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Cardiovascular diseases are responsible for approxi-
mately one-third of deaths around the world. Among car-
diovascular diseases, the largest single cause of death is
ischemic heart disease. Ischemic heart disease typically
manifests as progressive constriction of the coronary ar-
teries, which obstructs blood flow to the heart and can
ultimately lead to myocardial infarction. This adversely
affects the structure and function of the heart. Conven-
tional treatments lack the ability to treat the myocardium
lost during an acute myocardial infarction. Stem cell ther-
apy offers an excellent solution for myocardial regenera-
tion. Stem cell sources such as adult stem cells, embryonic
and induced pluripotent stem cells have been the focal
point of research in cardiac tissue engineering. However,
cell survival and engraftment post-transplantation are ma-
jor limitations that must be addressed prior to widespread
use of this technology. Recently, biomaterials have been
introduced as 3D vehicles to facilitate stem cell transplan-
tation into infarct sites. This has shown significant promise
with improved cell survival after transplantation. In this
review, we discuss the various injectable hydrogels that
have been tried in cardiac tissue engineering. Exploring
and optimizing these cell-material interactions will guide
cardiac tissue engineering towards developing stem cell
based functional 3D constructs for cardiac regeneration.
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1. Introduction
Cardiovascular diseases (CVD) are the leading causes of death

around the world (Pagidipati and Gaziano, 2013). In 2015, deaths
related to CVD globally were estimated to be around 18 million.
Amongst different forms of CVD, deaths related to ischemic heart

disease (IHD) were top on the list (Roth et al., 2017). Some of
the risk factors associated with IHD include hypertension, dyslipi-
demia, diabetes, smoking, family history, and physical inactivity
(Hajar, 2017; Kannel et al., 1976). In IHD, the coronary artery
in the heart gets progressively narrowed, which limits the blood
flow to the heart, ultimately resulting in myocardial infarction and
systolic dysfunction (Vlodaver et al., 2017; Hood, 1971). There
is no permanent cure for heart failure with reduced ejection func-
tion (HFrEF) and the condition often requires urgent medical at-
tention. The gold standard treatment for end-stage HFrEF is heart
transplantation. However, there are several problems associated
with this, including a limited supply of donor hearts and acute
or chronic rejection by the host immune system (Blanche et al.,
2002; Lund et al., 2017). Long-term use of immunosuppressants
is also associated with cumulative risks of infection, malignancy
and bone marrow suppression (Birati and Rame, 2014). Therefore,
a regenerative therapy is urgently required to treat the patients suf-
fering fromHFrEF secondary to IHD. In this regard, stem cells and
biomaterials-based approaches have shown promise for repair and
regeneration of damaged cardiac tissue after an injury (Cutts et al.,
2015). In this comprehensive review, we discuss the different stem
cell and biomaterial-based approaches currently being studied for
application in cardiac regeneration and tissue engineering.

2. Cell therapies for the treatment of heart
diseases
The adult human heart has a limited regenerative capacity.

Heart failure occurs through multiple mechanisms centered on the
loss of functional cardiomyocytes (Doppler et al., 2017). Despite
the plethora of available medical and surgical therapies, the body's
inability to regenerate myocardium poses a significant ongoing
risk to heart failure patients (Chiong et al., 2011). Stem cell ther-
apy is a promising approach to myocardial regeneration that has
been extensively studied by researchers. The concept of replac-
ing cells lost in myocardial infarction with new stem cell-derived

http://doi.org/10.31083/j.rcm.2019.04.534


cardiomyocytes has captivated many researchers and research or-
ganizations (Nunes et al., 2011). Many cell types ranging from
adult stem or progenitor cells to embryonic or induced pluripo-
tent stem cells (iPSCs) are currently being investigated for treat-
ment purposes (Haraguchi et al., 2012). Cell attrition due to poor
cell engraftment of the transplanted cells into the host native my-
ocardium is a major obstacle that needs to be addressed in cardiac
tissue engineering (CTE).

3. Biomaterial mediated cardiac regeneration
in heart diseases
The advent of cell therapies has garnered significant interest

in the field of cardiac regeneration. However, challenges includ-
ing poor cell survival upon implantation and immunologic rejec-
tion cannot be addressed easily using conventional cell therapy
methods (Sun et al., 2014). To accelerate translation, CTE was
formed as an interdisciplinary field that combines the use of bio-
materials, cells and growth factors to fabricate and/or regenerate
damaged myocardium. The ultimate goal of CTE is to improve
the survival and quality of life for patients through reversal of
their HFrEF (Hasan et al., 2015; Hirt et al., 2014). Biomateri-
als, such as scaffolds, can augment cell therapy by bulking the
scarred myocardium and improving cell survival after injection
into the infarct site (Chen et al., 2008). Typical scaffolds are three-
dimensionally cross-linked polymer networks that can act as arti-
ficial extracellular matrix (ECM) for cellular attachment. An ideal
scaffold should provide enough mechanical strength to house the
cells and disintegrate oncemature tissues are formed. Their degra-
dation products should be nontoxic and safely eliminated from the
body. In addition, scaffolds can be engineered to facilitate neovas-
cularization and nutrient diffusion to the cells housed within them
(Huang et al., 2018; Novakovic et al., 2014).

Hydrogels are the most commonly used cellular scaffolds.
These 3D hydrophilic polymer networks are formed through
molecular interactions between the different functional groups
present on the base polymers. Fig. 1 represents the different
molecular structures of the hydrogels which will be discussed in
detail below in this section. They will readily swell upon ab-
sorption of biological fluids without a change in their underlying
molecular structure. This characteristic allows them to serve as a
soft and elastic scaffold, which canmimic the tissue microenviron-
ment. Hydrogels have been generated using both natural and syn-
thetic polymer sources (Drury and Mooney, 2003; Lee and Kim,
2018). Fig. 2 represents an overview of injectable hydrogels loaded
with stem cells for myocardial repair.

3.1 Naturally derived polymer-based Hydrogels
Naturally derived polymers are typically considered prime can-

didates for regenerative hydrogels given their derivation from na-
tive ECM or ECM-like components. They have excellent biocom-
patibility, biodegradability and have been extensively studied in
bone, cartilage, skin, nerve and cardiac regeneration (Asghari et
al., 2017; Boni et al., 2018; Brovold et al., 2018; Fakoya et al., 2018;
LogithKumar et al., 2016; Malafaya et al., 2007; Van Vlierberghe
et al., 2011). Some of the commonly employed natural polymers in
CTE discussed in this review include chitosan, collagen, gelatin,
fibrin, alginate and other 3D decellularized tissues. These poly-
mers can be used independently or in combination with each other

to synthesize an ideal injectable hydrogel for cardiac regeneration
(Hasan et al., 2015; Peña et al., 2018).

3.1.1 Chitosan
The use of chitosan (CS) for biomedical application dates back

to the 1960s (Periayah et al., 2016). It is a linear cationic polysac-
charide derived from chitin and is composed of glucosamine and
N-acetylglucosamine linked by β -(1-4) glycosidic linkages. In hu-
mans, chitosan is degraded by hydrolytic enzymes into nontoxic
chitosan oligosaccharides. Importantly, chitosan can be cross-
linked using a variety of methods including light, temperature or
chemical cross linkers (Tormos and Madihally, 2017; Jayakumar
et al., 2010; Kim and Rajapakse, 2005). In cardiac regeneration,
this feature is very desirable as it permits one to fabricate a mate-
rial that is liquid at 4 ºC and quickly gels at human body temper-
ature after injection into the heart. This was the technique used
in a study by Lu and colleagues, who fabricated a chitosan hy-
drogel loaded with ESCs. To study the regenerative potential of
this hydrogel, they injected it into the hearts of post-MI rats. The
chitosan material rapidly formed a gel at body temperature and
significantly improved infarct wall thickness and ventricular func-
tion compared to animals injected with saline. Interestingly, the
authors also demonstrated that incorporation of ESCs to the gel
further improved the reparative nature of the gel; wall thickness,
ventricular function and microvascular density were all improved
with the ESC-loaded hydrogel when compared to chitosan alone
(Lu et al., 2008). This study demonstrates the use of CS as in-
jectable hydrogels to deliver stem cells to the infarct region.

Additionally, CS hydrogels can also be easily modified through
encapsulation of growth factors and nanoparticles. This can pro-
vide the hydrogel with additional conductive or pro-reparative
properties. For example, Baei and colleagues have published
the synthesis of a thermosensitive CS hydrogel mixed with gold
nanoparticles (GNP). This CS-GNP hydrogel had enhanced con-
ductivity over the base CS hydrogel, and when loaded with bone
marrow (BM)-derived mesenchymal stem cells (MSCs), enhanced
the cardiomyogenic differentiation of MSCs (Baei et al., 2016).
These versatile features make CS hydrogels an excellent candidate
for cardiac regeneration and there is considerable ongoing research
examining different types of CS and CS-derivative hydrogels (Cui
et al., 2018).

3.1.2 Collagen
Collagen is the major structural ECM protein in mammals and

functions to provide tensile strength, support cell development
and facilitate cell migration (Rozario and DeSimone, 2010). Its
cell binding domains can facilitate attachment of both endogenous
and transplanted cells (Antoine et al., 2014; Li and Guan, 2011).
The effect of collagen hydrogels as bulking agents was evaluated
by the direct injection of these hydrogels into the hearts of post-
myocardial infarct (MI) rats. Animals that received a hydrogel in-
jection had thicker scars, higher left ventricular stoke volume and
higher left ventricular ejection fraction (LVEF) (Dai et al., 2005).
However, the function of collagen hydrogels is limited by its elec-
trical insulation and poor mechanical strength (Yu et al., 2017).
Incorporation of conductive nanoparticles can offer a solution to
address these shortcomings (Ashtari et al., 2019). Increased elas-
tic modulus and electrical conductivity can be achieved through
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Figure 1. The molecular structures of different injectable hydrogels employed in cardiac tissue engineering.

insertion of carbon nanotubes into the collagen hydrogel. Colla-
gen/Carbon nanotube (CNT) hydrogels also improved the cell to
cell alignment of neonatal rat ventricular cardiomyocytes (NRVM)
and contributed to improved mechanical contraction when com-
pared to collagen group alone (Sun et al., 2017). These studies
suggest that injected collagen hydrogels have favorable property
for application in cardiac regeneration.

3.1.3 Gelatin
Gelatin is composed of peptides derived from collagen and of-

fers improved hydrophilicity and reduced immunogenicity when
compared to collagen. It can also be chemically modified to pro-
vide a specific environment for different cell types (Nikkhah, 2016;
Lynn et al., 2004). The efficacy of gelatin hydrogels in cardiac cell
transplantationwas explored byNakajima et al. (2015) in 2015. Fe-
tal rat cardiomyocytes were encapsulated in gelatin hydrogels and
subsequently injected into the infarct site of post-MI rats. Signif-
icant engraftment of the injected cardiomyocytes (CMs) was ob-
served at one month along with an improvement in LVEF when
compared with animals injected with saline. To further improve
the regenerative potential of these hydrogels, graphene oxide (GO)
was added to the gels to improve its mechanical strength and elec-
trical signal propagation for enhanced cell-cell coupling and syn-
chronous contractile activity (Amezcua et al., 2016; Jiang et al.,
2019; Stoppel et al., 2016). In a study published in 2019, Zhang
et al. (2019a) incorporated GO into gelatin hydrogels, which im-
proved the Young's modulus of the hydrogel, helping it mimic
the natural stiffness of the heart. The study also showed that the
gelatin/GO hydrogel improved the sarcomeric alignment and in-
creased beating velocity of NRVMs when compared to gelatin hy-
drogels. The above-mentioned properties of gelatin such as low

immunogenicity and bioactive sequences similar to that of colla-
gen hydrogels makes it a suitable injectable hydrogel for cardiac
tissue engineering.

3.1.4 Alginate
Alginate is a linear polysaccharide derived from brown algae

and is composed of different ratios of glucuronic acid and man-
nuronic acids. It is a natural polymer of high interest in CTE due
to its tunable properties, facile hydrogel synthesis, biodegradabil-
ity, high biocompatible nature and can be scaled up due to their
low cost (Augst et al., 2006). The bulking property of the algi-
nate hydrogel was evaluated in CTE by Landa et al. (2008). In
this study, it was observed that direct injection of alginate hydro-
gels alone improved left ventricular ejection fraction in post-MI
rats by decreasing the wall stress and reducing adverse ventricular
remodeling. The most important shortcoming in employing algi-
nate hydrogels in cardiac cell therapy is the lack of cell binding
domains for the prospective cells to attach and proliferate. Hence,
to address this issue, Shachar et al. (2011) modified alginate hy-
drogels with specific peptide sequences to provide an attachment
surface. Alginate/Arginylglycylaspartic acid (RGD) hydrogels im-
proved cell adherence and survival when compared to alginate hy-
drogels group (Shachar et al., 2011). This study demonstrates the
influence of an external factor on the improvement of the physio-
chemical properties associated with alginate hydrogels for better
cell attachment.

Reactive oxygen species (ROS) are released during the
ischemia-reperfusion process and can worsen myocardial damage.
Excess ROS can trigger injury and death in cells introduced to the
infarct region. Antioxidant hydrogels are introduced in CTE to re-
duce the oxidative stress induced by ROS thereby preventing cel-
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lular damage (Peña et al., 2018). Hao et al. (2017) incorporated
antioxidant fullerenol nanoparticles to alginate hydrogels and as-
sessed its antioxidant properties. The fullerenol/alginate hydro-
gels significantly improved the survival of encapsulated adipose-
derived stem cells when injected into the post-MI heart of rats.
This directly translated to improved cell retention when compared
to the alginate hydrogel group (Hao et al., 2017). It is evident from
the above-mentioned studies that alginate hydrogel is a potential
candidate for CTE.

3.1.5 Fibrin
Fibrin similar to collagen is a protein based natural polymer,

which has been extensively studied in myocardial cell therapy and
CTE approaches (Li et al., 2015). Fibrin is formed by rapid poly-
merization of fibrinogen monomers catalyzed by enzymatic ac-
tivity of thrombin (Weisel, 2007). The physiochemical properties
of fibrin hydrogels such as length of the fibers, pore size, thick-
ness can be tuned through the change in factors such as pH, fibrin
concentration and its hydrophobicity. Fibrin hydrogels have lig-
ands by which the cells and various cell mediators attach on them
thereby recapitulating the native extracellular matrix microenvi-
ronment (Barsotti et al., 2011). In many studies, injection of fib-
rin hydrogels into post MI rats improved the survival of the trans-
planted cells, reduced the infarct size and increased angiogene-
sis by blood vessel formation (Christman et al., 2004a,b). Fibrin
hydrogels have high elastic modulus, which can mimic the native
myocardium. In addition to the above advantageous properties low
inflammatory response towards the body's immune system adds up
to the reliability of fibrin hydrogels as suitable scaffolds for cardiac
tissue engineering applications (Wang et al., 2010).

3.1.6 Other naturally occurring 3D scaffolds
Other naturally occurring 3D scaffolds, which are commonly

utilized in cardiac tissue engineering includes Matrigel, intestine-
derived patches and pericardium which will be discussed in this
section. Matrigel is a commercial product which is derived from
the ECM of Engelbreth-Holm-Swarm (EHS) mouse sarcoma. It
is majorly composed of collagen and other ECM proteins such as
laminin, entactin and heparin sulfate proteoglycan (Hughes et al.,
2010). Studies showed intramyocardial injection of Matrigel hy-
drogel alone improved the cardiac functions and scar thickening
when compared to the control groups of an MI mouse (Kofidis et
al., 2005). Similarly, when injected in a MI rat model there was
improved fractional shortening and regional contractility when
compared to control groups (Kofidis et al., 2004). In the recent
years the natural scaffolds such as decellularized porcine small-
intestinal submucosa, pericardium and other human heart tissues
are used to generate 3D cardiac patches for myocardial regenera-
tion in CTE (Godier-Furnémont et al., 2011; Haraguchi et al., 2006;
Hata et al., 2010). Small Intestinal Submucosa (SIS) is derived
from porcine in the form of lyophilized powder or decellularized
tissue to generate hydrogels for CTE. It is composed of ECM com-
ponents like collagens and a plethora of growth factors (Badylak et
al., 2009; McDevitt et al., 2003). The patches generated from SIS
ranges from 0.05mm to 0.22mm thickness with pore sizes varying
from 20 to 30 µm (Shi and Ronfard, 2013). In CTE, they have been
applied to repair right ventricular free wall defects (Badylak et al.,
2003). SIS ECM patch derived from porcine was used as an alter-

native patch to the other available synthetic and biological patch
for CTE in a study conducted by Witt et al. (2013). They were su-
tured into the different cardiac locations of the infarcted region of
37 pediatric patients. SIS-ECM group had increased outflow tract
gradients with ventricular outflow tract reconstructions. From this
small group of study, SIS-ECM is a suitable scaffold for the clo-
sure of septal defect patching for CTE.

Similarly, pericardium is also a natural ECM that is extensively
investigated as a scaffold for CTE applications. It is a fibrous sac
composed of collagen and fibrin that surrounds the heart (Seif-
Naraghi et al., 2010). One of the advantages of using pericardium
is that autologous donor tissues can be obtained which can be
processed as patches for artificial valves and durable grafts (Seif-
Naraghi et al., 2010). Gálvez-Montón et al. (2017) prepared de-
cellularized human pericardium which was seeded with porcine
adipose tissue-derived progenitor cells to be used as a patch for
the pig model of MI. The group with the pericardium patch has
significant increase in the ejection fraction, stroke volume and re-
duced infarct size when compared to the control groups. ECM
based patches with adequate structure and composition mimick-
ing the native myocardium will be the key to generate 3D cardiac
tissues for myocardial regeneration.

3.1.7 Decellularized tissues
Decellularized tissues (dECM) are natural polymers, which

are derived from the native myocardium. They preserve the mi-
crostructure and composition of the native ECM (Moroni and
Mirabella, 2014). dECM were first isolated from rat hearts by the
removal of viable cells using detergents and leaving behind ECM
(Ott et al., 2008). Decellularized tissues offer a natural matrix for
individual cells to grow, which can be used to create cardiac tis-
sues for heart failure patients (Iop et al., 2017). As an example,
Wainwright et al. (2010) prepared a decellularized ECM of adult
porcine hearts to produce suitable scaffold microenvironments for
cardiomyocytes attachment and growth. This ECM maintains the
complex structure and composition of the native ECM. In addition,
it also supports the attachment and growth of chicken cardiomy-
ocytes seeded in the porcine ECM.

While the adult human heart has very limited regenerative po-
tential, certain evolutionarily primitive species have higher my-
ocardial regenerative capacity. A species that is commonly known
for its regenerative potential is the zebrafish. Chen et al. (2016)
hypothesized that zebrafish cardiac ECM (zECM) may facilitate
greater cardiac regeneration than mammalian cardiac ECM. They
demonstrated that zECM promoted the proliferation of murine and
human cardiac precursor cells and murine cardiomyocytes in vitro.
When administrated intramyocardially to post-MI rats, zECM pro-
moted the endogenous proliferation of murine cardiac stem cells.
Even though dECM shows immense promise in CTE, better proto-
cols are needed for complete cell removal from the dECMwithout
the change in its structural integrity and composition (Bejleri and
Davis, 2019; Gilpin and Yang, 2017). The current research focuses
on addressing these limitations to employ dECM as a clinically
relevant biomaterial for myocardial regeneration.
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Table 1. Hybrid hydrogels currently studied in cardiac tissue engineering.

Hybrid Hydrogel Cell type In Vivo model Outcomes Reference

gelatin methacrylate (GelMA)/gold nanorod (GNR) Neonatal rat ventricular cardiomy-

ocytes (NRVM)

- Excellent cell viability and retention; Improved electrical and

mechanical property; Rhythmic contraction of the cells seeded

in the GelMA/GNR hydrogel when compared to pure GelMA

(Navaei et al., 2016)

tetraaniline-polyethylene glycol diacrylate (TA-PEG)/thiolated

hyaluronic acid (HA-SH)/DNA encoding eNOs (endothelial nitric

oxide synthase)

adipose derived stem cells (ADSCs) Sprague-Dawley

rat MI model

Increased ejection fraction and vessel density; Reduction in in-

farct size and fibrosis area; Increase in electrical property of the

gel

(Wang et al., 2018)

oxidized alginate

(ALG-CHO)/2-aminopyridine-5-thiocarboxamide/tetraaniline

ADSCs Sprague-Dawley

rat MI model

Hydrogel exhibited excellent adhesive property; Upregulation

of cardiac-related mRNA (Cx43, α-SMA, and cTnT) and an-

giogenic factors (VEGFA and Ang-1); Downregulation of in-

flammatory factors (tumor necrosis factor-α)

(Liang et al., 2019)

chitosan chloride/RoY peptide (CSCl/RoY) human umbilical vein endothelial

cells (HUVECs)

Sprague-Dawley

rat MI model

Improved the cell survival, proliferation and migration seeded

on CSCl/RoY when compared to CSCl hydrogel

(Shu et al., 2015)

Collagen/Chitosan/poly (3,4-ethylenedioxythiophene)

: polystyrene sulfonate (PEDOT: PSS)

hiPSCs-CM - Improved electrical conductivity; Improved cell alignment and

sarcomere organization; Enhanced connexin 43 expression

(Roshanbinfar et al., 2018)

Cross-linked hyaluronic acid and cross-linked polycaprolactone

(CLMA) with Puramatrix peptide hydrogel

autologous adipose tissue-derived

progenitor cells (ATDPCs)

Île-de-France

sheep MI model

Reduced of infarct size when compared to control groups; An-

chorage and integration of the cardiac patch with minimal fi-

brosis interface

(Chachques et al., 2019)

Methacrylated hyaluronic acid - Dorset sheep Increased wall thickness in the apex and basilar infarct regions;

Better cardiac output and ejection fraction when compared to

control groups

(Ifkovits et al., 2010)

α (cyclodextrin) CD-MPEG-PCL-MPEG hydrogel - Rabbits Prevented scar expansion and wall thinning; Increased ejection

fraction when compared to the control groups

(Jiang et al., 2009)

Collagen I loaded 7-amino-acid-peptide hydrogel H9C2 cardiac myoblast C57/B6 mice Increased stem cell recruitment and infarct wall thickness; Im-

proved angiogenesis

(Zhang et al., 2019b)

gelatin methacrylate (GelMA)-(Au/SiO2) NPs H9C2 rat cardiomyoblasts - Improved cell adhesion and proliferation in the GelMA-

Au/SiO2 hydrogel compared to control; Uniform cell alignment

in the GelMA-Au/SiO2 hydrogel

(Maharjan et al., 2019)

Dextran-poly (e-caprolactone)-2-hydroxylethyl methacrylate/poly

(N-isopropylacrylamide) [Dex-PCL-HEMA/PNIPAM]

- MI rabbits Decreased scar expansion and thinning of wall compared with

controls; Attenuated left ventricular systolic and diastolic di-

latation; Increased left ventricular ejection fraction

(Wang et al., 2009)

Gelatin/Laponite® hydrogel loaded with secretome (nSi Gel+) Human umbilical vein endothelial

cells (HUVECs)

Fischer 344 rats Increased capillary density; Reduced scar area; Improved car-

diac function

(Waters et al., 2018)
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3.2 Synthetically derived polymer-based
hydrogels/Scaffolds

Disadvantages including batch-to-batch variability, risk of in-
fection and weak mechanical strength limit the application of nat-
ural polymers in CTE (Han et al., 2019). The advantages of em-
ploying synthetic hydrogels in place of natural polymer-based hy-
drogels are that they can be easily fabricated with consistency and
tuned material properties. Also, they can be produced in large
quantities while scaling up without compromising quality (BaoLin
and MA, 2014). Poly-N-isopropyl-acrylamide (PNIPAAm) and
polycaprolactone (PCL) are some of the common synthetic poly-
mer currently being discussed in this review for cardiac tissue re-
generation.

Figure 2. A schematic overview of injectable hydrogel mediated stem
cell therapy for cardiac tissue engineering. Mesenchymal stem cells
(MSCs), Pluripotent stem cells (PSCs), Pluripotent stem cells derived
cardiomyocytes (PSCs-CM).

3.2.1 poly(N-isopropylacrylamide)

Poly (N-isopropylacrylamide), abbreviated as PNIPAAm, is
a temperature responsive polymer first synthesized in the 1950s.
PNIPAAm hydrogels are formed by free-radical polymerization
and can be readily functionalized for use in tissue engineering
applications (Place et al., 2009; Schild, 1992). The arrangement
of hydrophilic amide and hydrophobic isopropyl groups gives
it a unique temperature sensitive property (Robb et al., 2007).
PNIPAAm crosslinked with N, N'-methylene-bis-acrylamide re-
main as liquid at room temperature and changes to a hydrogel
as the temperature rises above 32 ◦C (Alexander et al., 2014).
Though this property is useful for injectable hydrogels, the thera-
peutic efficacy of PNIPAAm hydrogel alone is severely reduced
due to its difficulty in degradation and reduced bioactivity of
the encapsulated cells in vivo (Cui et al., 2011). Hence, it is
used in combination with other polymers for CTE. Wang et al.
(2009) prepared a PNIPAAm based biodegradable injectable hy-
drogel as a bulking agent for myocardial regeneration. It is
composed of 2-hydroxylethyl methacrylate (HEMA)-PCL-grafted
dextran chains embedded into the PNIPAAm network (Dex-PCL-
HEMA/PNIPAAm). The hydrophilicity of the dextran chains im-
proved the degradation of the PNIPAAm based hydrogel. The in-
tramyocardial injection of this hydrogel in a post-MI rabbit helped

prevent left ventricle (LV) dilatation, improved LV contractility
and LV wall thickness. To improve the bioactivity of the PNI-
PAAm hydrogels Li et al. (2014) employed single wall carbon
nanotubes (SWCNTs). From the in vitro study, brown adipose-
derived stem cells (BASCs) had better attachment and prolifera-
tion when grown in the PNIPAAm/SWCNT hydrogel compared
to PNIPAAm hydrogel alone. In addition, from the in vivo ex-
periment significant cell engraftment was observed when BASCs
were encapsulated in PNIPAAm/SWCNTs hydrogel and injected
into an MI rat model. PNIPAAm based thermosensitive injectable
hydrogels offers new prospective to engineer better hydrogels for
effective stem cell delivery for myocardial regeneration.

3.2.2 Polycaprolactone
Polycaprolactone (PCL) is an important synthetic polymer

whose properties can be tailored to match the mechanical and elas-
tic strength of the native cardiac ECM. It is a FDA approved com-
pound, which has excellent thermal stability and load bearing ca-
pacity (Siddiqui et al., 2018). The hydrophobicity and the poor
conductivity of PCL prevent cells from attaching and cell to cell
communication, which limits its use alone in CTE. It must be com-
bined with other hydrophilic or electroactive polymers/material to
make it more water soluble or electrically conductive respectively
(Ciardelli et al., 2005). Spearman et al. (2015) prepared a conduc-
tive hydrogel by addition of polypyrrole (PPy) to the PCL hydro-
gels for the evaluation of electrophysiological property of HL-1
atrial myocytes. The addition of PPy and sodium hydroxide treat-
ment improved the conductivity and the hydrophilicity of the PCL
hydrogel. The cardiomyocyte attachment and viability were better
for cells grown in PCL/PPy hydrogel compared to PCL hydrogels
alone. Furthermore, there was also an improvement in the con-
duction velocity and calcium transient wave propagation, which is
mediated by better cell to cell coupling in vitro.

Poly (glycolide-co-caprolactone) (PLGA) is a derivative of
PCL, which has improved elasticity and may be better suited for
the mechanically dynamic environment of the heart. In a study
conducted by Piao et al. (2007), bone marrow-derived mononu-
clear cells (BMMNCs) were seeded onto PLGA and implanted on
the epicardial surface of a post-MI rat. This PLGA scaffold influ-
enced the migration, engraftment and differentiation of BMMNCs
to cardiomyocytes, resulting in reduction of adverse LV remod-
eling. The properties associated with PCL hydrogels like high
mechanical strength, non-immunogenicity and controlled degra-
dation rate makes it a promising injectable hydrogel for CTE.

3.3 Self assembling peptide nanofibers
Self-assembling peptide nanofibers are another important class

of injectable hydrogels in myocardial repair. They are fabricated
by employing macro-molecules like natural amino acids which
self-assemble to form a molecular architecture at the physiolog-
ical conditions (Hosseinkhani et al., 2013). These scaffold archi-
tectures are bioactive, biocompatible and nontoxic in nature. Also,
when functionalized with peptide epitopes they mimic the native
microenvironment which improves cell survival and also provides
better cellular attachment (Yuan et al., 2014). For example, in a re-
cent study, Li et al. (2018) synthesized a folic acid (FA) modified
peptide hydrogel to differentiate iPSCs into functional cardiomy-
ocytes in MI hearts of mice for myocardial repair. Post injection
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the FA peptide hydrogel improved the survival and differentiation
of the iPSC thereby augmenting the infarct size and fibrosis oc-
currence. Self-assembling peptides to date have been incorporated
with many signaling molecules and growth factors to improve the
tissue growth and its maintenance (French et al., 2016). Kim et
al. (2011) incorporated two growth factors PDGF (Platlet derived
growth factor) and FGF-1 (fibroblast growth factor 1) into RADA
16-II self-assembling peptides to promote revascularization in a
MI heart of a rat. The peptide hydrogel along with growth factors
significantly reduced the infarct size, apoptosis of cardiomyocytes
and improved the blood vessel density in week 4 and 8 when com-
pared to the control groups. These features make self-assembling
peptide hydrogels a promising injectable hydrogels for CTE.

3.4 Hybrid hydrogels/Scaffolds

Blends of both natural and synthetic polymer based hydro-
gels are the most suitable options in cardiac tissue engineering
(Shapira et al., 2016). Both natural and synthetic hydrogels have
only a few desirable properties. Synthetic hydrogels provide
better tunable physiochemical properties with strong mechanical
strength but lack natural cell binding domains. Natural polymers-
based hydrogels are bioactive and biocompatible but have undesir-
able features including uncontrolled degradation, poor mechanical
strength, weak elastic property and long gelation times. Hybrid
hydrogels comes into existence by conjugating both natural and
synthetic polymers, which compensate for their individual weak-
nesses for successful tissue engineering practices (Li and Guan,
2011; Sheffield et al., 2018). Table 1 displays some of the hybrid
hydrogels employed in the recent times in cardiac regeneration.
Hybrid hydrogel offers innumerable opportunities for the materi-
als to mimic the native tissue and to overcome the inherent chal-
lenges that will be needed to address in cardiac tissue engineering.

4. Future directions and concluding remarks
Over the years, several techniques and therapeutic approaches

have been proposed to improve the regeneration of an impaired
myocardium after myocardial infarction. Cell therapy is one such
approach, which is of high interest and it is extensively investigated
in CTE. The cells are injected into the infarcted myocardium with
the hope that the cells electromechanically integrate into host tis-
sue and replace the cardiomyocytes lost in an acute infarct. One
of the most limiting factors in such therapy is that most of the
injected cells die failing to adapt to the host tissue environment.
Biomaterials have been employed to facilitate stem cell delivery
to the infarct site and improve their survival in the post-infarct en-
vironment. Acellular biomaterials alone have also been proven to
improve the stroke volume and positively influence the ventricular
remodeling of the impaired heart. However, our understanding of
the material-cell interaction in vivo is limited. Further research di-
rected at development of novel composite and understanding the
material-cell interactions will facilitate creation of translational
paradigms.
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