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We review the neurological bases of emotions and
anxiety-related behavior, integrating contributions from
the medical, biological, cognitive neuroscience, and psy-
chological sciences. In particular, we discuss recent affec-
tive neuroscience of anxiety-related neurological circuits
and metabolic-neuroendocrine systems and their dynamic
interaction. This interaction is a delicate process during
which can render the brain more capable of reacting
to anxiety in adaptive or maladaptive into the most crit-
ical deficit in emotional regulation associated with risk
for psychopathological conditions. The essence of this
associated risk involves the reciprocal influence between
hypothalamic-pituitary-adrenal function, the relay nucleus
within the amygdala reactivation, and the hippocam-
pus as essential structures associated with the forebrain
pathways mediating threat-induced hormones and the -
aminobutyric acid neurotransmitter system as central to the
regulation of anxiety. To understand how related emo-
tional experience occurs on the neural level and its impact
on cognition and behavior requires mapping the multi-step
process of the hypothalamic-pituitary-adrenal axis and the
hormones released by each of these structures through in-
teractions between threat-sensitive brain circuitry and the
responsivity of neuroendocrine fear-system.
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1. Introduction

Affective neuroscience involves the dynamic interplay of
multi-level brain interactions associated with generating emotional
experience parallel with cognitive processes that are perceived to
have a substantial influence on behavioral intents [1]. Individual
affective states are likely to evolve converging on complex neu-
ral dynamics of emotions that need to be conceptualized and con-
sciously linked to the multicomponent of cognitive processes from
which they emerge as adaptive responses in anticipation of stimuli
that threaten to disturb homeostasis [2, 3, 4, 5]. The brain mech-
anism of affect underlying perception and cognitive appraisal of
a situation is likely to activate specific brain circuits that instigate
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to affective experience related to the behavioral responses asso-
ciated with fear and anxiety [6, 7]. Collectively, these mental
representations of the interpreted context on the subjective qual-
ity of affective states are an essential contributor to future emo-
tional and behavioral tendencies [8, 9]. This behavioral experi-
ence accompanies spontaneous physiological and emotional re-
actions. Steimer (2002) identified that these reactions which are
associated with emotions, ultimately facilitate adaptive responses
to environmental challenges and boost memory presentation, to a
certain extent enabling the famous "fight or flight" reaction. The
human brain and its context-dependent response functions, includ-
ing cross-level integration of signalling structures and circulating
hormones, are sophisticated and flexible. The study of Raz et al.
(2012) examined emotions emerging from the neurodynamics of
many interacting brain systems, like how neurons behave in re-
lations to emotions can have a substantial influence on cognitive
processes and impact different systems that have specialized func-
tions in executing body activities [10, 11]. In this intriguing re-
ciprocal connection, underlying emotional processing in the brain
transmits to bodily changes associated with emotion-specific ex-
pression, cognition, and motivated behavior to even assimilate the
conscious experience of being fearful.

2. Emotion processing brain circuitry

Interacting areas of the brain are structurally interrelated, en-
abling flexible coherent functioning, such as the limbic system
[12, 13]. The system is conceived as an essential component of
the emotional brain where interacting subcortical structures meet
the cerebral cortex [14, 15]. The amygdala located near the hip-
pocampus, interconnecting with other components of the limbic
system, is responsible for many aspects of emotions, including
recognition of facial expression of fear and anxiety-related mem-
ories [16, 17, 18]. Alternatively, the amygdala may register emo-
tional stimuli and initiate coordinated physiological and behavioral
responses that underlie defensive reactions [19, 20]. Some studies
have shown, using functional magnetic resonance imaging (fMRI),
that these brain regions where the amygdala as being directly re-
sponsible for immediate reaction associated with conditioned fear,
become active when experiencing anxiety [21, 22] which generally
helped to shed light on the underlying neurobiological causes of
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anxiety [23, 24]. The limbic system attends a variety of functions.
In addition to its involvement in metabolism, it controls the phys-
ical and psychological responses to environmental stimuli, espe-
cially those with emotional content [25, 26]. Together with the
hypothalamus, the amygdala produces autonomic components of
feelings and is responsible for mediating all emotional responses
and influence homeostatic mechanisms and neuroendocrine sig-
nalling [27].

Conversely, the close association between the amygdala and
hippocampus provides complimentary action on emotionally
salient stimuli and sub-optimal stress-related information, which
generates responses through the hypothalamic-pituitary-adrenal
(HPA) and other effectors systems [28] (Fig. 1). In several imaging
studies, the amygdala is found to mediate emotional reactions that
modulate fear and anxiety behavior [29, 30, 31]. With its role as an
integrative detective center for emotion, the hippocampus likewise
plays an essential role in the formation of new memories and ex-
pression of adaptive emotional behaviors. The critical function of
fear and anxiety acts as a signal of threat or motivational conflict,
and thus triggers appropriate adaptive responses. Craig and col-
leagues (1995) underscored that anxiety is a generalized response
to an unknown threat or internal conflict.

In contrast, fear is focused on known external danger, which
implies a different mechanism of the neural circuit [32]. This re-
sponse is likely to be mediated by a network of subcortical struc-
tures centered on the amygdala. To reiterate, the amygdala con-
tributes to emotional arousal processing and is specifically in-
volved in memory processes and motivation. Consistent with
this view, some ablation and fear extinction studies showed that
the amygdala is directly responsible for responding to threats that
contribute to feelings of anxiety [12, 33, 34]. By the same in-
tention, they found that patients with diminished feelings follow-
ing amygdala damage may reflect the elimination of the indirect
consequences of amygdala activity on feelings without increas-
ing their negative impact [35, 36]. Another comparable investi-
gation of Feinstein et al. (2013) inferred that a healthy amygdala
might well usually serve to inhibit panic. In another empirical ob-
servation suggested that hyperactive amygdala can result in dra-
matic changes in emotional responses such as fear and anxiety re-
sponses [37]. These findings presumably indicate enormous evi-
dence that the amygdala plays an essential role in processing emo-
tions and anxiety states. However, some studies indicated that pa-
tients with amygdala damage can still feel fear, panic, and express
pain [38, 39]. From the perspective of this empirical result, numer-
ous experimental paradigms put forward the process by which the
subjects modify the expression, the experience, and the physiol-
ogy of their emotions, as a form of cognitive change characterized
by adjusting the meaning of an emotional stimulus [40, 41, 42].
According to these experimental studies, which endeavored to ap-
ply emotion regulation strategies have made explicit that subjects
can modify the behavioral expression, experience, and the bodily
processes of their emotions [43, 44, 45].

In another study, LeDoux (2015) stressed, the amygdala is an
essential part of the circuit that allows the brain to detect and re-
spond to threats, but it is not necessary to feel fear. He added
that once learned, the emotional and behavioral response occurs
unconsciously and automatically. Indeed, embedded within this
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experience shifts, the emotional value of a stimulus is modified.
The subject is expected to more automatic responses to match the
newly acquired stimulus value [46, 47]. In this view, physiologi-
cal, cognitive, and behavioral responses may simultaneously form
the experience of emotion [48]. Specific limbic system structures,
the hypothalamus, amygdala, and the hippocampus, deals with the
basic drives, emotions, motivations, and memory that can have
a substantial influence on the cognitive process [1, 49]. These re-
gions work in concert to both generate and modulate fear responses
to imminent and identifiable threats [50, 51], where the amygdala
and the hippocampus carry out synergistically to form long-term
memories of significant emotional events.

There are many processes associated with the limbic system.
Still, the system is most frequently linked to emotion, and affec-
tive reactivity believed to involve such cognitive processes which
in turn has to do with the role of a conscious effort to control innate
behavior thought and feeling [1, 52, 53]. The essence of this point,
suggests anxiety response starts in a region of the brain called the
amygdala [54] and dorsal anterior cingulate cortex (dACC) pro-
cess aversive signals and send output to the hypothalamus, basal
ganglia, and brainstem to produce defensive behaviors [35, 55].
Supplementary to this study are the inquiries making impressive
claims that, although it is held that the limbic system and in par-
ticular the amygdala because they have been identified with the
highest density of neuropeptides that influence the activity of the
brain and the body in specific manners [4, 7, 56, 57]. The in-
vestigation addressed that this mixture of neurotransmitters called
neuropeptides travels throughout the body and the brain to sup-
port the experience of emotion through body-brain interactions
[58, 59]. Neuropeptides presumably enhance the perception of
multisensory signals, and in the case of threats, the signals are
suggested to reach a threshold that triggers a fear response.

3. Anxiety-related neuro-circuitry and the

hypothalamic-pituitary-adrenal axis

In an intriguing amygdala's reciprocal connections with many
brain regions are found to display high levels of neural activity
involved in emotion generating actions that may initiate critical
physiological and behavioral responses across the anxiety spec-
trum [35] (Fig. 1). It responds to a variety of emotional stimuli
and interacts with emotional memory, mental state as well as fo-
cuses on automatic responses such as threat detection [6, 27]. Due
to strong emotional content involved, fear is a triggered response
and is linked with the functioning of the amygdala [60]. In the
absence of the amygdala, the alarm in our brain that pushes us to
avoid danger is missing [36]. The brain is the crucial organ of
anxiety response because it determines what is potentially threat-
ening, and therefore stressful [61]. It also regulates the behavioral
and physiological responses to potentially stressful experiences.
It determines how one should respond emotionally by using in-
put from the subject's stored knowledge. The hippocampus and
the amygdala regulate the HPA axis, which mediates the fight or
flight response [8]. Like the rest of the brain, the hypothalamus
communicates with the rest of the body through the nervous sys-
tem to shift the body's energy resources towards fight or flight
[62]. Tension triggers the HPA axis, a neuroendocrine system that
regulates central and peripheral homeostatic adaptive responses to
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Fig. 1. A schematic illustration of the brain's complex circuitry mediating fear responses and anxiety behavior along with hormonal mechanisms
responsible for hyperactivity of the HPA axis in response to a threat. When the brain receives a threat signal, the hypothalamus which is activated
by the amygdala triggers the release of CRH. It funnels CRH to activate the Pituitary gland, which ultimately controls the other endocrine glands and
body's hormonal response to stress. This occurs via the action of CRH that stimulates the pituitary synthesis of ACTH as an interconnecting element of the
HPA Axis. In turn, ACTH travels down the bloodstream and stimulates the adrenal glands located atop of both kidneys to secrete more stress and threat
hormones including Cortisol, Adrenaline, and Noradrenaline and release them into the bloodstream to assist the body in handling threat or stress better
resulting in higher levels of cortisol in the blood. However, prolonged high cortisol levels in the bloodstream exacerbate anxiety and interfere with the
body's natural self-repair mechanism. Hence, Cortisol's far-reaching, systemic effects play numerous roles in the body's effort to carry out its processes
and maintain homeostasis. Correspondingly, these are the hormones, particularly cortisol, involved in the regulation of the HPA system that plays a vital

role in anxiety-related disorders.

anxiety [63, 64]. The HPA axis regulates various bodily processes
and is a vital component of the body's neuroendocrine response
and behavioral changes in mediating fear and anxiety [65].

When a threat is perceived, the body reacts by secreting stress
hormones into the bloodstream. These are complex chemicals that
convey messages throughout the body via the bloodstream and
trigger specific anxiety responses (Fig. 1). The hypothalamus trig-
gers the pituitary gland, which causes secretion and synthesis of
another hormone called corticotrophin-releasing hormone (CRH)
that enables the body to continue to resist the stress or threat un-
til homeostasis is resumed [66, 50]. As outlined in Fig. 1, the
CRH circuit stimulates the pituitary gland to secrete adrenocorti-
cotropic hormone (ACTH) into the bloodstream. The anterior pi-
tuitary gland controls the secretion of ACTH in response to CRH
from the hypothalamus. The adrenal gland receptors detect the
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high levels of ACTH, which also stimulate the secretion of cor-
tisol. Often called the stress hormone, cortisol regulates energy-
controlling blood sugar levels, mobilizes energy to target tissues
and muscles, and reduces inflammation in the body. Cortisol con-
centration plays a vital role in the body's stress response as an in-
dicator of stress level [67]. However, when cortisol levels rise, the
HPA axis starts to slow down the release of CRH from the hy-
pothalamus and ACTH from the pituitary gland, as demonstrated
in Fig. 1. As an adaptive response to a threat, the level of various
hormones also changes. When threat or stress goes high, so does
cortisol level [68, 69].

Correspondingly, ACTH levels start to fall when cortisol is
high. As detailed in Fig. 1, the end-product of the HPA axis is cor-
tisol and other stress hormones norepinephrine and epinephrine,
which contribute to the inflammatory response. Cortisol, an es-
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sential glucocorticoid, has many significant functions in the natu-
ral processes of the body, involved in regulating metabolism, im-
mune response, and general homeostasis [70]. Cortisol potentiates
the body into a general state of arousal, giving that hyperactive and
overwhelming influences on the affect [71]. To foster physiologi-
cal response, cortisol tapped into proteins stored in the liver, pro-
vides the body with high amounts of glucose in the bloodstream,
enhances brain's use of glucose and increases the availability of
substances that repair tissues, therefore, reducing inflammation
[61,72,73].

4. The amygdala's molecular mechanism un-

derlying anxiety

The CNS coordinates all functions of the body systems, or-
gans, down to the primary functional unit - the neuron. Every
behavior, emotions, and the essential features of living interact
in essential ways in the entire brain. How neurons behave con-
cerning emotions ultimately implicates for a central state of emo-
tion, like fear and anxiety. The HPA axis integrates the neu-
roendocrine functions as well as regulates hormonal and neuro-
transmitter release, particularly the y-aminobutyric acid (GABA)
neurotransmitter systems innervating stress and anxiety-associated
brain [74, 75, 76]. Conventional neurotransmitters can either be
inhibitory or excitatory that are released by presynaptic axon ter-
minal into the synapse upon stimulation of specific receptors. The
chief inhibitory neurotransmitter is GABA, whereas glutamate is
the main excitatory neurotransmitter in the CNS [77, 78]. GABA,
an amino acid produced naturally in the brain functions as the prin-
cipal inhibitory neurotransmitter because it inhibits specific brain
signals and slows down the flow of information, thus reduces the
activity of the nervous system [78, 79]. When one is anxious, over-
reactive fear circuits are coursing from the lateral and central nu-
cleus of the amygdala.

Moderating the extent to which the GABA neurotransmitters
connected to the central nucleus of the amygdala are hence ad-
equately positioned via synapses, encourage synaptic inhibition
[80]. As outlined in Fig. 2, these synapses are tiny gaps filled with
ions where communication takes place between neurons (axon
and dendrites) via neurotransmitters. These neurotransmitters are
molecules that travel from one neuron to another neuron to allow
chemical transmission. They cross a synapse between them to
communicate with each other, as shown in Fig. 2. Upon activa-
tion, the messages they send are believed to play a role in anxiety
regulation. GABA and its receptor activation can cause a massive
increase in chloride conductance through the cell membrane [81].
This facilitates a regulatory role in maintaining a balance between
neuronal excitation and inhibition. When GABA molecules are
released into the synaptic cleft, they bind to their receptors. The
latter receptors function to inhibit or reduce the neuronal activity
of the neurons by inhibiting nerve transmission, thereby reducing
unwanted brain excitability. This ultimately produces a calming
effect and helps to bring balance to the body and maintains home-
ostatic adaptive responses to anxiety [79]. A synapse is a site of
functional contact between neurons that facilitate the transmission
of impulses from one (presynaptic) neuron to another (postsynap-
tic) neuron. Typically, when GABA binds to its target protein re-
ceptors - known as GABA 4 receptors and opens up the chloride ion
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channels, it causes depolarization and thus decreases cellular ex-
citability by inhibiting nerve transmission. However, GABA is not
the only molecule that can change this channel receptor's opening.
The mechanism underlying this effect involves blocking specific
brain signals to reduce hyperactivity of the amygdala and thereby
prevent generating inappropriate emotional and anxious responses
[82]. Current studies claim that when the GABA neurotransmitter
is released it reduces anxiety. It is its natural function to reduce
the activity of the neurons to which it binds. Some studies suggest
that endogenous GABA helps to control fear and anxiety when
neurons become overexcited. GABA plays a vital role in behavior
and cognition, and its inhibitory interneurons represent a promis-
ing therapeutic target for the treatment of anxiety disorders.

5. Hypothalamic-Pituitary-Adrenal  distur-
bances associated with anxiety disorders

Being highly involved in the emotional reactions when danger
is perceived, the amygdala sends a distress signal to the hypotha-
lamus which stimulates the sympathetic nervous system and trig-
gers a cascade of hormones resulting in the final release of corti-
sol from the adrenal cortex situated atop the kidney [25, 83, 84].
Risks seem to be linked to the HPA axis releasing stress hormones
abnormally [85], it not only causes anxiety and depression, but
also affects the digestion, immune system, mood and emotions,
sexuality, and energy storage and use, because the HPA axis in-
volves these complex range of functions. Most body cells have
cortisol receptors that elicit effects on many tissues under physio-
logical conditions [86] (Fig. 1). In this regard, the manifestation
of the HPA axis that transects with those of both anxiety dysfunc-
tion, is caused by tension and anxiety. Healthy body functioning
can be disrupted when cortisol is released in excess due to pro-
longed activation of stress response systems in the body and brain.
Thus, when a level of cortisol interacts with the hypothalamus, the
HPA axis will slow down its activity to maintain hormonal balance
within appropriate levels. In the presence of circulating hormonal
factors, cortisol and other stress hormones via the bloodstream to-
wards relevant organs, mobilize the body's resources by increas-
ing energy and decreasing inflammation, especially upon injuries.
These systems-level physiological changes suggest that CRF plays
an important role both in the development of a functional HPA
axis and is a major integrator of adaptive responses in mediating
anxiety-related behavioral consequences [87, 88]. However, the
high levels of cortisol due to unrelenting anxiety can wear down
the brain's ability to function appropriately, including metabolism.
Cortisol has been considered one of the main culprits in the stress-
anxiety connection, although it plays a fundamental role in helping
one cope with threats [54]. It can be enlightening to consider that
anxiety disorders involve prominent disturbances of both cogni-
tive and emotional regions deeply interwoven in the fabric of the
brain that can be conceptualized as disorders of the emotional-
cognitive brain [51, 52, 89]. Disturbances in how fear-inducing
information is perceived and processed surges a defective pattern
of thinking and leading to different psychological vulnerabilities
and the emotional risks that go with it [12, 90, 91]. Anxiety is
a subjective experience of discomfort in response to an actual or
perceived threat via projections to the hypothalamus, visual cortex,
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Fig. 2. Illustration depicting the brain circuits in the amygdala to include an inhibitory network of GABA interneurons to transmit neural infor-
mation across the synapse. GABA has a structure of an amino acid. Neurotransmitters stored in synaptic vesicles that are positioned along the presynaptic

membrane enhance molecular secretion to modulate anxiety responses. When a neural message reaches the axon terminal, the GABA neurotransmitter is

released, carrying information across the synaptic gap to the receiving neuron (dendrite). GABA plays a vital role in reducing overwhelming feelings of

anxiety by slowing down the signals or neuronal excitability throughout the nervous system.

and prefrontal cortex [92]. The perception of the threat depends
upon the anxious, as one perceives threats about self, the world,
or related to the future. This threat perception elicits a physiologic
reaction associated with rapid heartbeat, blood pressure, sweating,
and an overall sense of vigilance, exacerbating the activation of the
primal response of flight or fight [93, 94]. In some cases, anxiety
symptoms may persist even after the threat is gone. Yet, alterations
in the HPA axis suggest the neurobiological basis of anxiety dis-
orders with reported structural and functional differences that can
manifest dispositional negativity across disparate psychopatholo-

gies [95].

Anxiety is not the same as fear, which is a response to a real
or immediate threat and anxiety [96, 97]. Anxiety involves the
expectation of future threats, is fear-based, and may occur unex-
pectedly, even in the absence of real danger. Craske and Stein
(2016) indicated that those with heightened sensitivity to anxiety
respond to those sensations with dread and pressing urge to escape
a dangerous situation. Hence, anxiety can only be understood by
taking into account some of its cognitive traits because a primary
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aspect of anxiety appears to be uncertainty, which is a negative
effect on self-esteem leading to insecurity [98]. Thus, anxiety and
insecurity are both fears for abstract threats that impede the ability
to mitigate its adverse impact resulting in helplessness and isola-
tion [99]. A moderate amount of anxiety helps subjects think and
act more effectively and is a normal emotion under stressful cir-
cumstances of threat. Thus, mild anxiety is adaptive and sustains
motivation for survival. It is characterized by adaptive emotion
that prepares one both physically and psychologically for coping
with an adverse event that could be dangerous [100]. Although
adaptation is not easy, there have to be conscious efforts in part
of the executive control system necessary to bring the body and
mind in tune and coherence about executing a behaviour-the anx-
ious feel vulnerable and weak between threat perceptions. Thus,
the anxious often feels a sense of uncertainty and helplessness,
becoming withdrawn with a distinct need for solitude [93, 101].
It is important to note that the entire process begins with neg-
ative thoughts due to stressful events and constant threats such
as the COVID-19 pandemic that intensified over an extended pe-
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riod, escalating through, until panic attacks set in [102]. Intrusive
thoughts build-up recurring concerns of risky situations involving
threats and bring about the onset of anxiety and panic disorder.
Symptoms are caused by feelings of extreme apprehension of im-
pending doom that occur even in the absence of actual danger.
Adapting to anxiety involves physiological and psychological
response stressing the destructive and stressful impact on what
might happen in the future, such as the current COVID-19 pan-
demic. Thus, it is always future-oriented, fear-based, and focused
on worrying over what is about to come, and conceivably one may
become excessively anxious about the need for reasonable safety
precautions [93, 103, 104]. Therefore, this leads to the thinking
part of anxiety, which brings dominant symptoms of worry, which
suggests always planning, looking ahead, trying to control circum-
stances, and a stressful urge to defeat a threat [105, 106]. In other
words, anxiety is only a problem when it extends beyond legiti-
mate worry in an unreasonable and disproportionate to the actual
threat. Indeed, entrenched within a diffuse apprehension that is
vague is associated with feelings of uncertainty and helplessness.

6. Conclusion

Increasing brain activity studies have made significant contri-
butions to our understanding of the brain responsiveness to emo-
tional perception in addition to biological processes through its
mediation of fear and anxiety-related behavior. We gave much at-
tention to mapping output hormonal pathways to identify a specific
brain circuitry for the functional roles played by various brain re-
gions and their mutual interactions, especially those that trigger
an emotional response. The period when the brain, mind, and
emotion are in synch highlights the connection between cogni-
tive and emotional functioning. In a related manner, peripheral
physiological changes can all go along with various emotional ex-
periences that would support defensive psychophysiological ad-
justments. These representations reflect more closely to approx-
imate parallel brain regions, and neural events are thought to be
most directly involved in the development of cognitive-behavioral
response. Accordingly, we refer to brain circuits that detect and
respond to threats as physiologically self-protective functions, to-
wards behavioral expressions in avoiding threats as defensive be-
haviors. Amygdala activation indicates a close interaction with the
cortical brain region serves a pivotal role in cognitive and emo-
tional functions, which dynamically influence the mental state.

To assess these essential considerations, this review has fo-
cused on understanding how the HPA stress and anxiety-response
pathway, and the amygdala activation contribute to the circuitry
underlying adaptive or defensive and pathological anxiety behav-
iors. Converging evidence provides significant insights that, al-
though the emotional centers can appear to be out of control, per-
haps especially when it continually senses threat signals, which
could account that amygdala damage can result in. Correspond-
ingly, the cortex has a mechanism in emotion processing, that fil-
ters out and controls the emotional input the cortex is receiving
from the amygdala. This is expected because the amygdala serves
as the interface between emotion and cognition, and with the help
of the HPA axis, the amygdala, and the prefrontal cortex, modu-
late adaptive success. In this respect, much remains to be discov-
ered to elucidate whether the neurochemical mechanism involved
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in GABA molecules in brain circuits relevant to anxiety processes,
could provide valuable information regarding the psychobiology
of anxiety and its reducing effects. Beyond question, it is entirely
rational to be anxious. Taking specific action to control and fo-
cus on physiological responses underlying hormonal and molec-
ular mechanisms that drive behavioral adaptation and resilience,
help maintain a sense of normalcy. In the final analysis, neuro-
science has much to offer to the psychology of human behavior,
feelings, and both conscious and unconscious thoughts. Still, like
any new approach, these contributions will take time to realize.
Future work in this emerging field should focus on the intersec-
tion of biological and psychological theories and cognitive neuro-
science.
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