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Abstract

Background: Transcranial direct current stimulation (tDCS) is a non-invasive technique that has demonstrated potential in modulat-
ing cortical neuron excitability. The objective of this paper is to investigate the effects of tDCS on characteristic parameters of brain
functional networks and muscle synergy, as well as to explore its potential for enhancing motor performance. Methods: By applying
different durations of tDCS on the motor cortex of the brain, the 32-lead electroencephalogram (EEG) of the cerebral cortex and 4-lead
electromyography (EMG) signals of the right forearm were collected for 4 typical hand movements which are commonly used in rehabil-
itation training, including right-hand finger flexion, finger extension, wrist flexion, and wrist extension. Results: The study showed that
tDCS can enhance the brain’s electrical activity in the beta band of the C3 node of the cerebral cortex during hand movements. Further-
more, the structure of muscle synergy remains unaltered; however, the associated muscle activity is amplified (p < 0.05). Conclusions:
Based on the study results, it can be inferred that tDCS enhances the control strength between the motor area of the cerebral cortex and
the muscles during hand movements.
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1. Introduction
Stroke is the leading cause of motor impairments on

a global scale [1]. Despite numerous interventions, a con-
siderable number of post-stroke individuals encounter diffi-
culties in executingmovements due to impairedmotor func-
tions in both upper and lower limbs, significantly impacting
their daily living activities [2].

In recent years, substantial progress has been achieved
in both research and practical implementation of non-
invasive brain stimulation techniques, including repetitive
transcranial magnetic stimulation (rTMS) and transcranial
direct current stimulation (tDCS). Empirical evidence [3]
suggests that rTMS possesses a commendable safety pro-
file to modulate cortical excitability, potentially enhanc-
ing overall cognitive performance. Adverse effects such as
cutaneous tingling or headaches may arise in some cases.
Compared to rTMS, tDCS is considered a more suitable
therapeutic tool due to its greater convenience of applica-
tion [4]; tDCS equipment is relatively portable and can be
carried by one person. It entails the application of a low-
intensity electrical current, typically around 2 mA, to a tar-
geted cerebral area utilizing 2 or more electrodes. This
electrical current elicits alterations at subthreshold levels,
thereby influencing the likelihood of neural firing when
a neuron is subjected to input from another neuron. As
a non-invasive, low-intensity intervention that modulates
neuronal activity in the cerebral cortex, tDCS possesses the
capability to alter the spontaneous synaptic activity of neu-

rons [4]. Previous studies [5,6] have demonstrated the in-
fluence of tDCS on the excitability of the spinal cord by
modulating the motor and visual cortex. tDCS can be di-
vided into anodal and cathodal stimulation, where anodal
stimulation can increase cortical excitability, and cathodal
stimulation can decrease cortical excitability [7,8]. In prac-
tice, tDCS offers numerous advantages, including a small
stimulation current, high safety, adjustable polarity and po-
sition, and ease of operation, providing a new solution for
motor function rehabilitation. To date, the available em-
pirical data is insufficient to support the notion that multi-
ple sessions of active tDCS pose greater harm to subjects
when compared to sham tDCS, based on the parameters
tested thus far [9,10]. Indeed, Zaghi et al. [11] have con-
firmed that when tDCS is combined with occupational ther-
apy in stroke patients, it can significantly improve fine mo-
tor function. Andrés Molero-Chamizo et al. [12] found that
the motor cortex excitability changes induced by tDCS can
improve motor responses. Numerous investigations have
extensively reported the linkage between anodal stimula-
tion of the primary motor cortex (M1) and enhancements
in various behavioral aspects, including executive function
and rowing performance [13], acquisition of novel skills
[14,15], as well as motor imagery and finger tapping re-
action time (RT) [16]. There are many similar qualitative
studies on tDCS, such as literature [17–19], etc. Although
there are many studies on the effect of tDCS, there are rel-
atively few studies on the mechanism of its stimulation.
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Fig. 1. Schematic diagram of EEG and EMG acquisition. EEG, electroencephalogram; EMG, electromyography.

The Fugl-Meyer Assessment (FMA) [20] serves as a
stroke-specific, performance-based impairment index that
is widely employed to evaluate limb movement ability in
stroke patients. To date, numerous studies [21,22] have
confirmed that the FMA scores of stroke patients are signif-
icantly improved after tDCS interventions, and these find-
ings further support the notion that tDCS has the potential to
enhance limbmovement abilities in the body. Nevertheless,
the predominant body of research has mainly concentrated
on examining the impact of tDCS on the enhancement of
limb function among stroke patients. However, there has
been limited exploration of the underlying mechanism of
tDCS.

This paper mainly studies the brain function network
[23] and muscle synergy [24] of tDCS on hand movements
to preliminarily explore the mechanism of the influence of
tDCS on human movement ability. The brain function net-
work is a valuable indicator of the abnormality of the con-
nection between different regions of the cerebral cortex.
Muscle synergy is the activation of a group of muscles to
contribute to a particular movement. Nicolas J. Beuchat et
al. [25] were able to successfully decode muscle synergies
from EEG. The study [26] indicated cortical correlates of
muscle synergy activation, possibly suggesting that the cor-
tex is involved in hierarchical control of locomotor muscle
activity through muscle synergies.

In this research, we enlisted healthy participants to ac-
quire EEG and EMG signals while executing 4 typical hand
movements (namely finger flexion, finger extension, wrist
flexion, and wrist extension). The study participants un-
derwent tDCS prior to engaging in these hand movements
with varying durations (0 minutes, 5 minutes, and 15 min-
utes). An analysis of characteristic parameters related to

brain functional networks and muscle synergies was per-
formed using the specified experimental conditions and re-
sultant data. The primary objective of this investigation
was to assess the influence of tDCS duration, specifically
on brain functional networks and muscle synergies during
hand movements.

2. Materials and Methods
In this experiment, the Trigno Wireless System EMG

acquisition system of DELSYS company (Boston, MA,
USA) was applied to collect EMG signals from 4 channels.
The Trigno system offers high-quality EMG signal acqui-
sition, wireless convenience, and multi-channel recording
capabilities. Flexor carpi ulnaris (FCU), extensor digito-
rum (ED), extensor carpi radialis (ECR), flexor digitorum
(FD), and the acquisition frequency were all set to 1000 Hz
(The main frequency range of EMG signal is 20~450 Hz).
The positions of these 4 groups of muscles are mainly de-
termined according to the human muscle distribution map
when the hand makes a fist. Concurrently, 32 channels
of EEG signals were collected using the NeuSen W se-
ries wireless EEG acquisition system (Neuracle Inc., Bei-
jing, China) of Brightcom Corporation based on the 10–
20 International System. The NeuSen W series system
offers high-resolution EEG acquisition, wireless freedom,
and real-time monitoring and control features. To facilitate
the subsequent segmentation of data segments, the acquisi-
tion frequency of EEG was also set to 1000 Hz. Primary
Motor Cortex (M1) is a specific area of the cerebral cortex
located in the frontal lobe area in front of the central gyrus
(Central Sulcus). M1 is considered to be the area mainly
responsible for motor control, of which C3 is mainly re-
sponsible for the right limb movement, and C4 is mainly
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Fig. 2. Partial EEG signals during finger flexion in the sham group.

responsible for left limb movement. Therefore, in the study
of the effect of tDCS on exercise, the stimulation site was
predominantly located at C3/C4 [27]. In this experiment,
the primary focus was on right limb movements; thus, the
stimulation point is C3, with a stimulation current of 2 mA.
The electrode size is π cm2 (circular). The anode is placed
at C3, and the cathode is placed on the upper side of the
right orbit (FP2, frontopolar area 2). In order to ensure the
reliability of the experimental data, the stimulation mode
adopts a double-blind method.

In addition, here is a brief definition of 4 kinds of hand
movements:

Finger Flexion: Finger flexion refers to the bending
of the fingers, typically towards the palm, resulting in the
curling of the finger joints.

Finger Extension: Finger extension refers to the open-
ing of the fingers.

Wrist Flexion: Wrist flexion involves bending the
wrist joint towards the palm side of the hand.

Wrist Extension: Wrist extension involves bending
the wrist joint in the opposite direction, away from the palm
side of the hand.

The experimental protocol was executed utilizing
Eprime-2.0 software (Carnegie Mellon University, Pitts-
burgh, PST; Pittsburgh, PA, USA), which facilitated the
design and implementation of psychological experiments.
Eprime offers a user-friendly interface for experiment de-
sign and data collection, supporting various stimulus types
such as text, images, audio, and video. The process of
EMG acquisition was triggered by the synchronization sig-
nal, which was sent by the Eprime. The specific process

is depicted in Fig. 1. Initially, EEG signal collection was
commenced, andwhen Eprime displayed “Start”, the exper-
imenter initiated EMG signal collection by clicking the cor-
responding button. Simultaneously, this action prompted
Eprime to transmit a synchronization signal to the EEG
collection software, and put a synchronization label on the
EEG signal. Subsequently, the screen displayed the word
“ready”, allowing participants a 5-second preparation pe-
riod. The hand movement duration was set to 3 seconds,
followed by a relaxation period of approximately 2 seconds.
Each set of movements was iterated 10 times. Since there
is a latency between participants perceiving the on-screen
prompts and initiating the corresponding actions, the initi-
ation point for each action did not precisely coincide with
the 5th second of each action cycle. Consequently, the sub-
sequent selected data segments could not be intercepted ac-
cording to a fixed time point. Nevertheless, the EEG and
EMG signals share the same acquisition frequency; they are
synchronized from the initial signal synchronization point.
Moreover, the amplitude of the EMG signal clearly delin-
eated the temporal duration of the action. Thus, the subse-
quent segmentation of action synchronization segments for
the EEG and EMG data relied on the EMG data, serving
as a reliable indicator for identifying the periods of action.
Specifically, when the magnitude of the EMG signal ex-
ceeds a specific threshold, that point was designated as the
commencement of a particular segment with a fixed data
length. Subsequently, a specific data segment was omitted,
and the subsequent initiation point was identified anew. To
mitigate the impact of noise on this process, manual verifi-
cation was conducted afterward.
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Fig. 3. Schematic diagram for the specific categories of 30 independent components decomposed by ICA of EEG signal during
finger flexion in the sham group. ICA, Independent Component Analysis.

The study involved 30 healthy adult participants, com-
prising 16 males and 14 females, with ages ranging from
24–32. All participants were right-handed, as determined
by the short form of the Edinburgh Handedness Inventory
[28]. They had no history of neurological diseases and pos-
sessed equivalent levels of education. Before the start of
the experiment, none of the participants took any drugs or
food that affected the central nervous system. The stim-
ulator of tDCS is the Neustim of Brightcom Corporation
(Changzhou, JiangSu, China), which allows for flexible ad-
justment of stimulation position and parameters. The par-
ticipants were randomly divided into 3 groups, each con-
taining 10 individuals: the sham group, which did not re-
ceive tDCS; the experimental group, stimulated with tDCS
for 5 minutes and 15 minutes. Specifically, the 30 partic-
ipants were assigned serial numbers from 1 to 30, and si-
multaneously, 10 group numbers labeled ‘0’, ‘1’, and ‘2’
were randomly assigned to these 30 serial numbers. In this
assignment, ‘0’ signified the sham group, ‘1’ means tDCS
for 5 minutes, and ‘2’ means tDCS for 15 minutes. The
sham group is primarily to eliminate the influence of vol-
unteers’ psychology and other factors on the experimental

results. To minimize the influence of electrooculographic
artifacts, other unrelated muscle groups in the body, and the
noise signals generated by electrode movement during the
EEG acquisition process, the participants were instructed
to maintain a relaxed posture, sit facing the screen with
their gaze directed upward, and endeavor to minimize head
movements and blinking throughout the experiment. Addi-
tionally, proper electrode preparation was ensured by clean-
ing the scalp with an appropriate conductive gel or saline
solution, reducing impedance and enhancing signal quality.

The MATLAB R2018bB version (MathWorks, Nat-
ick, MA, USA) used to analyze and process the data in this
experiment is R2018bB, and the EEGlab version is V2021
(University of California, Oakland, CA, USA).

2.1 Signal Processing
2.1.1 Signal Preprocessing

Initially, EEGlab was employed to import the EEG
data and visualize the distribution of the 32-channel EEG
signals. Extraneous electrodes were excluded from subse-
quent analysis. Specifically, electrodes A1 and A2, typi-
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Fig. 4. Signals after denoising EEG during finger flexion in the sham group.

cally proximate to the earlobe and commonly used as refer-
ence electrodes, were omitted from the experiment setup. In
this study, the value of the reference electrode is the mean
value of all effective electrodes; therefore, electrodes A1
and A2 were not included. Fig. 2 illustrates the raw EEG
data collected. During the experiment, electrodes A1 and
A2 were not very close to the position of the earlobe, re-
sulting in abnormal values for these 2 channels.

Given the susceptibility of the signal acquisition pro-
cess to 50 Hz power frequency interference, coupled with
the inherent frequency characteristics of EEG and EMG sig-
nals, this study employed a data processing methodology
to mitigate the impact of power frequency interference in
the acquired signals. To elaborate, the EEGlab toolbox was
employed to remove power frequency interference from the
EEG signals, followed by preprocessing using a bandpass
filter ranging from 0.1–80 Hz. Concurrently, the EMG sig-
nal was also processed to mitigate the power frequency in-
terference, with preprocessing involving the application of
a bandpass filter ranging from 30 to 450 Hz.

Despite the assumption made in the experimental pro-
tocol, achieving ideal conditions in actual experiments is
unattainable. The initial assumption was that participants
would minimize eye blinks and extraneous muscle move-
ments that could disrupt EEG signals. Consequently, for
signal preprocessing, it is imperative to address the elimina-
tion of noise components, such as electrooculogram (EOG),
in preparation for subsequent analysis and processing. Fur-
thermore, this experiment entailed the collection of EEG
signals from 30 channels. However, not all EEG channels
were pertinent to hand movements during the experiment.
Hence, it is essential to mitigate the EEG noise originating

from non-hand movements (e.g., blinking, nodding, open-
ing mouth, etc., any action that may generate brain noise).
This measure proves advantageous in reducing the work-
load associated with subsequent data analysis.

Independent component analysis (ICA) can be effec-
tively applied to EEG signals through the EEGlab tool-
box. As an exceptional blind source separation algorithm,
ICA is often used in research on brain source localization
[29]. It is capable of separating the artifacts in EEG signals
[30,31], including such noises as muscles, blinks, or eye
movements, without affecting the disturbed EEG data. In
EEGlab, there are a variety of ICA algorithms available to
choose from. There are many ICA classification algorithms
[32] in the EEGlab toolbox, combined with reference [33]
and own tests, adaptive mixture of independent component
analyzers (AMICA) [34] was applied due to the better re-
sults of separation for multi-channel EEG data. The ICA al-
gorithm is capable only of separating different independent
components from the EEG data, which means it is ineffec-
tive in identifying the specific source of the corresponding
components. Thus, it is necessary to rely on ICLabel [35]
for classifying and identifying the independent components
separated by ICA. After separating the independent compo-
nents, it identifies one of the 7 categories, including Brain,
Muscle, Eye, Heart, Line Noise, Channel Noise, and others,
before an estimate of percentage probability is given. The
number of independent components decomposed by ICA
corresponds to the number of EEG channels. Fig. 3 depicts
the specific categories of the 30 independent components
decomposed by the EEG signal of flexion before tDCS. The
other category predominantly comprises unidentified noise
and other unidentified EEG components. The percentage
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Fig. 5. Signal after EMG denoising during finger flexion in the sham group. FCU, Flexor carpi ulnaris; ED, extensor digitorum;
ECR, extensor carpi radialis; FD, flexor digitorum.

values beneath each subgraph represent the probability as-
sociated with each component. It can be seen that there
is a lot of noise in the EEG signal, such as eye electric-
ity, myoelectricity, etc. For example, components 1 and
2 are electro-ocular noise, and predicted probabilities are
0.998 and 0.975, respectively. These high probabilities sug-
gest that the volunteers may have blinked frequently dur-
ing data collection. Noise is typically considered when the
probability exceeds a certain threshold, which is commonly
set between 0.5 and 0.9 [36,37]. In order to remove the
noise component in the EEG as much as possible and retain
the effective EEG signal as much as possible without unin-
tended deletion, this paper sets the threshold to 0.5; that is,
the noise component with a higher probability than 0.5 was
eliminated, according to the classification results of ICLa-
bel. According to the above rules, the components 1, 2, 3, 4,
6, 7, 9, 10, 13, 15, 17, 20, 18, 19, 23, and 25 in Fig. 3 are all
proposed, and Fig. 4 is the noise removal the signal restora-
tion diagram after component. It can be seen that compared
with Fig. 2, the EEG signal is significantly improved.

2.1.2 Signal Segmentation

The EEG signal’s synchronization marker is synchro-
nized with the start of EMG signal acquisition, ensuring
consistency in the time domain. Furthermore, the frequency
of data collection remains consistent between the EMG and

EEG signals. Fig. 5 depicts the EMG signal recorded during
finger flexion in the sham group. The initiation and termi-
nation of eachmotion can be clearly observed, whichmakes
the amplitude of the EMG signal applicable as a criterion to
segment the EMG and EEG data simultaneously. Although
in the design of the experiment process, the duration of the
action is 3 seconds, but by observing the electromyogram,
it can be found that the duration of many actions is about
2 seconds. This may be due to the relatively high inten-
sity of the action, and the long duration is more tiring. In
order to ensure that the signal data corresponding to the in-
tercepted period is complete action data, this study selected
a 1.5-second data segment for each action cycle, equiva-
lent to 1500 data points following the onset of each action.
Besides, each segment in this dataset consisted of 300 sam-
pling points. That is to say, there was a time window of
300 milliseconds, and the moving step was comprised of
100 sampling points.

2.2 Analysis of Characteristic Parameters of Brain
Functional Network

The EEG signal is representative of a time-domain
waveform, with a primary focus on analyzing variations in
amplitude over time. This temporal analysis approach [38]
offers superior temporal precision and accuracy in com-
parison to frequency-domain analysis. However, the sole

6

https://www.imrpress.com


reliance on time-domain analysis may not adequately cap-
ture the entirety of information present in the EEG signal.
To extract a broader range of information, the EEG sig-
nal can be segmented into sub-signals of varying frequency
ranges through frequency-domain analysis, thereby allow-
ing for subsequent investigations. Both of these analytical
approaches are employed in this paper.

The human brain can be conceptualized as an intri-
cately complex system. The interaction among distinct
brain regions is fundamental to the realization of brain func-
tion, and the construction of the brain function network
involves combining the EEG timing signals of distributed
brain regions with graph theory. The primary steps of con-
structing the brain function network in this study are as fol-
lows:

(1) Select network nodes. In this study, the area where
each scalp electrode patch is located is defined as a node.

(2) EEG signal preprocessing. Initially, a bandpass
filtering spanning 0.1–80 Hz is applied to eliminate extra-
neous noise interference. Subsequently, the independent
component analysis method is employed to reconstruct the
signal after removing artifacts such as oculograph, eye drift,
and head movement. Finally, the EEG signal to be studied
is decomposed into 5 frequency bands.

(3) Correlation analysis between nodes. Various
methods for correlation analysis exist, including cross-
correlation, mutual information, and phase synchronization
index. In this paper, the cross-correlation analysis is se-
lected, the EEG time series of the 2 channels are expressed,
and the cross-correlation coefficient is calculated using the
following expression:

Rxy =

n
n∑

i=1,j=1

xiyj −
(

n∑
i=1

xi

)(
n∑

j=1

yj

)
√

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

√√√√n
n∑

j=1

y2j −

(
n∑

j=1

yj

)2
(1)

Among them i j represent the sampling points of the
EEG signal and n represent the total sampling number. The
value Rxy is between 0 and 1; a value of 0 indicates that
there is no correlation between the signals, and a value of 1
indicates that the signals are completely correlated.

(4) Threshold selection (T). Following the above pro-
cedures, a connection coefficient matrix can be obtained,
which can be transformed into a binary matrix after se-
lecting an appropriate threshold, and the topology of the
brain functional network can be derived from this matrix.
The correlations of neural oscillations in delta, theta, alpha,
beta, and gamma bands were different, so different thresh-
olds were selected to construct the brain function network.
Consistent with prior literature [39], this study opted for the
thresholds of 0.38, 0.56, 0.63, 0.43, and 0.32 for the respec-
tive frequency bands.

Upon completing the construction of the brain func-
tion network, characteristic parameters of the brain function
network are extracted using a complex network measure-
ment method. The similarities and disparities in network
characteristic parameters before and after tDCS can eluci-
date the impact of stimulation on the internal connectivity
characteristics of the brain. In this study, the degree and
average clustering coefficient are chosen as characteristic
parameters to analyze the influence mechanism of tDCS on
typical hand movements.

(1) Degrees. The degree of node i represents the sum
of the number of connections between this node and other
nodes in the network. The degree value provides an intu-
itive indication of a node’s importance within the network.
The node with a higher degree value is, in a sense, the node
of the network core node. The degree value of node i is
expressed as follows:

Di =
∑N

j=1
hij (2)

where hij represents the connection between nodes i and j;
N represents the number of nodes.

(2) Average clustering coefficient. The clustering co-
efficient measures the connection tightness of nodes in a
complex network, expressed as the possibility of intercon-
nection between a certain node and other nodes. Assume
that a node i has ki neighbor nodes, and there are actu-
ally ei connection edges between the network midpoint and
these neighbor nodes. At the same time, it can be calculated
that the maximum number of possible connection edges be-
tween point ei and its neighbor nodes is ki (ki − 1) /2, then
the clustering coefficient Ci of node i can be defined as:

Ci =
2ei

ki (ki − 1)
(3)

The average clustering coefficient C is expressed as
the average value of the clustering coefficients of all nodes
in the network, which can evaluate the characteristics of the
network as a whole. The formula is as follows:

C =
1

N

N∑
i=1

Ci (4)

The value range of the clustering coefficient is be-
tween 0 and 1, indicating that there are no nodes connected
to each other in the current network, indicating that any 2
nodes in the network have a connection relationship.

2.3 Muscle Synergies

Muscle synergy analysis is primarily employed to in-
vestigate how the central nervous system orchestrates mus-
cles in a modular way to achieve coordinated movement
[40]. It offers a simplified depiction of intricate mecha-
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Table 1. After different durations of tDCS, the data of the first four channels with the largest EEG average power during hand
movements.

Electrode
tDCS duration Average power

0 minutes 5 minutes 15 minutes

C3 10.31 ± 0.61 11.61 ± 1.02* 12.53 ± 0.98*
P3 8.53 ± 1.58 8.82 ± 0.73 9.19 ± 0.24*
F3 8.41 ± 0.63 8.89 ± 1.05* 9.55 ± 0.84*
Cz 6.75 ± 0.62 6.53 ± 0.89 6.91 ± 1.02
The values are presented as the mean ± standard deviation. The values are presented
as the mean ± standard deviation. *indicates that there is a significant difference in
the current group in comparison to the sham group (0 minutes) (p < 0.05). tDCS,
Transcranial direct current stimulation.

nisms of motor control. This theory was initially proposed
by Bernstein et al. [41] in 1967, contending that the central
nervous system does not always perform real-time calcula-
tions to optimally control diverse muscle groups for gener-
ating a desired movement. The muscle synergy theory pro-
poses that a complete limb movement results from the com-
bination of several inherent minimum basic muscle group
movement units, and this superimposition mechanism en-
tails a form of collaboration. The study of muscle synergy
may help clarify neurological disorders caused by the cen-
tral nervous system, including stroke, cerebral palsy, spinal
cord injury, Parkinson’s disease, etc.

The non-negative matrix factorization (NNMF) algo-
rithm [42] was utilized to extract muscle synergies from
EMG signals.

M(t) =

n∑
i=1

(Wi ×Hi(t)) + E (5)

Where M(t) is the L*N EMG signals matrix (L mus-
cles and N number of samples), W is the L*S synergy ma-
trix (S number of synergies), and H is the S*N coefficient
matrix. The weight matrix W comprises the weights of in-
dividual muscles for the corresponding synergies, while the
activationmatrix H denotes the level of activation or utiliza-
tion of each synergy for force generation. Under this frame-
work, the contribution of an individual muscle to the task
performed can be expressed as a linear combination of the
product of its weight Wi and the corresponding activation
coefficient Hi(t).

In muscle synergy analysis, it becomes imperative to
determine the value of S, which represents the number of
muscle synergies. The guiding principle for determining
this value is to minimize the number of synergies while en-
suring that the reconstructed EMG signal closely approxi-
mates the original signal. The method used for this purpose
is the variance accounted for (VAF) index [43], which is
given by Eqn. 6. Here, X represents the matrix formed by
the envelope-extracted EMG signal, A represents the acti-
vation matrix, and C represents the synergy matrix, both of

which are obtained using the non-negative matrix factor-
ization (NMF) method. The larger the number of muscle
synergies, the closer the reconstructed EMG signal will be
to the original signal. Typically, the value of S correspond-
ing to a VAF greater than 0.9 is chosen as the number of
muscle synergies.

V AF = 1−

∥∥∥∥∥
(
M(t)−

s∑
i=1

(W (i) ∗H(i))

)2
∥∥∥∥∥

∥M(t)∥2
(6)

In addition to comparing the number of muscle syn-
ergies, the similarity of muscle synergies can also be com-
pared using various methods, including Pearson’s correla-
tion coefficient, circular cross-correlation coefficient [44],
and cosine similarity (CS) [45]. These methods can be used
to compare the similarity between different muscle synergy
structure matrices or activation coefficient matrix vectors.
In this article, cosine similarity is used to measure the sim-
ilarity of muscle synergy structure matrix vectors. The for-
mula for cosine similarity is as follows:

CS = cos(θ) =
Wi ∗Wj

∥Wi∥ ∥Wj∥
(7)

2.4 Statistical Analysis

The data were analyzed by SPSS version 24.0 forWin-
dows (SPSS Inc, Chicago, IL, USA). All of the partici-
pants were tested for normality through the Shapiro-Wilk
test. p values were derived from 2-way analysis of vari-
ance (ANOVA). The effects of several groups of dependent
variables on stimulation results, such as stimulation time
and electrode, frequency band and hand movements, and
hand movements and stimulation time, were examined, re-
spectively. Multiple comparison post-hoc tests were also
conducted when the ANOVA found a significant effect and
used the Bonferroni correction for multiple comparisons
[46]. For all comparisons, p < 0.05 was considered sta-
tistically significant.
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Fig. 6. The characteristic parameters of the brain functional networks during four typical handmovements under different tDCS
durations, the degree of C3 nodes (a), average clustering coefficient (b).

3. Results
Table 1 presents the data for the 4 channels with the

largest EEG average power levels during hand movements
following various durations of tDCS. The power spectral
density of each channel was computed using the Welch
method, which relies on the fast fourier transform (FFT)
algorithm and the Hanning window [47]. A window length
of 1 second and an overlap rate of 50% were employed
for the calculations, and then the results were averaged to
get average power. It can be seen that the EEG activity of
C3, P3, and F3 channels is the strongest when the hand is
moving. Compared with the sham group (stimulation of 0
minute), the average power of the C3 nodewas significantly
increased under different stimulation durations, the P3 node
was significantly increased after 15 minutes of stimulation,
and the F3 node was significantly increased after 5 min-
utes. It can be seen that the selection of the location of the
anode stimulation of tDCS determines the area affected by
the cerebral cortex. This table reflects the significant dif-
ference between tDCS stimulation and sham group. In ad-
dition, through statistical comparative analysis between 5-
minute and 15-minute stimulation, it was found that there
were significant differences in the stimulation results of C3,
P3, and F3.

Table 2 presents the mean degree values of EEG-
C3 nodes derived from the topological structure data of
the binarized brain functional network in the sham group.
The analysis revealed that compared with other frequency
bands, the beta band of the EEG had a significant differ-
ence (p < 0.05) in all kinds of hand movements. Simulta-
neously, in analyzing the data of the experimental group, we
found similar conclusions. This finding indicates that dur-
ing hand movements, the beta band signal of EEG played
a major role. This finding is also consistent with the tra-

ditional understanding that the beta band signal is one of
the EEG signals closely associated with limb movement.
Furthermore, there was a significant difference in the alpha
band in the finger extensionmovement, but it did not appear
in other movements. This discrepancy may be attributed to
the potential incompleteness of noise reduction utilizing the
EEGlab tool.

Fig. 6 depicts the degree of C3 and the average clus-
tering coefficients during 4 typical hand movements un-
der varying durations of tDCS durations. When combined
with Fig. 6b, it becomes evident that tDCS significantly en-
hanced the activity of the C3 node, and it was positively cor-
related with the duration of tDCS stimulation. Simultane-
ously, the average clustering coefficient in Fig. 6b reflected
the compactness of different cerebral cortex regions, and
tDCS significantly increased the average clustering coeffi-
cient of the brain functional network, indicating its poten-
tial to augment cerebral cortex activity during limb move-
ment, which has great guiding significance for the rehabili-
tation exercise of patients with movement disorders. Addi-
tionally, it was observed that the average clustering coeffi-
cients of tDCS for 5 minutes were significantly improved,
while the effect of 15 minutes of tDCS was not very ob-
vious. This may be because the effect of tDCS would be
saturated within a certain period, or it may be due to the ef-
fect of tDCS. The effect was mainly reflected in the brain
area near the C3 node.

Fig. 7 presents a comparison of VAF curves between
the sham and control groups of participants. For S = 3, the
VAF values surpassed the threshold (0.9) across all eval-
uated conditions. After undergoing tDCS, the EMG sig-
nals reconstructed using muscle synergy were found to be
greater than those obtained from the sham group under the
same muscle synergy conditions.

9

https://www.imrpress.com


Table 2. The mean value of the degree of EEG-C3 nodes obtained from the topological structure data of the binarized brain
functional network in the sham group.

EEG band
Movements Mean node degree of EEG-C3

delta theta alpha beta gamma

Finger flexion 9.01 ± 0.31 6.33 ± 1.28 8.91 ± 1.03* 13.25 ± 0.65* 6.21 ± 2.08
Finger extension 8.41 ± 2.42 8.42 ± 1.73 8.81 ± 1.15 12.53 ± 0.69* 3.53 ± 3.12
Wrist flexion 8.3 ± 1.48 6.9 ± 0.24 8.3 ± 2.34 13.61 ± 1.15* 2.46 ± 2.52
Wrist extension 9.21 ± 2.15 6.72 ± 2.57 7.45 ± 2.06 12.42 ± 1.56* 3.46 ± 1.63
The values are presented as the mean ± standard deviation. *indicates that there is a significant difference
between the current frequency band and all other frequency bands (p < 0.05).

Fig. 7. Comparing VAF curves between the sham and control
groups of participants. VAF, Variance accounted for.

Table 3 serves as a summary table of presenting com-
parisons among muscular synergy vectors for each hand
movement. The CS index across different experimental
groups is found to be quite similar. This observation sug-
gests that the structure of muscle synergy represented by
matrix W has undergone minimal changes, and W rep-
resents the relative weight of each muscle group, which
means that tDCS will not change the cooperative relation-
ship between each muscle group during hand movements,
but tDCS will change the muscle synergistic activation ma-
trix H. Post-hoc analyses revealed that there were no sig-
nificant differences between different experimental groups
under all hand movements. Combined with the brain func-
tion network parameters and the previous analysis, tDCS
has been found to significantly augment the neural activity
of the C3 node in the human brain, and this effect exhibits
a positive correlation with the duration of tDCS. It can be
concluded that tDCS mainly enhanced the EEG signal of
the C3 node and thus stimulated greater muscle activity.

4. Discussion
Anodal tDCS has the potential to enhance cortical ac-

tivity in the areas of anodal stimulation. By analyzing the
characteristic parameters of the brain functional networks,

Table 3. Summary table of comparisons among muscular
synergy vectors for each exercise.

Movements
Groups CS (cosine similarity)

(S-5) (S-15) (5–15)

Finger flexion 0.96 ± 0.05 0.97 ± 0.02 0.96 ± 0.06
Finger extension 0.98 ± 0.04 0.96 ± 0.03 0.97 ± 0.02
Wrist flexion 0.98 ± 0.06 0.97 ± 0.01 0.98 ± 0.04
Wrist extension 0.93 ± 0.03 0.92 ± 0.04 0.93 ± 0.02
S denotes sham group, 5 denotes 5-minute tDCS, and 15 denotes
15-minute tDCS. The values are presented as the mean± standard
deviation.

it was observed that the degree of the C3 node in the beta
band and the average clustering coefficients of brain re-
gions showed significant associations with tDCS. This find-
ing aligns with previous research [48] that established the
relationship between the beta band EEG signal and mus-
cle contraction. The establishment of functional beta-band
oscillatory synchronization between the primary motor cor-
tex (M1) and spinal motor neurons innervating actively en-
gaged muscles serves as a pivotal determinant in the reg-
ulation of motor control [49,50]. The synchronization of
oscillatory brain activities can be quantified through the co-
herence analysis of EEG and EMG signals. This approach
serves as an established metric for assessing the integrity of
the pyramidal system referred to as corticomuscular coher-
ence (CMC) [51]. Alterations in CMC have been observed
subsequent to the acquisition of novel motor skills among
healthy individuals, which has demonstrated that the aug-
mentation of CMC is linked with functional motor recovery
in stroke patients [52]. These studies show that the signals
of EEG and EMG are closely connected, indicating that the
human body’s motor function is complete.

In the experiment, it was found that the results of
the 15-minute stimulation of P3 and F3 nodes were sig-
nificantly different from those of the 5-minute stimulation.
Compared with before stimulation, the results of the 5-
minute stimulation of the P3 node were not significant, but
the results of the 15-minute stimulation were significant.
This shows that increasing the stimulation duration of tDCS
may increase the range of brain areas affected.
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The degree of the C3 node increased significantly af-
ter tDCS, which may indicate that the cortical area issued
stronger control commands to the corresponding limbs [53].
At the same time, the changes in average clustering coeffi-
cients indicate that the information interaction of each area
of the cortex is more frequent [54], which may include in-
formation from the state of muscle movement. In summary,
the role of tDCS is likely to strengthen the cortex to send
control commands to the muscles, and the state informa-
tion of the muscles is transmitted to the cortex, such as a
closed-loop control pathway. These two characteristic pa-
rameters may be used to partially explain the results of mus-
cle synergy activation matrix H changes when the partici-
pant’s handmovement after tDCS stimulation; that is, tDCS
enhanced the C3 node and its surrounding areas.

A study [55] has pointed out that muscle activity
mainly results from cortical projections. On the other hand,
the motor cortex control and sensory functions of stroke pa-
tients are lost or disordered, and motor dysfunction, such as
abnormal muscle tone, occurs. The theory [56] of neuro-
plasticity points out that for patients with a damaged central
nervous system, taking timely and reasonable autonomous
rehabilitation treatment can change the shape of nerve tissue
or reconstruct the motor nerve pathway compensatory-ly so
that the motor function can be restored to a certain extent.
In other words, as long as it can only enhance the connec-
tion between cortical activity and muscles, it may be very
helpful for rehabilitation exercises.

Although this study compared only the two tDCS du-
rations of 5 minutes and 15 minutes, further investigation
is necessary to establish a more precise relationship curve
between tDCS duration and its effect on muscle synergy,
as well as the duration of this effect. In addition, the num-
ber of volunteers in the experiment can be increased. In
order to study the stimulus position more accurately, tDCS
equipment with higher position resolution (High-Definition
Transcranial Direct Current Stimulation, HD-tDCS) can be
used.

5. Conclusions
In this experiment, it can be seen that the cortical ac-

tivity of the brain area impacts the corresponding muscles
involved in handmovement; tDCS is anticipated to enhance
cortical functionality for transmitting control commands to
the musculature while simultaneously facilitating the con-
veyance of muscular state information back to the cortex.
Duration of tDCS may broaden the scope of cerebral re-
gions influenced by the stimulation. Thereby not only cor-
roborating the promotion effect of tDCS on motor enhance-
ment but also demonstrating the potential of tDCS in sports
rehabilitation.
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