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Abstract

Alzheimer’s disease (AD) is ranked as the third-most expensive illness and sixth leading cause of mortality. It is associated with the
deposition of extracellular amyloid-β (Aβ) in neural plaques (NPs), as well as intracellular hyperphosphorylated tau proteins that form
neurofibrillary tangles (NFTs). As a new target in regulating neuroinflammation in AD, triggering receptor expressed on myeloid cells 2
(TREM2) is highly and exclusively expressed on the microglial surface. TREM2 interacts with adaptor protein DAP12 to initiate signal
pathways that mainly dominant microglia phenotype and phagocytosis mobility. Furthermore, TREM2 gene mutations confer increased
AD risk, and TREM2 deficiency exhibits more dendritic spine loss around neural plaques. Mechanisms for regulating TREM2 to alleviate
AD has evolved as an area of AD research in recent years. Current medications targeting Aβ or tau proteins are unable to reverse AD
progression. Emerging evidence implicating neuroinflammation may provide novel insights, as early microglia-related inflammation can
be induced decades prior to the commencement of AD-related cognitive damage. Physical exercise can exert a neuroprotective effect
over the course of AD progression. This review aims to (1) summarize the pathogenesis of AD and recent updates in the field, (2) assess
the concept that AD cognitive impairment is closely correlated with microglia-related inflammation, and (3) review TREM2 functions
and its role between exercise and AD, which is likely to be an ideal candidate target.
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1. Introduction

Alzheimer’s disease (AD) is an irreversible and pro-
gressive neurological disorder [1,2]. Various pathological
factors are found in the postmortem brains of AD patients,
such as abnormal amyloid-β (Aβ) plaques, hyperphospho-
rylated tau protein, and damaged neurons and synapses
[3,4]. Such lesions affect brain areas important for learning
and memory, including the cerebral cortex, striatum, and
hippocampus [5]. According to Global Alzheimer’s Infor-
mation, AD affected 46.8 million individuals globally and
is projected to affect 82 million by 2030 [6]. Without ef-
fective intervention, this figure will likely triple by 2050
with the aging of the population. Accumulating evidence
from clinical investigations demonstrates the absence of ef-
fective treatments for curing AD or restricting its progress.
In vitro and in vivo studies have shown that Aβ plaques
are key drivers in AD pathogenesis [7]. However, findings
from unsuccessful partial clinical studies directly targeting
the Aβ protein indicate that reducing the Aβ load does not
ameliorate cognitive impairment [8,9]. The challenges in
disease diagnosis have undermined the improvements made
in the prevention and treatment of AD. The prevention and
treatment of AD are impeded by the similarities between
AD and other forms of dementia [10]. Many AD experi-
ments have shown that microglia play a key role in regulat-
ing inflammation in the central nervous system [11]. Neu-
roinflammation aggravated by microglia contributes to AD

pathogenesis and promotes protein aggregation, implying
that microglia may function as a novel target in AD [12].

Triggering receptor expressed on myeloid cells 2
(TREM2) is expressed in myeloid progenitors. It is an
innate immune receptor that is located on the microglial
membrane. Findings from genome-wide association exper-
iments have revealed rare TREM2 (R47H) mutations that
are linked to an increased possibility of developing AD, as
TREM2 is one of the most important receptors because of
it’s effects on neuronal/microglia health [13]. The type I
transmembrane glycoprotein TREM2 communicates with
an immune adaptor DNAX activation protein of 12 kDa
(DAP12) transmembrane area to facilitate signaling via the
immune-receptor tyrosine-based activation motif ( ITAM)
domain of DAP12 in migration, phagocytosis, cell survival,
and inflammatory cytokine release [14,15]. TREM2 is also
implicated in the etiology of AD as it regulates microglial
function and innate immunity [16]. The function of TREM2
in neuroinflammation and its relationship with AD have
not been fully elucidated. This review focuses on cur-
rent understanding of the pathogenesis of AD and the shift
from the initial focus on abnormal Aβ plaques and hyper-
phosphorylated tau proteins to the current concept that AD
cognitive impairment is closely correlated with microglia-
induced neuroinflammation, suggesting it may be an ideal
candidate target. Here, we summarize our current under-
standing of TREM2 function and its role in AD.
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2. AD Pathology
AD is the most widespread age-related neurodegener-

ative disorder, with no effective cure that can help alleviate
the financial and emotional burden of the disease [17,18].
Studies on the pathogenesis and development of therapies
are vital for preventing or alleviating AD symptoms. A
number of hypotheses explain AD pathophysiology, includ-
ing the hypotheses of the Aβ cascade, Aβ-tau cooperative
action, and cholinergic and γ-aminobutyric acid (GABA)
functions.

2.1 Aβ Cascade Hypothesis
Aβ is found in various assembly forms, such as fibrils,

protofibrils, and oligomers [19]. Aβ is non-neurotoxic in its
monomeric form. In contrast, protofibrillars and oligomers
are regarded as effective blockers of long-term potentiation
and strength. Fiber formation is strongly linked to protein
misfolding [20].

Aβ induces fatality in neuronal cells, which is the pri-
mary cause of AD [21]. Significant evidence has shown
that the production of Aβ oligomers (AbOs) in cortical
neurons initiates AD [22–24]. AbOs acting on entorhinal
neurons assist in tau oligomer development with progres-
sion to associated neurons. This occurs in the hippocam-
pus and subsequently in the subiculum and associated neo-
cortex [25]. The toxicity of tau oligomers can be damag-
ing to neurons, where they are formed and subsequently re-
leased into neurons and synapses. Tau proteins are propa-
gated and disseminated from neurons. AbOs may interact
with tau oligomers during this phase to enhance neuronal
and synaptic dysfunction [26]. Data further demonstrates
that Aβ is not a bystander in AD [27]. Recent advances
have revealed that extracellular Aβ deposits can be released
from the brain via the blood-brain barrier (BBB) and other
systems [28]. The structure and function of the BBB are
damaged in AD [29]. The destruction of the BBB allows
neurotoxic blood-derived debris and microbes to enter the
brain, which is closely linked to neuroinflammation and im-
mune responses that can trigger numerous neurodegenera-
tive pathways [30,31].

2.2 Aβ-tau Cooperated Hypothesis
Tau pathology is a hallmark of AD progression [32].

Tau present in the medial temporal lobe binds and stabi-
lizes the microtubule architecture, where it is normally con-
centrated. However, hyperphosphorylated tau protein pro-
duced in AD dissociates from microtubules and accumu-
lates inside neurons [33]. Once it spreads from the medial
temporal lobe to the surrounding neocortex, hyperphospho-
rylated tau protein can cause cognitive impairment.

Findings from animal models have shown that Aβ
spreads via neuronal connections from cell to cell [34,35].
An increasing body of evidence demonstrates that the syn-
ergistic effects of Aβ on tau plays a vital role in AD patho-
genesis [36,37]. Busche et al. [38] recently showed that

Aβ and tau interaction promotes neural circuit damage: in
vivo multiphoton imaging showed that the combined exis-
tence of tau and Aβ pathology in the neocortex is linked to
repressed neuronal activity and increase in spine loss and
microglia injury. The repression of tau or Aβ pathology
alone is not conducive to salvaging functional damage. In
addition, the impact of tau and Aβ co-expression on neu-
ronal activity was analyzed in Busche and Angulo’s studies.
Their findings [39] showed that extracellular expression of
Aβ caused hyper-excitability, whereas tau expression led
to activity suppression. The co-expression of Aβ and tau
also repressed activity, where the tau phenotype appeared
to play a dominant role.

2.3 Cholinergic Hypothesis
Cholinergic neurons have been demonstrated to mod-

ulate neuronal circuits in the hippocampus and cortical re-
gions and play an important role in hippocampus-dependent
memory [40,41]. Normally, endogenous nerve growth fac-
tor (NGF) is produced by hippocampal and post-synaptic
cortical neurons and is expressed through related receptors
present on presynaptic cholinergic terminals [42,43]. Stim-
ulated NGF is then transported from the target regions (hip-
pocampus and cortex) to cholinergic nuclei, consequently
initiating cholinergic signaling in these brain areas [44].

Findings from various animal models and human stud-
ies have shown that cholinergic neuron degeneration in the
basal forebrain is linked to cognitive impairments in AD
[45,46]. The cholinergic hypothesis primarily focuses on
the gradual damage of limbic and neocortical cholinergic
innervations, which is linked to neurofibrillary degenera-
tion and inefficient axonal transport and signaling [47]. The
crosstalk between postsynaptic cortical/hippocampal neu-
rons and presynaptic cholinergic terminals is altered during
AD. These variations are related to the accessibility of ma-
ture NGF (mNGF) to basal forebrain cholinergic neurons,
which subsequently results in cholinergic degeneration in
hippocampal and cortical areas [48,49].

The cholinergic hypothesis has transformed different
areas of AD research, from the field of neuropathology
to the modern concept of synaptic neurotransmission [50].
It was developed based on three parameters: (1) dimin-
ished presynaptic cholinergic indicators in the cerebral cor-
tex [51,52], (2) the nucleus basalis of Meynert (NBM) in
the basal forebrain is a source of cortical cholinergic in-
nervation that undergoes intense neurodegeneration in AD
[53,54] (3) cholinergic antagonists impair memory whereas
agonists have a contrasting effect on memory [55].

2.4 GABAergic Hypothesis
GABAergic activity is important for brain develop-

ment and plasticity. Under normal conditions, GABA is
produced in the presynaptic membrane and helps synthe-
size glutamic acid decarboxylase (GAD) from glutamate.
GABA can bind to GABA receptors present on the post-
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synaptic membrane through the synaptic cleft, which in-
hibits the post-synaptic neuron [56,57]. However, in AD,
imbalances in GABAergic neurons is associated with sev-
eral disorders. In the AD brain, Aβ is toxic to GABAer-
gic synapses and promotes the degeneration of axons and
synaptic loss. At first, Aβ enhances neural activity, which
supports Aβ release. The cycle between neural activity
and Aβ can involve Aβ-induced GABAergic terminal loss,
which results in impaired cognition and repressed long-
term potentiation (LTP). In addition, β-site APP cleaving
enzyme 1 (BACE1), Apolipoprotein E4 (APOEϵ4), and
TREM2 can induce GABAergic dysfunction [58].

These outcomes have shown that GABAergic dys-
function is related to the E (excitation)/I (inhibition) imbal-
ance in AD [59]. As mentioned Govindpani et al. [60], be-
cause of the narrow scope of existing treatments for disease
modification, better insights into GABAergic remodeling in
AD may help introduce innovative and unique therapeutic
options.

3. The Relationship between Microglial
Activation and Inflammation in AD

AD pathology involves the clustering of Aβ proteins
and hyperphosphorylation of tau protein. However, thera-
pies targeting tau and Aβ have failed in clinic trial. Several
researchers have emphasized the significant contribution of
neuroinflammation in initial and late AD stages, which is
strongly associated with microglia activation [61,62]. In-
flammation during AD is predominantly associated with
continuous microglia activation in response to cell death
and Aβ plaque deposition [63]. Classical microglial acti-
vation appears to contribute to neuronal impairment in neu-
rodegenerative disorders; however, the advantageous char-
acteristics of microglial alternative activation were also ob-
served [64,65]. In this section, we report findings from an
advanced report to highlight the link between microglial ac-
tivation and inflammation in AD and the critical function of
TREM2 in AD progression.

3.1 Neuroinflammation in AD
In recent decades, AD investigations have priori-

tized the mechanisms related to extracellular neural plaques
(NPs) and intracellular neurofibrillary tangles (NFTs). Data
from genetic, preclinical, and clinical findings have fo-
cused on the neuroinflammatory mediation of the in-
nate immune system [66]. Many neurodegenerative dis-
eases, particularly AD, have been linked to inflammation
[67,68]. Increasing evidence suggests that systemic in-
flammation plays a key role in AD [69]. Tau-protein
tangles and Aβ plaques in the brain trigger cells, such
as microglia and astrocytes, to release anti-inflammatory
and pro-inflammatory mediators, including reactive oxy-
gen species (ROS), neurotransmitters, chemokines, and cy-
tokines [70,71]. The release of mediators causes lympho-
cytes andmonocytes to pass through the BBB, which boosts

the release of inflammatory components.These findings in-
dicate that inflammation promotes AD progression and ac-
celerates disease progression [72,73]. Trovato et al. [74]
eported that an increase in oxidative stress and altered an-
tioxidant systems cause NOD-like receptor thermal protein
domain associated protein 3 (NLRP3) inflammasome acti-
vation, resulting in cell damage and cognitive impairment.

3.2 Overactivation of Microglia is a Key Contributor to
Neuroinflammation in AD Models

Microglia are the primary macrophages and provide
basic immunological protection in disorders and injuries of
the central nervous system [75,76]. Plastic cells have dual
functions in neuronal damage and healing and can adopt
multiple phenotypes [77,78]. Microglia have a ramified
phenotype under normal physiological conditions, charac-
terized by a small cell body and several processes, such as
in “resting microglia”. Even in the resting state, microglial
processes are dynamic and constantly scan to preserve cen-
tral nervous system (CNS) cell types with neurons [79]. Ev-
idently, they scan the brain environment continuously and
contact synapses by using their fine branches to detect in-
fections and damage in their environment [80].

Microglia, which represent the immune cells of the
brain, engage in diverse functional programming, known
as polarization, for responding to external stimulating
factors [81]. In the activated state, microglial phe-
notypes are categorized by two major states: classi-
cal activation (pro-inflammatory microglia) and alterna-
tive activation (anti-inflammatory microglia) [82,83]. Pro-
inflammatory microglia primarily release proinflamma-
tory substances, whereas anti-inflammatory microglia re-
lease anti-inflammatory cytokines. When triggered by
lipopolysaccharide (LPS), the pro-inflammatory phenotype
is acquired by microglia, which leads to neurotoxicity via
secreted pro-inflammatory factors such as tumor necrosis
factor-α (TNF-α) and Interleukin 1 (IL-1) [83]. In con-
trast, microglia acquire an anti-inflammatory state via the
release of anti-inflammatory cytokines (e.g., Interleukin 4.),
which aids neuroprotection and promotes tissue repair, both
of which play crucial roles in maintaining the physiological
environment [84,85].

3.3 Microglial Activation Modulation is a Potential Target
in AD-Induced Neuroinflammation

In neurodegenerative conditions, especially in
AD models, persistently activated microglia may re-
strict CD3+/CD8+ T-cell entry into the brain. Local
macrophages constitute a link between innate and adap-
tive immunity [86]. In response to Aβ aggregation,
including disease progression, the production of proin-
flammatory cytokines downregulates the expression of
Aβ clearance components and promotes Aβ-mediated
neurodegeneration and Aβ aggregation [87]. The early
activation of microglia during AD progression provides
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neuroprotection by supporting Aβ clearance. However,
pro-inflammatory cytokines promote Aβ aggregation
during disease progression. Evidence from multiple animal
studies provides strong support for the production of Aβ,
which increases AD deficits by upregulating microglial ac-
tivation. Aβ-excess neurons, as primary proinflammatory
factors, implicate the intraneuronal aggregation of Aβ as
an important immunological element in AD pathogenesis
[88].

Microglia show different phenotypic states in AD
modesl, especially under chronic inflammatory conditions
[89]. Some receptors (receptor for advanced glycation
endproducts [RAGE] and NLRP3) of the proinflammatory
microglial phenotype secrete proinflammatory cytokines,
such as TNF-α and IL-1β, by triggering a signaling cas-
cade to induce neuronal cell death. Meanwhile, other re-
ceptors (the class a macrophage scavenger receptor type I
[SR-AI], TREM2) of the M2-like microglia participate in
clearing Aβ by stimulating Aβ fibril internalization and
synthesizing anti-inflammatory cytokines such as TGF-β,
IL-10, and IL-4 [90,91]. Activated microglia play a key
role in enhancing the spreading of tau protein in the pres-
ence of Aβ. Aβ in its soluble form, along with additional
elements, can activate microglia via microglial surface re-
ceptors. Tau is taken up by activated microglia and released
into further bioactive types. The released tau can be taken
up by neurons and subsequently released into the neuropil,
in an activation-dependent manner [92]. Therefore, find-
ing a method to transform pro-inflammatory microglia into
anti-inflammatory microglia has a prospective advantage in
treating AD.

4. The Function and Role of TREM2 in AD
Receptors located on microglial membranes are com-

posed of soluble and membrane proteins that can receive
various stimuli and trigger a series of responses to maintain
microglial homeostasis [93]. The receptor TREM2 is pri-
marily expressed on the microglial surface. Substantial ev-
idence has shown that TREM2 has bioactive potential and
the ability to connect with ligands, stimulate microglia, and
regulate the immune system in AD progression, including
proliferation, survival, and phagocytosis. Furthermore, a
lack of TREM2 expression has been shown to increase the
accumulation of Aβ and induce neuronal death in various
AD animal models [94].

4.1 TREM2’s Structure and Signal
TREM2 is an innate immunological receptor found

only on the surface of myeloid cells in the brain, such
as microglia, macrophages, and monocytes [95,96]. Ma-
ture TREM2 protein weights approximately 40 kDa. In
situ hybridization and immunohistochemical labeling have
been used to detect the protein [97]. TREM2 has a long
ectodomain that interacts with the extracellular setting to
control microglial function [98].

Current research indicates that minor changes in sol-
uble TREM2 (sTREM2) levels (approximately 7%–10%),
are sufficient for modulating AD risk [99]. According to
Piccio et al. [100,101], AD and other inflammatory cen-
tral nervous system diseases have considerably higher CSF
sTREM2 levels than normal controls. Deming et al. [102]
discovered for the first time that, as a vital contributor in
TREM2’s biological processes, the membrane-spanning 4-
domains subfamily A (MS4A) gene cluster plays a signifi-
cant role in regulating soluble TREM2 expression as well
as AD pathology.

4.2 TREM2’s Function
TREM2 is crucial for cell maturation, proliferation,

and survival during development under homeostatic con-
ditions [103,104]. Multiple TREM2 functions have been
identified in the last decade, including the regulation of
phagocytosis and modulation of inflammatory signaling
[105,106].

4.2.1 Regulation of Phagocytosis
The CNS, with its greater phagocytic potential, has

myeloid cell subsets expressing TREM2 [107,108]. Knock-
out animal studies have shown reduced phagocytosis in
apoptotic neurons [109]. The overexpression or activa-
tion of TREM2 has been shown to increase substrate up-
take [110,111]. According to Yao et al. [112], phagocy-
tosis depending on TREM2 requires the activation of the
SYK/PI3K/AKT/PLC pathways. A novel TREM2 agonis-
tic antibody treatment accelerated the clearing ofmyelin de-
bris from the CNS demyelination model [113].

4.2.2 Modulation of Microglial Activation and
Inflammatory Responses

TREM2 is traditionally classified as an anti-
inflammatory receptor [114–116]. Its silencing stimulates
an early pro-inflammatory response through the PI3K/NF-
κB pathway, which downregulates CD163 expression,
leading to virus repression [117]. TREM2 is vital for
regulating the in vivo activation of microglia in response
to damaged tissue [118]. TREM2 increases the survival
of microglia by stimulating the Wnt/-catenin pathway,
and Wnt/-catenin signaling can be restored when TREM2
activity is interrupted [119]. More recently, studies have
shown that the TREM2-APOE pathway is the primary
regulator of microglial phenotypic changes in neurode-
generative disorders and may serve as a target to restore
homeostatic microglia [120].

4.3 TREM2 in AD
Genetic variations in TREM2 have been linked to sev-

eral neurodegenerative diseases [121,122]. Recent research
has shown that microglial TREM2 expression is associ-
ated with AD pathology. The most common AD-associated
TREM2 variant is rs75932628, a single-nucleotide poly-

4

https://www.imrpress.com


morphism encoding an arginine-to-histidine missense sub-
stitution at amino acid 47 (R47H), which significantly in-
creased sporadic AD incidence and impaired phospholipid
ligand binding [123,124]. Recent studies have proposed that
R62H and R47H are partial loss-of-function variants and
predominantly lead to minimized affinity for TREM2 lig-
ands [125]. In contrast, upregulated TREM2 signaling can
lead to several possibilities for immune-linked AD treat-
ments [126,127]. The regulation of TREM2 in AD rep-
resent a novel therapeutic approach that is currently under
investigation in clinical trials [128,129]. Therefore, mi-
croglial TREM2 is a potential therapeutic target for amelio-
rating neurodegeneration disease. However, caution should
be exercised when targeting TREM2 as a therapeutic entry
point for AD until its involvement in tau aggregation and
propagation is better understood [130].

4.3.1 Interaction with Aβ and Tau Proteins
The accumulation of neurotoxic forms of tau and

Aβ is a pathological characteristic of AD. TREM2 is an
Aβ receptor that transduces AD-linked pathological and
physiological effects. TREM2 is specifically upregulated
in plaque-associated microglia [131]. Karanfilian et al.
[132] and Singh et al. [133] reported that TREM2 is in-
volved in modulating amyloid plaque deposition and re-
moving amyloid plaques in AD. Findings from numerous
studies have shown that plaque-associated microglia may
regulate the pathogenesis of Aβ via plaque phagocytosis
[134,135]. TREM2-dependent microglia activity has been
demonstrated to reduce amyloid plaque development by in-
creasing Aβ phagocytosis [136]. Kim et al. [137] demon-
strated that TREM2 enhances the phagocytosis of Aβ via
the upregulation of C/EBPα depending on expression of
CD36 in the microglia, which is necessary for protecting
against memory loss and improving learning in cases of
AD.

Recent evidence demonstrates that TREM2 insuffi-
ciency has varying effects on AD progression and initially
suppresses amyloid pathology. However, the pathology
is exacerbated in later disease stages [138]. Furthermore,
deficiency of microglial TREM2 leads to heightened tau
pathology coupled with widespread increases in activated
neuronal stress kinases [139]. Tau is a neuronal intracel-
lular protein. TREM2 insufficiency enhances the hyper-
phosphorylation of tau, even in the preliminary stages of
AD and other neurodegenerative diseases [140]. Jiang T
et al. [141] described that suppressing brain TREM2 ex-
pression increased tau pathology, a phenomenon that can
be linked to neuroinflammation-induced tau kinase hyper-
activation. The authors also pointed out that TREM2 sup-
presses kinase activity through tau by limiting neuroinflam-
mation and therefore protects against tau pathology.

4.3.2 Modulation of Inflammatory Responses and
Microglia Activation

An increase in inflammation and the classical activa-
tion of microglia are associated with AD [142,143]. Human
and in vivo studies have revealed that the NLRP3 inflam-
masome is triggered in AD and ASC specks are indicated
in the amyloid plaque core [144]. Some studies have shown
that TREM2 has anti-inflammatory functions. In cell lines,
TREM2 insufficiency enhanced levels of pro-inflammatory
mediators, such as TNF-α, IL-6, and IL-1 [145]. TREM2
anti-inflammatory activities can also be facilitated by the
C-terminal fragment of TREM2 [146].

Furthermore, a critical function of TREM2 is to mod-
ulate microglial function in the CNS [147,148]. A decrease
in microglia surrounding plaque coverage was shown in
TREM2-deficient mice, especially in plaques with higher
volume [149]. In an AD model, TREM2-mediated early
microglial responses reduced amyloid plaque transport and
toxicity [150]. A genomic transgene-guided enhancement
in TREM2 expression was shown to reprogram the re-
sponsivity of microglia and improve behavioral and neu-
ropathological symptoms in AD rodent experients [151].
Recent reports suggest that TREM2 is an Aβ receptor that
mediates function in microglia [152]. Zhao et al. [153]
further demonstrated that TREM2/Aβ interaction medi-
ates the downstream TREM2/DAP12 signaling pathway,
thereby inducing the degradation of Aβ protein around mi-
croglia and microglial activation. Recent data have corrob-
orated these findings by revealing that TREM2 promotes
microglial survival and maintains microglial responses to
Aβ [154]. In addition, TREM2 controls microglial function
by modulating cellular energy and biosynthetic metabolism
in an AD model [155].

4.3.3 Participation in the Formation of Dendritic Spines
Dendritic spines are important for forming neuronal

connection and signal transmission in the nervous system
and can alter the motility, density, and morphology of neu-
rons in relatively shorter periods [156]. The characteristics
of dendritic spines have attracted attention in investigations
on neurobiological behavioral platforms. For instance, the
structural aspects of dendritic spines are linked to varia-
tions in learning and memory, synaptic efficiency, and other
cognitive functions [157]. Reportedly, microglia reshape
synapses through presynaptic nourishment and spinal head
filamentous foot induction [158].

TREM2 is crucial for microglia-assisted synaptic re-
finement during the preliminary stages of brain develop-
ment. A lack of TREM2 expression causes ineffective
synapse pruning, increases excitatory neurotransmission,
and minimizes long-range functional connectivity [159].
Maturation studies have shown that variations in the struc-
ture and activity of synapses and dendrites are preliminary
and critical occurrences in the pathogenesis of AD neurode-
generative procedures [160]. Aβ-induced changes in den-

5

https://www.imrpress.com


dritic spine pathology has also been observed in the prelim-
inary stages of AD [161]. In vivo dendritic spine analysis
revealed that neuroinflammation alters the structural plas-
ticity of dendritic spines, which can be ameliorated by anti-
inflammatory drugs [162]. TREM2 deletion aggravated the
loss of dendritic spines and axons in a transgenic ADmouse
model. This indicates that serious neuron damage is more
commonly a result of TREM2 insufficiency than of amyloid
plaque load.

4.4 The Role of TREM2 in the Connection between
Exercise and AD

There is plenty of literature demonstrating that regular
physical exercise may slow disease progression or amelio-
rate symptoms in AD by increasing cerebrospinal biomark-
ers [163] and cardiovascular fitness [164], as well as de-
creasing AD-related biomarkers [165]. In addition, vari-
ous animal models have demonstrated that exercise exerts
neuroprotective effects on cognition in AD, such as object
recognition memory [166], spatial learning and memory
[167], and anxiety behavior [168]. Dao AT et al. [169]
demonstrated that AD-impaired basal synaptic transmission
and suppression of early-phase long-term potentiation in the
dentate gyruswas prevented by priormoderate treadmill ex-
ercise. Using a transgenic model, Mu L et al. [170] demon-
strated that strengthening structural synaptic plasticity may
represent a potential mechanism by which treadmill exer-
cise prevents decline in spatial learning and memory and
synapse loss in 3×Tg-ADmice. LiuY et al. [171] reported
that short-term resistance exercise inhibits neuroinflamma-
tion and attenuates neuropathological changes in AD mice.
Lu Y et al. [172] demonstrated that treadmill exercise is
neuroprotective and regulates microglial polarization and
oxidative stress in AD model. Furthermore, pharmacolog-
ical mimetics of exercise, such as by enhancing adult hip-
pocampal neurogenesis (AHN) and elevating brain derived
neurotrophic factor (BDNF) levels, may improve cognition
in AD. Furthermore, when applied at early stages of AD,
these mimetics may protect against subsequent neuronal
cell death [173].

The interaction between microglia and neurons, medi-
ated by TREM2, has been shown to contribute to AD patho-
genesis. Therefore, the regulation of TREM2 to alleviate
AD has garnered major interest in AD research. Recently,
findings from an animal study showed that upregulation of
TREM2 ameliorated inflammatory responses, neuronal in-
jury, and cognitive deficits [174,175]. More importantly,
exercise can be viewed as a safe and economic option for
improving cognitive performance in both normal and dis-
eased states, including AD. However, few studies have re-
vealed the critical role of TREM2 in exercise and AD.

Currently, the mechanism underlying the exercise-
induced neuroprotective effect on cognitive function asso-
ciated with TREM2 in an ADmodel can be illustrated from
three major findings. First, exercise has been shown to

regulate microglial function through TREM2 regulation in
the brain. Improvement in recognition memory in an AD
rat model is linked to the upregulation of the hippocampal
TREM2/DAP12 pathway, which can inhibit excessive mi-
croglial activation as well as neuroinflammation [176]. Re-
cent research using the APP/PS1 mouse model demon-
strated that long-term running inhibits TREM2 shedding to
maintain the levels of TREM2 protein as well as microglial
metabolic activity [177]. Second, exercise can increase
dendritic spine density by modulating TREM2 expression.
TREM2 deficiencywas shown to exacerbate dendritic spine
loss in an AD mouse model [162]. In contrast, Mu et al.
[170] showed that exercise protects memory function by en-
hancing dendritic spine density in the brain in a 3× Tg-AD
mouse model. Thus, it was widely speculated that exercise
modulates TREM2 expression to protect dendritic spines in
AD models. However, the in vivo/in vitro evidence should
be validated further to confirm this hypothesis. Third, the
enhancing effect of physical exercise onsTREM2 was mea-
sured in the cerebrospinal fluid of patients with AD. The
experiments performed by Jensen et al. [178] indicated that
the levels of sTREM2 in the cerebrospinal fluid of patients
with AD increased with physical exercise intervention.

5. Conclusions
The pathology of AD is well-studied. The demand

for AD prevention or treatment methods has increased
owing to more than 15 years of failure in clinical stud-
ies. Fortunately, research on AD is currently under-
way. Emerging evidence implicating TREM2 can provide
new insights into AD diagnostics and treatments because
early TREM2-participated microglial inflammation may be
present decades before the onset of AD-related cognitive
impairments. TREM2 deficiency is closely associated with
AD and other neurodegenerative disorders. In contrast,
TREM2 upregulation in response to exercise can ameliorate
AD-related neuropathological changes. Further studies are
required to elucidate the protective mechanism of TREM2
in AD.
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