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Abstract

Background: Affective computing has gained increasing attention in the area of the human-computer interface where electroencephalog-
raphy (EEG)-based emotion recognition occupies an important position. Nevertheless, the diversity of emotions and the complexity of
EEG signals result in unexplored relationships between emotion and multichannel EEG signal frequency, as well as spatial and temporal
information. Methods: Audio-video stimulus materials were used that elicited four types of emotions (sad, fearful, happy, neutral) in 32
male and female subjects (age 21–42 years) while collecting EEG signals. We developed a multidimensional analysis framework using a
fusion of phase-locking value (PLV), microstates, and power spectral densities (PSDs) of EEG features to improve emotion recognition.
Results: An increasing trend of PSDs was observed as emotional valence increased, and connections in the prefrontal, temporal, and
occipital lobes in high-frequency bands showed more differentiation between emotions. Transition probability between microstates was
likely related to emotional valence. The average cross-subject classification accuracy of features fused by Discriminant Correlation Anal-
ysis achieved 64.69%, higher than that of single mode and direct-concatenated features, with an increase of more than 7%. Conclusions:
Different types of EEG features have complementary properties in emotion recognition, and combining EEG data from three types of
features in a correlated way, improves the performance of emotion classification.

Keywords: electroencephalography (EEG); emotion; classification; power spectral density (PSD); microstate; phase-locking value
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1. Introduction
A key element of advanced human-computer interac-

tion is the communication of emotions. A reliable emo-
tion recognition system with acceptable adaptability, ro-
bustness, and recognition accuracy is an important premise
in realizing affective human-computer interaction [1].

Emotion can be evaluated by subjective feelings, be-
havioral tendencies, motor expressions, physiological reac-
tions, and cognitive appraisals such as blood pressure, heart
rate, eye activity, skin resistance measurements, and elec-
troencephalography (EEG) [2]. Among these, EEG sig-
nals provide objective and abundant informational signa-
tures in response to varying emotional states [3,4]. EEG
features used in most studies of emotion principally focus
on frequency and/or spatial domains such as power spectral
densities (PSD) [5] and functional connectivity [6] such as
phase-locking value (PLV) [7–9], Pearson correlation coef-
ficient [10], and phase lag index [9]. Nevertheless, abun-
dant temporal transient topology information is ignored in
these studies. More recently, microstate, which takes time
information into account, has attracted increasing attention
in the study of emotional EEG [11–13].

Fusion of biometrics information often requires more
reliable recognition, and improved recognition perfor-
mance can be achieved through feature-level fusion [14–
16]. Therefore, herein we provide more comprehensive
emotion recognition using spatial, temporal, and spectral-
domain EEG features by integrating PSD, PLV, and mi-
crostate.

2. Materials and Methods
2.1 Study Participants

Thirty-two healthy, right-handed adults with normal
sleeping patterns from Tianjin Artificial Intelligence Inno-
vation Center (TAIIC) participated in this study. These par-
ticipants included 21males and 11 females between the ages
of 21 and 42 years (Mean ± SD = 27.4 ± 4.2 years). All
participants learned the experimental process and signed
informed consent agreements prior to enrollment. Exper-
imental approval was obtained from the Ethics Committee
of Tianjin University (TJUE-2021-138).
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2.2 EEG Data Acquisition and Preprocessing
A flow chart outlining experimental procedures is

shown in Fig. 1. Seven members of our research group con-
structed an initial database of 129 movie clips. According
to emotional movie database (EMDB) requirements [17],
29 of these videos were selected as alternative stimulating
materials. Each video has been carefully reviewed to en-
sure the stability of content, consistent character portrayal,
clear image and sound quality, and a fixed refresh rate [2].
Additionally, we have taken great care to ensure that each
video clip does not contain both positive and negative emo-
tional content. Twenty-seven annotators (age: 26.26± 3.30
years; 19 males, 8 females) assessed these 29 video clips
by self-rating their emotions (valence, arousal) according
to a self-assessment questionnaire, following the practice of
decoding affective physiological responses (DECAF) [18].
Three annotators were regarded as outliers based on abnor-
mal rating values. The consistency of the valence/arousal
ratings among the remaining 24 annotators were 0.69 and
0.30 according to Krippendorff’s alpha metric [19] and sug-
gested that the selected videos consistently induced desig-
nated emotions among annotators. More details regarding
the emotion stimulating materials are outlined in previous
work [20]. Twenty videos (sad × 5, fear × 5, happy × 5,
neutral × 5) were further selected as stimulating materials
according to their valence and arousal values in this study,
with each video lasting for 150 seconds.

Subjects wore a NEUROSCANwireless electrode cap
(Neuroscan SynAmps2 Model 8050, Compumedics USA,
Inc., Charlotte, NC, USA) with 64 channels to collect EEG
signals. The electrode cap followed the international 10–20
system, and the sampling rate was 1000 Hz. Four electrode
channels (M1, M2, CB1, CB2) were excluded. Subjects
watched video stimulating materials on a 15-inch screen
with a refresh rate of 60 Hz. The ground electrode was
located between Fz and FPz, and the reference electrode
was located between Cz and CPz (Fig. 2A). Raw EEG
data were preprocessed using MATLAB’s EEGLAB tool-
box (https://sccn.ucsd.edu/eeglab) [21] with bandpass fil-
tering between 0.3–50 Hz, 50 Hz trap filtering to remove
powerline interference, down-sampling to 200 Hz to re-
duce computational complexity, and independent compo-
nent analysis (ICA) to remove eye-movement artifacts. We
only analyzed the EEG during the video viewing phase, and
EEG signals labeled in the videos were considered ground
truth.

2.3 EEG Feature Extraction
2.3.1 PSD Extraction

PSD describes the power distribution of signals be-
tween different frequenciesc and is a widely used metric to
analyze EEG signals in five frequency bands to obtain sig-
nificant frequency-domain information: δ (1–3 Hz); θ (4–7
Hz); α (8–13 Hz); β (14–30 Hz); γ (31–50 Hz). For each
trial, we first divided the EEG signal (150 seconds) into 30

non-overlapping short segments of 5 seconds each. PSD
were extracted from these segments independently and av-
eraged across all segments. As outlined by Sani et al. [22],
PSD was calculated using this equation:

Sx = 20 log10


√√√√ 1

N

N∑
n=1

|x(n)|2


whereN represents the number of time samples in sig-

nal x.

2.3.2 PLV Extraction

Interaction between brain regions is an essential fea-
ture of human brain function. PLV provides phase coupling
information between EEG signal pairs, and this measure
is widely used to construct functional brain networks for
EEG-based emotion recognition [7,8]. As previously out-
lined [23], PLV between signal a and b was computed using
the following equation:

PLV(a,b) =

∣∣∣∣∣∣ 1N
N∑
j=1

ei(ϕa(j)−ϕb(j))

∣∣∣∣∣∣
where i is the imaginary unit, ϕ denotes the instanta-

neous phase, and N is the total number of time samples.

2.3.3 Microstate Extraction

Microstate was extracted using the EEGLAB mi-
crostate 1.0 plug-in (https://sccn.ucsd.edu/eeglab). In brief,
multi-channel EEG signals were decomposed into a series
of transient potential topologies. The global field potential
(GFP) was then obtained by calculating the standard devi-
ation of the signal across all electrodes. The peak point
of the GFP curve represented the moment of the highest
signal-to-noise ratio, and the potential of each electrode at
the peak point of the GFP curve was recorded. Then the
topographic map set was empirically into eight microstates
using a K-means clustering algorithm. Statistical charac-
teristics of these microstates such as duration, occurrence,
contribution, and transition probability, were used for sub-
sequent analysis and classification.

2.4 Emotion Recognition

Discriminant Correlation Analysis (DCA) [16] was
used to fuse multi-domain EEG features. The concept of
DCA maximizes pairwise correlations between feature sets
in the same class while eliminating correlation between
feature sets in different classes. This results in limiting
the intra-class correlation. Principal component analysis
(PCA) was used for dimensionality reduction prior to fea-
ture fusion and for high-dimensional features that required
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Fig. 1. Flow chart of the experimental procedures. DCA, discriminant correlation analysis; PCA, principal component analysis; SVM,
support vector machine.

large computing requirements, which may lead to the di-
mensionality curse. Following established practices [24],
pairwise feature sets were first fused using DCA, and all
fused features were then summed. We carried out leave-
one-subject-out cross validation with linear-support vector
machine (SVM) as a classifier. The average classification
accuracy was calculated as an index for the performance
evaluation of our emotion recognition model.

3. Results
3.1 Power Spectrum Analysis

We calculated the PSDs of 60 channels in the five
frequency bands outlined above and obtained 5 × 60 =
300 PSD features. For the four emotion types, the group-
average PSD from individual EEG signals was calculated.
Topographic PSD maps of five bands are shown in Fig. 2B.
By adding up the PSD of all channels; the PSD tends to in-
crease with increases in emotional valence (negative emo-
tions< neutral< positive emotions) in all frequency bands.

3.2 Functional Connectivity Analysis

The PLV was calculated in the form of a 60 × 60 ma-
trix to represent functional connectivity for the classifica-
tion of emotion. We extracted the upper triangular elements
of five bands as features for classification, resulting in 5 ×
60× (60–1)/2 = 8850 dimensional feature vectors. Thenwe
selected the top 5% strongest connectivity links for anal-
ysis (Fig. 2C). Highly correlated connections in the low-
frequency bands δ and θ were principally distributed within

the occipital lobe (electrodes of O, PO, and P), and showed
strong similarities between different emotions. In contrast,
highly correlated connections in the high-frequency bands
α, β and γ primarily distributed within the prefrontal and
occipital lobes and showed more differentiation between
emotions.

We conducted a one-way analysis of variance
(ANOVA) to test whether there were significant differences
in the connectivity strength among different emotions at
each frequency band (Fig. 2C, right column). We set p <

0.01 as the threshold for statistical significance. As out-
lined above, few connectivity differences were observed
among emotions in the δ and θ bands. As many con-
nections pass the significance test in α, β and γ bands,
we selected the top 5% significant connections, as calcu-
lated by F-statistic, for visualization to facilitate observa-
tion. Unlike group-averaged, highly correlated connections
that are mainly distributed between neighboring electrodes
(Fig. 2C, left three columns), significant connectivity dif-
ferences among emotions are primarily distributed between
distant electrodes (Fig. 2C, right column). Consistent with
a previous study [23], these findings showed that signifi-
cant differences were mainly observed in the connections
between nodes located in the temporal lobe suggesting that
the temporal lobe region contained more information re-
garding emotion recognition. In regards to the α band, in
addition to connections related to the temporal lobe, regions
within the prefrontal and occipital lobe showed more active
interactions in emotional brain activities.

3

https://www.imrpress.com


Fig. 2. The visualization of the extracted three types of EEG features. (A) Diagram of sixty-channel EEG cap. (B) Five frequency
band topographic maps of group-averaged PSD values (left) and summing of PSDs across all channels (right). (C) The top 5% PLV
connectivities and significant differences in the PLV feature of each band. (D) Eight microstates were extracted, and (E) Transition
probability between microstates (Mean± SEM). EEG, electroencephalography; PSD, power spectral density; PLV, phase-locking value;
SEM, standard error of mean.

3.3 Microstate Analysis

We obtained eight microstates, designated microstate
1 (MS1) through MS8, which represent all topographic
maps (Fig. 2D). MS1 occupied approximately 20% of oc-
currence and others occupied approximately 11% each.
MS1 andMS2were symmetric in the occipital-to-prefrontal
orientation, and MS8 was symmetric with regards to the
parietal-to-peripheral axis, while othermicrostates were lat-
eralized. The microstates of four emotions were analyzed,
and we observed variety in MS5 through MS8, while con-
sistency was observed across emotions in MS1 through
MS4.

We also computed the transition probability between
microstates, and the results are shown in Fig. 2E. The tran-
sition probability of neutral was lower than the other three
emotions in the first column (MS2~MS8→MS1). We also
observed an increasing trend in the 5th column as well as
a decreasing trend in the 8th column with the increase of
emotional valence.

3.4 Emotion Recognition

As shown in Fig. 3A, we measured an emotion classi-
fication accuracy of 44.30± 14.5% (Mean± SD), 56.88±
13.79%, and 56.95± 14.12% for PSD, PLV andmicrostate,
respectively. Two possibilities may account for the higher

emotion classification accuracies of PLV and microstate
compared with PSD. First, spatial and temporal features of
EEGmay be superior to spectral features inmeasuring emo-
tion recognition. Second, the interaction of multiple brain
regions may better represent changes in emotions rather
than the activation of local brain regions. When we con-
ducted pairwise feature fusion, PLV+microstate performed
the best with an accuracy of 62.73 ± 13.45%. Although
PSD reduced classification performance when used pair-
wise with either PLV ormicrostate, PSD still provided com-
plementary information that improved the classification ac-
curacy of PSD + PLV + microstate to 64.69 ± 11.99%. Of
note, classification accuracy fell to 57.50 ± 13.46% when
we directly concatenated the PSD + PLV + microstate fea-
tures without conducting DCA, indicating that DCA im-
proved EEG-based emotion classification performance (t
(31) = 3.03, p < 0.01, paired-sample t-test).

We next generated a group-average confusion matrix
using the fused features (Fig. 3B) and the single mode
feature of PSD (Fig. 3C), PLV (Fig. 3D), and microstate
(Fig. 3E). Columns and rows of the confusion matrix rep-
resented classified and ground truth labels, respectively.
The entries in the diagonal showed percentages of emo-
tion classes that were classified correctly. We observed
that negative emotions, such as sadness and fear, exhib-
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Fig. 3. The classification accuracies and confusion matrix. Classification accuracy (A) and confusion matrix (B, C, D, E) of fused
features and single mode features. *, p < 0.01, **, p < 0.001, paired-sample t-test.

ited relatively low classification accuracies in contrast to
the other two non-negative emotions. This led us to de-
velop the view that negative emotions are more difficult to
recognize [25]. In general, PLV features had advantages
in recognizing happy, sad, and neutral emotions, whereas
microstate features had higher accuracy in recognizing fear-
ful emotional states. This finding indicates the complemen-
tarity of different feature types. A feature-fusion approach
stably improves the performance of emotion classification
with different degrees of improvement; for example sad
was 1.26%, fear was 3.14%, neutral was 6.92%, and happy
was 5.03%. Taking into consideration that the emotion clas-
sification in this study was both cross-subject and four-class
and that two types of negative emotions were included, our
proposed model satisfied classification performance com-
pared with other state-of-the-art work [23,26]. For exam-

ple, Chen et al. [23] conducted frequency-domain fusion
on EEG features and obtained two-class (negative vs. posi-
tive) cross-subject emotion recognition accuracies of 71.14
± 6.97%, 61.48 ± 10.97%, and 66.62 ± 9.10% on SEED,
BCI2020-A, and BCI2020-B datasets, respectively. Based
on EEG signals, Cai et al. [26] obtained subject-specific ac-
curacies between 58% to 62% using a four-class (joy, peace,
anger, and depression) cross-subject emotion recognition.

4. Discussion
In this study, we utilized leave-one-subject-out cross

validation to conduct cross-subject emotion recognition.
We used this approach rather than randomly dividing all
segments into a number of folds and thus avoided infor-
mation in the training set leaking to the test set. This en-
sured the reliability of the recognition performance [27].
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Nevertheless, inter-subject variability in EEG signals may
prevent inter-class separation and thus may have a signif-
icant adverse effect on emotion recognition performance
[28]. Hence, building models that account for the problem
of inter-subject variability and extract distinctive emotional
features across subjects is a possible future direction for im-
proving such modeling.

Negative emotions have adverse effects on mental
stress as well as vigilance [29,30], and recognizing nega-
tive emotions plays an important role in effective human-
computer interaction. Nevertheless, negative emotions are
easily confused [23]. Negative emotions are not only eas-
ily confused with other negative emotions but also have a
considerable probability of being identified as non-negative
emotions. For example, sad was wrongly classified as neu-
tral, with a probability of more than 20%, when using a
single mode feature. Our proposed fusion model not only
achieved stable improvement for negative emotion recog-
nition performance, but it greatly reduced the probabil-
ity of identifying negative emotions as non-negative emo-
tions. This development has practical significance as an
early warning of negative emotions and an early diagnosis
of mental stress.

Although multi-modal features can generally provide
complementary information useful in improving recogni-
tion accuracy [14,15,23], the feature-fusion strategy is note-
worthy. In comparison to single mode features and direct-
concatenated features, this study used DCA-fused features
and found these to perform better in classification. Specifi-
cally, we observed, with an accuracy increase of more than
7%, that the fusion, when based on the relationship between
features, performed better than direct concatenation. We
note that, despite good classification results, the feature-
fusion strategy can be poorly interpreted as features were
summed after mapping to have the same dimensions. In
this study, although the neural activity of emotions was in-
terpreted using EEG-based features from different angles
independently, feature-fusion methodologies that combine
recognition performance improvements with interpretabil-
ity are encouraging.

5. Conclusions
In conclusion, we showed that different types of EEG

features have complementary properties in regard to emo-
tion recognition. Further, when EEG features from three
different types were fused in a correlated way, we observed
improved performance of emotion classification. Over 64%
accuracy was achieved in the cross-subject experiments, a
value which is significantly better than either corresponding
single mode features or directly concatenated features.
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