-based Ghost-LSTM neural network (AGL-Net) is proposed for EEG-based fatigue detection in this paper. AGL-Net utilizes an
attention mechanism to focus on relevant features and incorporates Ghost bottlenecks to efficiently extract spatial EEG fatigue informa-
tion. Temporal EEG fatigue features are extracted using a long short-term memory (LSTM) network. We establish two types of models:
regression and classification models. In the regression model, we use linear regression to obtain regression values. In the classification
model, we classify features based on the predicted values obtained from regression. Results: AGL-Net exhibits improved computational
efficiency and a more lightweight design than existing deep learning models, as evidenced by its floating-point operations per second
(FLOPs) and Params values of 2.67 M and 103,530, respectively. Furthermore, AGL-Net achieves an average accuracy of approximately
87.3% and an average root mean square error (RMSE) of approximately 0.0864 with the Shanghai Jiao Tong University (SJTU) Emotion
EEG Dataset (SEED)-VIG fatigued driving dataset, indicating its advanced performance capabilities. Conclusions: The experiments
conducted with the SEED-VIG dataset demonstrate the feasibility and advanced performance of the proposed fatigue detection method.
The effectiveness of each AGL-Net module is verified through thorough ablation experiments. Additionally, the implementation of the
Ghost bottleneck module greatly enhances the computational efficiency of the model. Overall, the proposed method has higher accuracy
and computational efficiency than prior fatigue detection methods, demonstrating its considerable practical application value.
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1. Introduction
In recent years, with the increasing number of cars

on roads globally, road traffic safety issues have become
increasingly prominent [1,2]. According to relevant data
[3–5], the prevalence of fatigue-induced traffic accidents is
significant worldwide. Fatigued driving refers to a situa-
tion in which the driver’s physical ability is reduced due to
a lack of rest or long-term driving, which typically mani-
fests as a feeling of physical and mental exhaustion [6,7].
When drivers are fatigued, their road condition recognition
and driving abilities are significantly decreased, leading to
potentially dangerous situations. Therefore, fatigue detec-
tion technology has received widespread attention and has
important applications in the automotive industry and the
traffic safety field.

Traditional fatigue monitoring methods, including
those based on vehicle behaviors and driver facial states,
have been widely applied to identify fatigued driving [8].
Vehicle behavior-based methods primarily measure vehi-

cle data, such as their turning angles, speeds, acceleration
rates, and trajectories [9], without requiring additional sen-
sors to be installed for the driver, minimizing discomfort.
Chen et al. [10] designed a driver behavior monitoring
and warning (DBMW) framework to detect dangerous driv-
ing. The DBMW framework includes a power spectral den-
sity module to estimate a vehicle’s lane departure, with the
driver’s driving state analyzed based on the degree of devi-
ation. Gao et al. [11] proposed a driver sleepiness detection
method based on a time series analysis of the angular veloc-
ities of steering wheels. Hu et al. [12] developed a method
for detecting abnormal driving based on a normalized driv-
ing behavior analysis. Through simulations involving vari-
ous scenarios, including driving fatigue, they demonstrated
the feasibility of their proposed approach.

Behavior-based methods for detecting fatigued driv-
ing have also attracted increasing attention. Visual analy-
ses of facial features [13–16], including eyelid closure time,
blinking, yawning, head posture, eyelid movement, and fa-
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cial expressions, have been explored as means of detect-
ing fatigue while driving. Some related studies [17–19]
determined a fatigue alertness score (Percent Eye Closure,
PERCLOS) by detecting eyelid closure frequency through
behavior-based methods. Additionally, yawning, an un-
conscious behavior caused by fatigue, has been used for
visual fatigue detection [20–22] with good results. How-
ever, sudden mouth opening or blinking caused by glare
can decrease the recognition accuracy of such methods. To
achieve a more robust fatigue detection system, Solaz et
al. [23] proposed a fatigue detection method based on the
chest/abdominal movements of the driver; their approach
can detect the level of fatigue based on nonvoluntary driver
movements caused by breathing and captured by a camera.

While the abovementioned methods for analyzing
driver fatigue offer some value, they suffer from limited
accuracy, particularly in real-world driving scenarios. Fac-
tors such as distraction and stress can lead to changes in
vehicle behavior or facial expressions, making it challeng-
ing to attribute these features solely to fatigue. Moreover,
the subjective nature of driver fatigue can lead to potential
misjudgments and a lack of robustness when utilizing the
above methods, hindering their practical applications.

EEG-based fatigue detection has attracted significant
attention in recent years as a potential solution for address-
ing the challenges of driver fatigue monitoring [24–26].
EEG is widely recognized as the gold standard for fatigue
monitoring, as EEG data reflect a driver’s real condition
more accurately than other types of data [24]. Typically,
when people are fatigued, their brain wave frequency de-
creases [27]. EEG technology can detect these changes
to identify whether a driver is in a state of fatigue, allow-
ing appropriate measures to be taken. Subasi et al. [28]
used unimodal neurophysiological EEG signals to detect
driver fatigue and proposed an advanced machine learn-
ing method based on the flexible analytic wavelet trans-
form (FAWT), which enabled state-of-the-art (SOTA) fa-
tigue detection. To accurately extract fatigue features from
noisy EEG signals, Ren et al. [29] developed a two-level
learning-based hierarchical radial basis function network
(RBF-TLLH), which is capable of globally optimizing key
network parameters and greatly improves the fatigue detec-
tion accuracy.

With the improvement achieved in hardware comput-
ing power and the progress attained in neural network ar-
chitecture design, deep learning technology has developed
rapidly in recent years, with remarkable achievementsmade
in many fields [30]. Deep learning technology facilitates
fatigue detection because deep learning-based methods can
automatically extract features and classify them based on
EEG signals using convolutional neural networks (CNNs),
recurrent neural networks (RNNs), or other related mod-
els. These models can be trained based on labeled EEG
datasets to learn fatigue state recognition patterns. A mod-
ified bidirectional long short-term memory (LSTM) deep

neural network, which incorporates a rectified linear unit
layer, was designed by Ansari et al. [31] for the interse-
quence classification of 3D time series head angular accel-
eration data. The proposed method was evaluated based on
a dataset containing 15 healthy subjects and achieved sat-
isfactory results. Gao et al. [25] developed a new EEG-
based spatiotemporal CNN (ESTCNN) to detect driver fa-
tigue based on the spatiotemporal structures of multichan-
nel EEG signals. Huang et al. [32] proposed a feature re-
calibration and fusion-based multigranular deep convolu-
tion model (RF-DCM) for detecting driver fatigue. The
multigranular extraction subnetwork extracts more effec-
tive multigranular features while reducing the number of
network parameters. This method achieved advanced re-
sults based on a public sleepiness driving dataset from the
National Tsing Hua University (NTHU) Driver Sleepiness
Competition.

Current deep learning-based fatigue detection meth-
ods suffer from a significant drawback, namely, their rel-
atively deep structures, resulting in suboptimal computa-
tional efficiency and large numbers of parameters; these
considerations make such methods challenging to imple-
ment in real-world scenarios. These issues are commonly
encountered in EEG-based research. In recent years, re-
searchers have begun to explore lightweight architectures
to address these concerns. For instance, Zhu et al. [33]
proposed a lightweight neural network called CSleepNet
for automatic sleep staging and achieved promising results
on some open-source datasets. Similarly, Alsumari et al.
[34] developed a lightweight CNN with a small number of
learnable parameters for person identification and authen-
tication. These approaches have shown potential for ef-
fectively extracting information from a limited number of
EEG signals. However, these models often sacrifice accu-
racy for computational efficiency [15,35,36]. Other meth-
ods have used techniques such as pruning or compression
to reduce the number of required parameters, but these ap-
proaches can also lead to a loss of accuracy. In contrast, the
model proposed in this paper utilizes attention mechanisms
to design a lightweight neural network that effectively bal-
ances computational efficiency and accuracy. The attention
mechanisms allow the model to focus on the most impor-
tant features for the task at hand, reducing the number of
required parameters while maintaining high accuracy. This
approach is optimized for practical applications, making it
suitable for real-time scenarios in which computational ef-
ficiency is crucial.

An attention mechanism is a technique in deep learn-
ing that is used to focus model attention on specific re-
gions of input data [37]. By concentrating on different parts
of the input data, an attention mechanism can help neural
networks focus on important information, thus improving
model accuracy [38]. The utilization of attention mecha-
nisms to extract pertinent features from EEG data has at-
tracted increasing attention in recent years [39–41]. In this
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paper, we propose an attention-based Ghost-LSTM neural
network (AGL-Net). Specifically, in addition to introduc-
ing an attention mechanism, AGL-Net extracts spatial and
frequency information from the data using the Ghost bot-
tleneck module and LSTM. The Ghost bottleneck module
is a key component of GhostNet [42]. Furthermore, we se-
lect more objective EEG signals as the basis for fatigue de-
tection, and after preprocessing, we input these data into
the well-trained AGL-Net model to predict fatigue statuses.
The main contributions of this work can be summarized as
follows.

• In this study, we propose AGL-Net, a novel
lightweight deep learning model for evaluating driver fa-
tigue using EEG signals. The proposed model employs
Ghost bottlenecks to extract spatial EEG fatigue informa-
tion. The results of our experiments show that AGL-Net
outperforms traditional CNN and depthwise separable con-
volution (DSC) models by effectively extracting features
with EEG fatigue information, reducing the number of re-
quired parameters, accelerating the operation speed, and
achieving high computational efficiency.

• To improve the accuracy of the model, AGL-Net in-
troduces an attention mechanism during the learning pro-
cess to focus on key EEG fatigue characteristics. Further-
more, LSTM is incorporated to extract temporal EEG fa-
tigue characteristics, leading to more accurate and precise
predictions.

•We evaluate the performance of AGL-Net using both
regression and classification tasks based on the SEED-VIG
public dataset. Extensive experiments and ablation studies
are conducted to validate the effectiveness of the proposed
method. The results demonstrate that the AGL-Net algo-
rithm achieves high accuracy with the classification model,
a low root mean square error (RMSE) with the regression
model, and a reduced number of floating-point operations
(FLOPs). These findings suggest that AGL-Net has strong
performance in terms of both accuracy and computational
efficiency.

2. Methods
In this section, we present a comprehensive introduc-

tion to the EEG data preprocessing method utilized in our
proposed AGL-Net model. This includes the step-by-step
process of preparing the raw EEG data for deep learn-
ing processing, which involves several stages such as data
filtering and differential entropy (DE) feature extraction.
Moreover, we provide a detailed overview of the AGL-Net
architecture, which is composed of several interconnected
modules that work together to detect and classify fatigue
levels based on the preprocessed EEG data. The AGL-Net
model employs an attention mechanism and a Ghost bottle-
neck module, which effectively extract spatial and temporal
features from the EEG data to achieve superior fatigue de-
tection performance.

2.1 EEG Data Preprocessing
Recent studies [43] have shown that DE features ex-

tracted from EEG signals are suitable for detecting fatigue
due to their ability to capture the complex and nonlinear
dynamics associated with fatigue. DE features can effec-
tively represent the relevant features and subtle changes in
EEG signals caused by fatigue. Furthermore, DE features
are robust to noise and can be used to filter nonstationary
components, making them reliable and sensitive for fatigue
detection. The DE calculation formula is shown in Eqn. 1,
where p (x) is the probability density function of the signal.

DE = −
∫ +∞

−∞
p(x) log p(x)dx (1)

Assuming that the random variable follows the Gaus-
sian distribution N

(
µ, σ2

)
, we have:

p(x) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
(2)

Therefore, Eqn. 1 can also be expressed as:

DE =
1

2
log 2π exp

(
σ2

)
(3)

The extraction of EEG signals from five frequency
bands (delta, theta, alpha, beta and gamma) is a widely used
approach for EEG-based fatigue detection. Each EEG sig-
nal frequency band is correlated with different neural activ-
ities in the brain [44]. Delta waves (1–4 Hz) are primarily
linked to deep sleep, while theta waves (4–8 Hz) are associ-
ated with sleepiness and relaxation. Alphawaves (8–14Hz)
are associated with relaxation during wakefulness and eye
closure, while beta waves (14–31 Hz) are linked to positive
thinking and concentration. Gamma waves (31–51 Hz) are
associated with attention and cognitive processing.

To more comprehensively assess fatigue, existing
methods commonly analyze EEG activity across multiple
frequency bands, as fatigue-based EEG activity changes
have been observed in various frequency bands. Specifi-
cally, fatigue has been found to be associated with increased
delta and theta activity and decreased alpha and beta activ-
ity [27,44,45]. Analyzing EEG signals across different fre-
quency bands enables the identification of specific activity
patterns that are indicative of fatigue, which can be differen-
tiated from other states such as sleep or wakeful relaxation.

In summary, our proposed fatigue detection method
employs the DE features extracted from five EEG bands as
inputs for the training and prediction of AGL-Net, which
leads to more accurate and comprehensive analysis results
than those achieved by previous methods. The correspond-
ing flow diagram is shown in Fig. 1.
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Fig. 1. Flow chart of the EEGdata preprocessing strategy. DE,
differential entropy; EEG, electroencephalogram.

2.2 AGL-Net Architecture

Fig. 2 shows the architecture of AGL-Net, which con-
sists of three submodules: an attentionmodule, a Ghost bot-
tleneck module, and an LSTM module. To better analyze
the 16 obtained DE features, we split them into individ-
ual features through the attention module and Ghost bottle-
neck module and finally concatenate them and input them
into the LSTM module. The attention module adaptively
learns key information from the input sequences to improve
the network’s sensitivity and prediction performance [37].
The Ghost bottleneck module has a lightweight design and
enhances the network’s representation and generalization
abilities while maintaining a low computational cost [42].
The LSTMmodule enhances the memory ability of the net-
work and can model the long-term dependencies in input
sequences, thus improving the network’s sequence model-
ing ability [46].

2.2.1 Attention Module

The attention module is a critical component of the
AGL-Net model proposed in this study. The attention mod-
ule enables the network to selectively attend to important
spatial regions and frequency bands in the given EEG data.
A spatial attention mechanism is designed to learn the rel-
evance of each EEG electrode for fatigue detection, and a
frequency attention mechanism is used to identify the fre-
quency bands that are most informative for identifying fa-
tigue states. The resulting attention module can effectively
filter out irrelevant information while highlighting the key
features in the EEG signals that are indicative of fatigue.

The spatial attention mechanism focuses on certain re-
gions in the input data by assigning weights to each spatial
location, which are learned during training based on the im-
portance of each region to the output. These weights are
then multiplied by the feature maps at each spatial location
to highlight the important regions while suppressing the ir-
relevant regions. The formula for calculating the spatial at-
tention weights is:

wi =
exp (f (xi))∑N
j=1 exp (f (xj))

(4)

where wi represents the attention weight of the i-th spatial
location, f (xi) is the feature vector of the i-th spatial lo-

cation, and N is the total number of spatial locations. The
spatial attention weights are calculated by applying a soft-
max function to the feature vectors of all spatial locations,
which assigns a weight to each spatial location based on its
relative importance in the feature map. The resulting at-
tention weights are used to compute the weighted sum of
the feature vectors, which emphasizes the most important
spatial locations while suppressing less important regions.

The frequency attention mechanism focuses on spe-
cific frequency bands by using a similar mechanism. It as-
signs weights to each frequency band, which are learned
during training based on the importance of each band to
the output. These weights are then multiplied by the fea-
ture maps at each frequency band to highlight the important
bands while suppressing the irrelevant bands. The formula
for calculating the frequency attention weights is:

αj =
exp

(
wT

freqfj

)
∑K

k=1 exp
(
wT

freqfk

) (5)

where fj is the j-th feature map of the input, wfreq is the
frequency attention weight vector, αj is the attention coef-
ficient of the j-th feature map, andK is the total number of
feature maps. The frequency attention weight vector wfreq

is learned through backpropagation during the training pro-
cess of the network.

2.2.2 Ghost Bottleneck Module

The Ghost bottleneck module divides the input into
two parts. One part is processed through high-dimensional
convolutions, and the other is processed through low-
dimensional and dilated convolutions and combined with
the high-dimensional convolution result. This design re-
duces the number of required parameters and enhances the
model’s expression and generalizability. In addition, the
Ghost bottleneckmodule can easily be used instead of tradi-
tional convolutions in the network structure. A diagram of
the Ghost bottleneck module is shown in Fig. 3. The Ghost
module is the key reason why GhostNet can effectively re-
duce the calculation costs of the model while increasing the
representation ability of the model, and DSConv represents
a depthwise separable convolution, which has fewer param-
eters than a traditional convolution.

The Ghost module decomposes a regular convolu-
tional layer into a set of smaller convolutional layers, and a
schematic comparison between the Ghost module and a tra-
ditional convolution is shown in Fig. 4. The Ghost module
splits the input tensor into k groups, with one group used
for the regular convolution operation and the other k − 1

groups used for cheap operations with much smaller num-
bers of nonzero weights. The outputs of all k convolutional
groups are then concatenated to produce the final output
of the Ghost module. The main advantage of the Ghost
module is that it reduces the number of required parame-

4

https://www.imrpress.com


Fig. 2. The architecture of AGL-Net consists of three submodules: an attentionmodule, a Ghost bottleneckmodule, and an LSTM
module. Φ represents a cheap operation in the Ghost module. LSTM, long short-term memory; AGL-Net, attention-based Ghost-LSTM
neural network; PERCLOS, Percent Eye Closure; Conv, Convolution.

Fig. 3. Schematic representation of theGhost bottleneck struc-
ture. BN, batch normalization.

ters and the computational cost of the convolutional layers.
By using cheap operations with smaller numbers of nonzero
weights, the Ghost module effectively reduces the number
of learnable parameters, which in turn reduces the compu-
tational cost of the convolutional layers. As a result, Ghost-
Net is considerably more lightweight and efficient than tra-
ditional CNNs.

2.2.3 LSTM Module

The LSTMnetwork is a type of RNN that is commonly
used for modeling sequences of data. LSTM models use
memory cells to store information over time, which allows
the network to learn long-term dependencies.

Fig. 4. Comparison between traditional convolution layers
and the Ghost module. (a) Traditional convolution schematic.
(b) Ghost module schematic.

An LSTM unit consists of several interacting compo-
nents: an input gate, a forget gate, an output gate, and a
memory cell. The input gate controls the flow of informa-
tion into the memory cell, the forget gate controls the flow
of information out of the memory cell, and the output gate
controls the output of the LSTM unit. The LSTM model
can be represented by the following equations:

ft = σ (Wf [ht−1, xt] + bf ) (6)

it = σ (Wi [ht−1, xt] + bi) (7)
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ot = σ (Wo [ht−1, xt] + bo) (8)

Ct = tanh (WC [ht−1, xt] + bC) (9)

Ct = ft ∗ Ct−1 + it ∗ C̄t (10)

ht = ot ∗ tanh (Ct) (11)

where xt is the input at time t; ht−1 is the hidden state of
the previous time step; it, ft, and ot are the input, forget,
and output gates, respectively; and C̄t is the candidate cell
state. Ct is the cell state at time t, and ht is the hidden
state at time t. σ and tanh are the sigmoid and hyperbolic
tangent activation functions, respectively.

EEG signals are time series data that exhibit nonsta-
tionary behavior and are highly dependent on the temporal
context. LSTMs are well suited for processing time series
data because they can capture the long-term dependencies
between the input and output sequences.

3. Experiments and Results
To assess the effectiveness of our proposed fatigue

monitoring model, we designed two distinct tasks. The first
task involved the classification of driver states, while the
second task focused on regression analysis. Through these
tasks, we aimed to comprehensively evaluate the model’s
ability to accurately detect and predict driver fatigue levels.
The results of our experiments indicate that the proposed
model performed exceptionally well in both tasks, demon-
strating its potential for practical implementations in real-
world settings.

3.1 Dataset

We evaluated the feasibility of our proposed method
using the open-source SEED-VIG dataset [47]. SEED-
VIG is a large vigilance estimation dataset; the data were
collected from 23 participants through testing in a sim-
ulated driving environment. The samples were acquired
from 17 electrode channels according to the international
standard 10–20 system and sampled at 200 Hz. Record-
ings were acquired from seventeen EEG channels in tem-
poral (‘FT7’, ‘FT8’, ‘T7’, ‘T8’, ‘TP7’, ‘TP8’) and poste-
rior (‘CP1’, ‘CP2’, ‘P1’, ‘PZ’, ‘P2’, ‘PO3’, ‘POZ’, ‘PO4’,
‘O1’, ‘OZ’, ‘O2’) brain regions. Most of the participants
were asked to perform the simulation after lunch to increase
the possibility of fatigue [47,48].

SensoMotoric Instruments (SMI) Eye-Tracking
Glasses 2 use an infrared camera to record eye gazes and
several eye movements, including blinks, eye closures
(CLOS), saccades, and fixations. Accordingly, the vigi-
lance score, measured by the PERCLOS [17] metric, was

calculated as the percentage of blinks and CLOS over
the total duration of these four activities, which can be
formulated as follows:

PERCLOS =
blink + CLOS

blink + fixation+ saccade+ CLOS
(12)

In our classification experiments, we dichotomized
the label values into two categories, “awake” and “fa-
tigued”, by setting a threshold of 0.35. By employing this
approach, we were able to distinguish between the two
driver states and evaluate the performance of our proposed
method in terms of accurately classifying instances of fa-
tigue.

3.2 Implementation Details
3.2.1 EEG Data Preprocessing

During the dataset extraction process, we extracted
the original EEG signals of the 17 channels from each data
group for the 23 participants in the SEED-VIG dataset, and
each channel contained 1,416,000 EEG data points. Be-
cause 885 EEG samples from this dataset were used to de-
termine the PERCLOS value every 8 seconds and the EEG
sampling frequency was 200 Hz, 1600 EEG data points
corresponded to a sample. We extracted five EEG fea-
tures (delta, theta, alpha, beta, and gamma) from each sam-
ple using 100 data points as DE features and obtained 16
DE features corresponding to a label value. Because we
considered 23 participant samples, the dimensionality was
[325,680, 17, 5] after extracting the DE features, where
325,680 represents the DE features, 17 represents the num-
ber of channels, and 5 represents the number of frequency
bands. We reprocessed the DE features of the data to ob-
tain an array with dimensions of [20,355, 16, 17, 5]. The
Ghost bottleneck feature extraction process accepts inputs
only in image format. Therefore, we created a new array
with the shape of [20,355, 16, 6, 9, 5]. We equally inserted
the 17 data channels with a shape of [20,355, 16, 17, 5] into
dimensions 6 and 9 of the array, and we used the swapaxes
function to transform the data into the shape of [20,355, 16,
5, 6, 9] so that we had a data form that was similar to an
image. We stored the data of the 17 channels in an array
with length and width parameters of 6 and 9, respectively,
and adjusted the array to [20,355, 16, 5, 6, 9]. The dimen-
sional changes associated with each module during training
are shown in Table 1.

3.2.2 Model Training Details
We set a batch size of 200 epochs for training the

AGL-Net model. The learning rate was set to 0.002, and we
used the adaptive moment estimation (Adam) optimizer to
minimize the loss. To effectively train our proposed model,
we used the default parameters of the Adam optimizer and
a batch normalization layer. We adjusted the hyperparame-
ters of the network based on experience to achieve the best
performance. The hyperparameter settings are presented in
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Table 1. Model hyperparameters.
Module Parameters Value

Squeeze
Input size [batch, 16, 5, 6, 9]
Output size [batch, 5, 6, 9] for 16 DE

Spatial Attention
Input size [batch, 5, 6, 9]
Output size [batch, 5, 6, 9]

Frequency Attention
Input size [batch, 5, 6, 9]
Output size [batch, 5, 6, 9]

Ghost Bottlenecks
Input size [batch, 5, 6, 9]
Output size [batch, 32, 6, 9]

AdaptiveAvgPool2d
Input size [batch, 32, 6, 9]
Output size [batch, 32, 2, 2]

View
Input size [batch, 32, 2, 2]
Output size [batch, 1, 32 × 2 × 2]

Linear
Input size [batch, 1, 32 × 2 × 2]
Output size [batch, 1, 64]

Cat
Input size [batch, 1, 64] for 16 DE
Output size [batch, 16, 64]

LSTM
Input size [batch, 16, 64]
Output size [batch, 16, 32]

Linear (Flatten)
Input size [batch, 16, 32]
Output size [batch, 512]

Linear
Input size [batch, 512]
Output size [batch, 1]

Table 2. The pipeline was implemented using PyTorch with
a pair of NVIDIA RTX 3050Ti GPUs.

Table 2. Training hyperparameters.
Module Parameters Value

Training settings
Learning rate 0.002
Number of training epochs 200
Batch size 150

Spatial attention
Kernel size 1 × 1
Stride 1
Bias False

Frequency attention
Reduction 2
Kernel size 1 × 1

Ghost bottlenecks

Number of input channels 5
First conv

64
Number of filters
Number of middle channels 64
Number of output channels 32
Use SE module True
Kernel size 1 × 1
Stride 1
Second conv

32
Number of filters

LSTM
Recurrent depth 3
Number of hidden layer units 32
Dropout 0.6

To ensure a rigorous and unbiased evaluation, we em-
ployed 5-fold cross-validation for each experiment. Specif-
ically, we partitioned the dataset into five equal-sized folds
and iteratively used four of these folds for training and the
remaining fold for testing. This approach effectively en-
sured that the evaluation results were not affected by the
specific partitioning of the data. Moreover, we maintained
a 0.8/0.2 training-testing split in each fold to ensure that
a representative distribution of the data was used for both
training and testing.

3.3 Evaluation Method

We performed regression and binary classification
tasks to estimate the vigilance level, with the predictions
designed to closely approach the PERCLOS labels. For the
binary classification task, we divided the predicted values
into two categories, alert (PERCLOS <0.35) and fatigued
(PERCLOS ≥ 0.35), as shown in Eqn. 14. The root mean
square error (RMSE) is the most commonly used metric for
evaluating continuous regression models. It is defined as:

RMSE(Y, Ŷ ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (13)

where Y = (y1, . . . , yN ) is the ground truth and Ŷ =

(ŷ1, . . . , ŷN ) is the corresponding prediction. ȳ and ¯̂y are
the means of Y and Ŷ , respectively. The RMSE mea-
sures the squared error between the prediction and the la-
bel. In general, the more accurate the model is, the lower
the RMSE. We evaluated the classification model’s perfor-
mance using accuracy as the evaluation metric. In addition
to the regression task, we also classified the label values
based on the vigilance levels represented by the PERCLOS
scores.

Label =

{
wake , PERCLOS < 0.35

fatigue , PERCLOS ≥ 0.35
(14)

Additionally, we conducted floating-point operations
(FLOPs) for our model, with the aim of achieving high ac-
curacy and low RMSE values using a lightweight architec-
ture. We compared the number of FLOPs required by our
model to those of the traditional CNN to demonstrate the
superior performance of our model.

3.4 Ablation Experiments and Analysis

To gain a better understanding of the contribution of
each component in our framework, we conducted several
ablation and analysis studies. Through these experiments,
we aimed to identify the key factors that influence the per-
formance of our proposed fatigue monitoring method. The
results of our analyses provide valuable insights into the de-
sign of effective and efficient fatigue monitoring systems.
Overall, our findings demonstrate the effectiveness of our
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Fig. 5. The results of the ablation experiment conducted on the LSTM layer based on the SEED-VIG dataset. The LSTM model
performed better when using Ghost bottlenecks, especially when the network had 3 layers. (A) LSTM and BiLSTM networks with
different numbers of layers when using attention mechanisms and Ghost bottlenecks. (B) LSTM and BiLSTM networks with different
numbers of layers when using attention mechanisms and CNN. (C) LSTM and BiLSTM networks with different numbers of layers when
using Ghost bottlenecks. (D) LSTM and BiLSTM networks with different numbers of layers when using CNN. Acc, accuracy; CNN,
convolutional neural network; BiLSTM, bidirectional long short-term Memory; SEED-VIG, Shanghai Jiao Tong University (SJTU)
Emotion EEG Dataset (SEED)-VIG.

proposed framework and highlight the importance of con-
sidering various components when developing such sys-
tems.

3.4.1 Impact of the LSTM Layers on Temporal
Information Learning

We evaluated the depth of the LSTM network and the
performance of the LSTM and bidirectional long short-term
memory (BiLSTM) networks in terms of learning tempo-
ral information. As shown in Fig. 5, for LSTM and BiL-
STM networks with different numbers of layers, the LSTM
model achieved better accuracy when using Ghost bottle-
necks, while the BiLSTM model attained better accuracy
when using only traditional CNNs. However, the accuracy
achievedwith the Ghost bottlenecks was always higher than
that obtained with the traditional CNNs. Therefore, in our
network model, the LSTM network outperforms an BiL-
STM network with the same number of layers. We con-
ducted numerous ablation and analysis experiments to eval-
uate the impacts of different components of our framework
on the overall performance.

3.4.2 Importance of the Ghost Bottlenecks in Feature
Learning

To evaluate the feature extraction performance of the
Ghost bottleneck module, the traditional CNN module,
and the depthwise separable convolution network, we con-
ducted experiments and compared the performance of these
models. As shown in Table 3, the accuracy and efficiency
of the Ghost bottleneck module were consistently higher
than those of the traditional CNNmodule. Although the ac-
curacy of the Ghost bottleneck module was slightly lower
than that of the depthwise separable convolution network,
its computation efficiency was greatly improved. There-
fore, adopting Ghost bottlenecks greatly reduces the com-
putational complexity of the resulting network while yield-
ing improved accuracy.

3.4.3 Importance of the Spatial-Frequency Attention
Modules for Information Learning

To evaluate whether different attention modules have
distinct performance in terms of information learning, we
conducted experiments to assess the inclusion of an atten-
tion module in the model. The experimental results are
shown in Table 4. The results show that the model achieved
higher accuracy when an attention module was included.
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Table 3. Results of the ablation experiment conducted on the feature extraction model based on the SEED-VIG dataset.
Method Acc RMSE FLOPs (M) Params
ATT+CNN+LSTM 0.856 ± 0.007 0.1103 ± 0.01 11.546568 138,090
ATT+DSC+LSTM 0.875 ± 0.005 0.085 ± 0.005 43.884576 149,013
ATT+Ghost+LSTM 0.873 ± 0.002 0.0864 ± 0.03 2.670024 103,530
ATT, attention; M, million; DSC, depthwise separable convolution; RMSE, root mean
square error; FLOPs, floating-point operations per second.

Table 4. Results of the ablation experiment conducted on the
attention module based on the SEED-VIG dataset.
Method Acc. RMSE
CNN+LSTM 0.851 ± 0.005 0.13 ± 0.01
ATT+CNN+LSTM 0.856 ± 0.003 0.11 ± 0.02
Ghost+LSTM 0.866 ± 0.004 0.09 ± 0.01
ATT+Ghost+LSTM 0.873 ± 0.002 0.08 ± 0.01

3.5 Comparison and Results

To evaluate the performance of our AGL-Net model,
we compared it with other state-of-the-art methods pro-
posed in previous papers. The compared regression meth-
ods included the generalized extreme learning machine
(GELM) [49], LSTM [50], support vector regression (SVR)
[47], a double-layered neural network with subnetwork
nodes (DNNSN) [51], ESTCNN [25], LSTM with a cap-
sule attention mechanism (LSTM-capsatt) [52], and CAE-
LSTM [53]. The compared binary classification meth-
ods included ESTCNN [49], the phase lag index-based
graph attention network (PLI-GAT) [50], and generalized
minimax-concave kernel sparse representation regression
(GMC-KSRR) [26]. For the ESTCNN model, we used the
ESTCNN regression and classification models established
by Wonjun Ko et al. [54] based on Gao’s work [25]. Ta-
ble 5 (Ref. [25,47,49–53]) and Table 6 (Ref. [25,26,55])
show the comparison results of different regression models
in terms of their RMSE and accuracy values, respectively.
Table 7 (Ref. [35,36,56]) shows the results a computational
efficiency comparison between our proposed method and
existing approaches from the literature.

4. Discussion
In the field of fatigue detection, traditional fatigue de-

tection methods include methods based on vehicle behav-
ior [8–12] and driver facial states [13–15]. However, these
methods are influenced by subjective factors, such as ve-
hicle behaviors being affected by different driving habits
and the facial recognition accuracy being reduced if the
driver suddenly opens their mouth or squints their eyes un-
der strong light. Although these methods are considered
feasible in many studies, the subjectivity of the driver is a
limiting factor of these methods, leading to potential mis-
judgments and a lack of robustness. As the gold standard
for fatigue detection, EEG signals can be used as a more
objective standard to effectively detect the fatigue state of
a driver [24].

Table 5. Comparison among different regression-based
methods and results obtained on the SEED-VIG dataset.
Paper Year Method RMSE ± SD

Huo et al. [49] 2016 GELM 0.1037 ± 0.03
Zhang et al. [50] 2016 LSTM 0.927 ± 0.03
Zheng et al. [47] 2017 SVR 0.1327 ± 0.03
Wu et al. [51] 2018 DNNSN 0.1175 ± 0.04
Gao et al. [25] 2019 ESTCNN 0.22 ± 0.08
Zhang et al. [52] 2021 LSTM-CapsAtt 0.1089 ± 0.07
Shi et al. [53] 2023 CAE+LSTM 0.10 ± 0.05
Ours 2023 AGL-Net 0.0864 ± 0.03
GELM, generalized extreme learning machine; CAE, convolu-
tional autoencoder; SVR, support vector regression; DNNSN,
double-layered neural network with subnetwork nodes; ESTCNN,
EEG-based spatiotemporal CNN.

Table 6. Comparison among different classification-based
methods and results obtained on the SEED-VIG dataset.
Paper Year Method Acc. ± SD

Z. Gao et al. [25] 2019 ESTCNN 0.74 ± 0.13
Wang et al. [55] 2021 PLI-GAT 0.8553
Zhang et al. [26] 2022 GMC-KSRR 0.8008
Ours 2023 AGL-Net 0.873 ± 0.002
PLI-GAT, phase lag index-based graph attention network; GMC-
KSRR, generalized minimax-concave kernel sparse representation
regression.

Efficient detection methods are essential for practi-
cal applications, but many existing approaches suffer from
poor computational efficiency despite their high accuracy.
This limitation hinders their deployment in real-world sce-
narios. For instance, Yadav et al. [56] developed a
driver sleepiness detection method using ResNet-50, which
achieved high accuracy but required a total of 3.8 billion
FLOPs. Due to its slow speed, the method is impracti-
cal for real-time applications. To address this issue, Kim
et al. [36] proposed PydMobileNet, a lightweight model
designed for monitoring the driver’s state, which achieved
significantly faster computational efficiency. The model’s
numbers of FLOPs and parameters were reported to be 195
M and 1.86 M, respectively, in their experiments. Simi-
larly, Zhou et al. [35] proposed an improved MobileNetV3
neural network, which enabled real-time detection and had
many fewer FLOPs and parameters than previous models,
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Table 7. Comparison among different methods and results regarding the numbers of FLOPs and parameters.
Paper Year Method FLOPs Params

Kim et al. [36] 2020
PydMobileNet 195.440 M 1.86 M
ShuffleNet 151.972 M 2.279 M
SqueezeNet 747.099 M 1.235 M

Zhou et al. [35] 2021
PF-model 15.21 M 1.37 M

MobileNetV3-large 88.52 M 3.09 M
MobileNetV3-small 27.52 M 1.86 M

Yadav et al. [56] 2022 ResNet-50 3.8 G 25,636 M

Ours 2023 AGL-Net 2.67 M 0.10353 M

with 15.21 M FLOPs and 1.37 M parameters. These effi-
cient models demonstrate the potential of deploying detec-
tion methods in practical scenarios, especially scenarios in
which real-time performance is crucial. Furthermore, their
performance and architectures may be used as benchmarks
for future work in the field of efficient detection.

Detecting driver fatigue is a critical task that requires
both high accuracy and computational efficiency. To ad-
dress this challenge, we propose a novel lightweight neural
network called AGL-Net for evaluating driver fatigue using
EEG signals. Our proposed AGL-Net model achieves sig-
nificantly more efficient computational performance than
the existing methods mentioned above, with much lower
numbers of FLOPs and parameters while still maintaining
high accuracy. The proposed network incorporates spatial
and frequency attention mechanisms, Ghost bottlenecks,
and an LSTM module, which have been shown to yield en-
hanced model performance and prevent overfitting.

The proposed spatial and frequency attention mecha-
nisms allow the network to focus on the most important in-
formation in the given EEG signals and extract discrimina-
tive features for fatigue detection. Furthermore, the Ghost
bottlenecks significantly reduce the number of required net-
work parameters and prevent the network from learning
noise in the input data, which greatly improves the compu-
tational efficiency of the model. In addition, to evaluate the
performance of our proposed model, we conducted exper-
iments based on the publicly available SEED-VIG dataset,
which is widely used for evaluating EEG-based fatigue de-
tection models.

Our experimental results demonstrate that AGL-Net is
highly accurate in terms of detecting driver fatigue with an
accuracy of 87.3% on the SEED-VIG dataset. More impor-
tantly, AGL-Net achieves this level of accuracy while main-
taining low computational complexity, with only 0.104 M
parameters and 2.67 M FLOPs, making it practical for de-
ployment in real-world driving scenarios with limited com-
puting resources. These findings highlight the potential
of AGL-Net for deployment in various settings, including
the transportation and automotive industries, where accu-
rate and efficient driver fatigue detection is crucial for road
safety.

The proposed AGL-Net model is a highly effective
and efficient approach for EEG-based fatigue detection,
making it an ideal candidate for practical applications. The
incorporation of spatial and frequency attention mecha-
nisms and Ghost bottlenecks into the LSTM network sig-
nificantly improves the discriminative power of the model
while simultaneously reducing its computational complex-
ity. Our experimental results obtained on the SEED-VIG
dataset demonstrate that AGL-Net outperforms the state-of-
the-art methods in terms of accuracy, sensitivity, and speci-
ficity. Furthermore, our proposed model may inspire future
research on EEG-based fatigue detection, as it showcases
the efficacy of utilizing attention mechanisms and Ghost
bottlenecks to improve the performance of deep neural net-
works. Overall, AGL-Net’s promising results and advanced
architecture make it an ideal candidate for EEG-based fa-
tigue detection, with the potential to contribute to the devel-
opment of safer and more efficient transportation systems.

Although AGL-Net has demonstrated promising re-
sults, its performance in cross-subject studies is not satis-
factory due to individual variations. Therefore, optimizing
and improving AGL-Net to address these limitations is cru-
cial for further advancement in this field. This may involve
exploring alternative modeling approaches or refining the
present algorithm to account for individual differences and
enhance its robustness across subjects. Ultimately, these
efforts will contribute to the development of more reliable
and accurate cognitive function assessment models that can
be used in areas other than driver fatigue detection, such as
clinical diagnosis and rehabilitation.

5. Conclusions
In this study, we propose a new lightweight deep

learning model called AGL-Net for EEG-based fatigue de-
tection. AGL-Net focuses on learning the key fatigue fea-
tures in EEG signals through spatial and frequency atten-
tion mechanisms. Furthermore, AGL-Net uses Ghost bot-
tlenecks to replace traditional convolutions for spatial fea-
ture extraction purposes. Compared with traditional CNNs,
AGL-Net has a significantly reduced calculation time and
improved calculation efficiency and accuracy. In addition,
by introducing an LSTM layer, AGL-Net can obtain the
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temporal characteristics of EEG fatigue features. Several
ablation experiments were conducted to verify the effec-
tiveness of each module in the network, and the perfor-
mance ofAGL-Net was verified based on the publicly avail-
able SEED-VIG dataset, proving the feasibility of the pro-
posed fatigue detection method. The results show that our
proposed fatigue method is superior to the existing meth-
ods and provides valuable insights for future research. In
future research, we plan to conduct a further in-depth explo-
ration of cross-subject fatigue detection studies to address
the variability observed among subjects. We recognize that
there may be individual differences in how fatigue mani-
fests, and we will explore methods to account for this vari-
ability in our approach. We will revise the discussion of the
drawbacks section to reflect this potential future direction.
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