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After the emergence of the novel 2019 coronavirus dis-
ease in P. R. Ching, this highly contagious disease has
been currently spread out to almost all countries, world-
wide. Novel 2019 coronavirus disease, Middle East
respiratory syndrome, and severe acute respiratory syn-
drome are reported to cause a higher risk for severe in-
fections in patients with chronic comorbidities, such as
hypertension and diabetes. These severe infections can
contribute to higher rates of morbidity and mortality in
these patients. In the present review, we discussed the
role and underlying mechanisms of the two most com-
mon chronic diseases, type-2 diabetes mellitus and hyper-
tension, in clinical manifestations and disease severity of
novel 2019 coronavirus disease, Middle East respiratory
syndrome and severe acute respiratory syndrome, with the
hope to provide evidence for better decision-making in the
treatment of this vulnerable population.
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1. Background

In mid-December 2019, the novel coronavirus disease 2019
(COVID-19) emerged in Wuhan, P. R. China. Up to now, COVID-
19 has spread out to almost all countries worldwide and by July
31", 2020, almost 17, 499, 767 individuals have been affected by
this virus (World Health Organization., 2020). According to pre-
vious reports on two formerly coronavirus outbreaks, namely the
severe acute respiratory syndrome (SARS) in Beijing, P. R. China
in 2002 (with more than 8000 confirmed cases) (Chan-Yeung and
Xu, 2003; Huang et al., 2009) and the Middle East respiratory
syndrome (MERS) in Saudi Arabia in 2012 (with more than 2000
confirmed cases), and based on available data on COVID-19, the
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most prevalent comorbidities of intensive care units in the patients
with these infectious diseases were identified as diabetes mellitus
(DM), hypertension, cerebrovascular diseases, and coronary heart
diseases (Fang et al., 2020; Guan et al., 2020; Madjid et al., 2020;
Yang et al., 2020).

SARS-CoV and SARS-CoV2 bind to angiotensin-converting
enzyme 2 (ACE2) on the surface of their target cells. In this re-
gard, ACE2 is expressed by epithelial cells in the lungs, kidneys,
and intestine (Wan et al., 2020). In patients with either type-1 or
type-2 diabetes mellitus, as a response to the treatment by ACE in-
hibitors and angiotensin II type I receptor blockers (ARBs), the ex-
pression of ACE?2 is remarkably increased (Fang et al., 2020; Wan
et al., 2020). Hypertension can also be treated by the upregulation
of ACE2 via ARBs and ACE inhibitors (Li et al., 2017b). Under
these chronic conditions, it can also be suggested that ACE2 ex-
pression increases in response to the treatment with ACE inhibitors
and ARBs. Such an increase in the expression of ACE2 can make
the patient vulnerable to COVID-19 infection, as a result (Fang et
al., 2020). At the time of SARS outbreak, there was also some ev-
idence suggesting that diabetes from one hand can be a risk factor
for SARS infection, contributing to poor prognosis in the patients,
and from the other hand, SARS-CoV can also damage Langerhans
islets, contributing to acute insulin-dependent diabetes mellitus in
these patients (Yang et al., 2010). Therefore, this review aimed to
elucidate the role and underlying mechanisms of chronic condi-
tions, including DM and hypertension, in clinical manifestations
and disease severity of COVID-19, MERS and SARS.

2. Method

We searched the electronic databases of Pubmed, Google
Scholar, Excerpta Media Database (EMBASE), Web of Science
and ResearchGate, in an attempt to find all articles relevant to
the associations of hypertension and/or diabetes with COVID-19,
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SARS or MERS, published from January 1% 2003 until March
30" 2020. We applied no limitation to the language of articles.
The search strategies used for each database were separately de-
signed and MeSH terms were included. Our search strategy was

as follows:
#1 'COVID-19'
#2 'SARS-CoV-2'
#3 'SARS'
#4 'SARS-CoV'
#5 'MERS'
#6 'MERS-CoV'

#7 #1 OR #2 OR #3 OR #4 OR #5 OR #6

#8 'Hypertension'

#9 'Diabetes’

#10 #8 OR #9

#11 #7 AND #10

We included all observational studies conducted on diabetic
and/or hypertensive adult patients with confirmed COVID-19,
SARS, and MERS. We, then, excluded those articles concern-
ing coronaviruses other than the SARS-CoV2, SARS-CoV and
MERS-CoV. Similar and duplicate studies were also excluded.
Screening the title and abstract of the articles, we selected the
relevant studies. After obtaining the full text of selected articles,
we also reviewed the reference sections to identify any additional
study.

3. Results
3.1 The role of diabetes mellitus and hypertension in acute
respiratory infections

Coronaviruses can cause intestinal and/or respiratory infec-
tions in animals and humans (Cheng et al., 2007). Severe respira-
tory infections, such as respiratory syncytial virus, influenza and
bacterial pneumonia, are known as cardiovascular disease (CVD)
triggers (Cowan et al., 2018; Madjid et al., 2007). Also, the exis-
tence of underlying CVD is normally associated to comorbidities,
which can probably cause an increase in the infectious diseases
severity and incidence (Dhainaut et al., 2005). Hypertension is
recognized as one of the strongest risk factors for nearly all vari-
ous CVDs, during life (Kjeldsen, 2018).

Worldwide, more than 425 million people are living with di-
abetes, which can be classified as type 1 (T1D) and type 2 dia-
betes (T2D) groups (Kulcsar et al., 2019). Diabetes complications
are frequent among patients with both types of diabetes and are
also responsible for considerable rates of morbidity and mortality.
Accordingly, poorly controlled diabetes may lead to several com-
plications including neuropathy, retinopathy, nephropathy, foot
ulcers, dental diseases and increased risks of infections, as well
(Moosaie et al., 2020; Papatheodorou et al., 2018). Notably, both
types of diabetes lead to hyperglycemia, but with different mecha-
nisms. T1D is usually resulted from an autoimmune-like condition
that causes damage in pancreas (3 cells, and consequently, reduc-
tion in producing insulin. However, T2D is developed when the
body cannot properly respond to insulin. The most common type
of diabetes is T2D, which consists about 85% to 95% of diabetic
cases throughout the world (Ebrahimpour-Malekshah et al., 2020;
Kulcsar et al., 2019). Etiologically, T2D is highly linked to obesity
as well as the outcomes of chronic inflammation caused by excess
adipose tissue. Many pro-inflammatory mediators are secreted by
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adipose tissue macrophages and stressed adipocytes, which can
cause chronic low-degree inflammation. Such an inflammation
may reduce the responsiveness of cells to insulin, and thus, change
the regulation of homeostatic glucose (McLaughlin et al., 2017;
Zmora et al., 2017). The main physiological T2D characteristics
may be caused by hyperglycemia, glucose intolerance, and hyper-
insulinemia. Mice and humans with T2D have shown changes
from anti-inflammatory macrophages and predominately regula-
tory and T regulatory cells (T-regs) within the adipose tissue into T
helper 1 (Th1) and T helper 17 (Th17) CD4 positive T cells and the
predominately pro-inflammatory macrophages, as well (Meshkani
and Vakili, 2016; Xia et al., 2017). It is believed that such changes
in the immune system profile can result in different T2D-related
implications, like more vulnerability against infection (Hodgson
et al., 2015). Also, diabetes might weaken the innate immune sys-
tem (Badawi et al., 2010) and make individuals more sensitive to
a range of infectious diseases and severe illnesses (Badawi et al.,
2010; Dooley and Chaisson, 2009). For example, when seasonal
influenza epidemics happen, the patients with diabetes, compared
to healthy cases, are reported to have 6- fold greater risk for becom-
ing severely ill, 4-fold higher risk for pneumonia-related hospital-
izations and a 3-fold increased chance for death due to its com-
plications (Badawi et al., 2015). In addition, diabetes has several
features and complications in common with infectious diseases
such as the pro-inflammatory state, endothelial dysfunction and
the innate immune response weakening (Badawi et al., 2010). In
an acute viral infection, the shift of Th1, with microbicidal func-
tion by IFN+ to Th2, with an anti-inflammatory function by IL-4,
IL-5, IL-10, and IL-13, is related to a cytokine overload, which
together with diabetes, can induce a rise in cytokines level, harm
the endothelium, and consequently result in some complications
(Dharmashankar and Widlansky, 2010). The Th1-to-Th2 shift and
dampened innate immunity responses are reported to be involved
in linking the observed high prevalence rates of allergy in lethal vi-
ral infections, such as Dengue fever (Toledo et al., 2016). Diabetes
can also damage the functions of lymphocytes and macrophages,
which may subsequently result in diminished levels of immune
response (Dooley and Chaisson, 2009). Diabetes-related cellu-
lar insulinopenia and hyperglycemia are also known to damage
the functions of macrophages and lymphocytes, and as a result,
to cause a reduced level of immune response (Dooley and Chais-
son, 2009). Moreover, HbAlc values > 9% are reported to be
connected with a 60% higher risk of pneumonia-associated com-
plications and hospitalization, due to decreased levels of immune
response (Kesavadev et al., 2012). Besides, the individual defense
against infection, which is highly mediated by cellular immunity
and the synthesis of associated cytokines, such as interleukins and
IFNs, is down regulated in diabetes (Arora et al., 2011; Badawi et
al., 2010) (Fig. 1).

3.2 Diabetes mellitus and hypertension in patients with
COVID-19

The SARS-CoV2 infection has rapidly reached to a pandemic
level, and due to its morbidity and mortality, has become a great
worldwide concern. It is also indicated that older adults and those
with obesity and/or underlying diseases such as diabetes and hy-
pertension are more vulnerable to this infection (Guan et al., 2020;
Lietal., 2020a; Yang et al., 2020; Zhang et al., 2020a). In a previ-
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Fig. 1. The role of diabetes mellitus in vulnerability to acute viral infections. Both types of diabetes mellitus (T2D and T1D) are accompanied by
hyperglycemia and obesity. Obesity, is defined by hypertrophy of adipose tissue that can lead to production of some pro-inflammatory mediators. This
adipose tissue induced mediators, alongside with inflammation caused by hyperglycemia, can lead to altered immune profile that can put patients at higher

risk of acute viral infections.

ous study among 1099 patients diagnosed with COVID-19, those tus (16.2%), coronary heart diseases (5.8%), and cerebrovascular
who had comorbidities of hypertension (23.7%), diabetes melli- diseases (CVD) (2.3%) represented much more disease severity,
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compared to others (Guan et al., 2020). Moreover, hypertension
and diabetes with incidence rates of 30% and 12%, respectively,
were the most common comorbidities of COVID-19 patients ad-
mitted to a hospital (Zhang et al., 2020a). Among 191 COVID-19
patients who were included in a cohort study conducted in China,
91 patients had underlying diseases such as hypertension, diabetes
and coronary heart disease, in order (Zhou et al., 2020). In this
regard, the COVID-19 patients with cerebrovascular disease and
diabetes comprised the majority of deceased cases from a group
of 52 patients admitted to an intensive care unit (Yang et al., 2020).

Currently, the US is an epicenter of the COVID-19 pandemic.
However, little data is currently available on a national level on
the characteristics of patients, treatments, and outcomes of criti-
cal COVID-19 cases. A cohort study analyzed 2215 laboratory-
confirmed COVID-19 adult cases, who were admitted to intensive
care units (ICUs) at 65 hospitals across the US, in order to deter-
mine death-related factors and analyze the interhospital variations
in treatment and outcomes. In specific, 1738 of the total patients
(78.5%) had at least one coexisting condition, including hyperten-
sion (1322 [59.7%]), diabetes (861 [38.9%]), and chronic lung dis-
ease (531 [24.0%]). In this study, more than 1 in every 3 patients
died within 28 days of admission to ICU. In specific, 824 (37.2%)
were discharged from the hospital within 28 days, 784 (35.4%)
died within this timeframe, and 607 (27.4%) remained in the hospi-
tal. Respiratory failure (727 [92.7%]), septic shock (311 [39.7%]),
and kidney failure (295 [37.6%]) were the most prevalent causes
of death, with multiple patients having more than 1 cause (Gupta
et al., 2020b).

COVID-19 infection represents much more severity in those in-
dividuals with hypertension, diabetes, and coronary heart diseases.
This severity can be contributed to the imbalance of ACE2 and cy-
tokine storm mediated by Glucolipid metabolic disorder, as a con-
dition associated with the neuroendocrine disorders, insulin resis-
tance, oxidative stress, and chronic inflammatory responses (Chen
et al., 2020d). According to the Chinese center of disease control
report, COVID-19 patients with CVD, diabetes, and hypertension
had the higher fatality rates (10.5%, 7.3% and 6%, respectively)
compared to the overall fatality rate of 2.3% in COVID-19 patients
without these comorbidities (Wu and McGoogan, 2020). It has
also been confirmed that several factors may potentially worsen
the prognosis of COVID-19 disease in the patients. Accordingly,
old age, male sex, and diseases with high expression of ACE2
(such as CVD, hypertension, and diabetes) were identified to be
associated with a poor prognosis of COVID-19 patients (Chen et
al., 2020c; Giagulli et al., 2020).

SARS-CoV?2 utilizes ACE2 for cell entry which is also used
by SARS-CoV. However, the novel virus uses no dipeptidyl pepti-
dase, which is a receptor used by MERS-CoV (Li et al., 2003; Raj
etal., 2013). Also, ACE2 is expressed in lungs and extrapulmonary
tissues including heart, kidneys, lung, and testis (Wan et al., 2020).
In a study on eight different ethnical groups, 0.64% of lung cells
were ACE2 positive, but surprisingly, among the Asian men, this
rate was 2.5%. According to this evidence, Asians may be more
vulnerable to COVID-19 compared to the other racial groups. Ad-
ditionally, ACE2 expression levels are higher in men than women
(Chen et al., 2020b; Li et al., 2020b).

Hypertension is suggested to cause pro-inflammatory actions
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through inducing the expression of several mediators, including
chemokines, leukocyte adhesion molecules, specific growth fac-
tors, angiotensin, heat shock proteins and endothelin-1 (Bataillard
et al., 1995; Bush et al., 2000; Clozel et al., 1991; Haller et al.,
1995; Hilgers et al., 2000; Johnson et al., 1992; McCarron et al.,
1994; Schmid-Schonbein et al., 1991). Furthermore, a direct as-
sociation is reported between blood pressure reduction therapies
and decreases in some of the circulating inflammatory markers (Li
and Chen, 2005). Recent evidence also suggests an association
between this immune process and the rennin-angiotensin system
(RAS) (Pfab et al., 2007). The activation of RAS is often reflected
by an increased level of Ang II. In addition to its role in the regu-
lation of vascular tone, Ang II plays a determinant role in the in-
flammatory reactions. In hypertensive patients it is shown that the
monocytes in the peripheral blood are pre-activated and thus pro-
duce elevated levels of IL-1b, due to Ang II stimulation, in com-
parison with the healthy controls (Dorffel et al., 1999). Ang II also
induces the activation of NF-kB, which, in turn, induces MCP-1
and the synthesis of inflammatory cytokines, including TNF- «
and IL-6 (Han et al., 1999; Li, 2005; Ruiz-Ortega et al., 2002).

The most of comorbidities in COVID-19 patients are strongly
associated with the severity of the disease, and as mentioned ear-
lier, the comorbidities are generally treated by ACE inhibitors,
which induce ACE2 upregulation (Fang et al., 2020). Hyper-
tension, T1D and T2D, as the most prevalent comorbidities, are
treated by ARBs and ACE inhibitors, respectively (Wan et al.,
2020). Because, these drugs can upregulate ACE2 expression (Li
et al., 2017b). ACE2 hydrolyzes Angl and Ang2 to Angl-9 and
Angl-7, respectively. Angl-7 plays different protective roles such
as anti-inflammatory, anti-hypertrophy, anti-cell proliferative and
anti-fibrosis effects (Vaduganathan et al., 2020). Therefore, blunt-
ing the activity of Angl-7 can induce inflammation and acute im-
mune reactivity in the lungs (Touyz et al., 2020). The ACE2 up-
regulation induced by these drugs may facilitate the virus entry
(Fang et al., 2020) (Fig. 2). Besides, these drugs are suggested to
affect the severity and mortality of COVID-19 infection (Yang et
al., 2020).

Although the consumption of RAS inhibitors may affect the ex-
pression of ACE2, which may theoretically increase the prolifera-
tion of SARS-CoV, some studies have shown that RAS inhibitors
may change the expression of ACE2 in heart, kidneys, and plasma.
However, it is still not clear whether ACE2 expression in airway
epithelial cells is affected by RAS inhibitors. It should also be
noted that in patients with high blood pressure, the expression of
ACE2 is lower (Ferrario et al., 2005; Li et al., 2020b), and ACE
inhibitors could have ameliorating effects on those who are at the
risk of pneumonia or suffering from it. In a previous study, pre-
scribing lipophilic ACE inhibitors led to a reduction in the fatal-
ity of patients with community-acquired pneumonia. In terms of
treatment, these contradictions are of great importance, as ACE
inhibitors can reduce the inflammation and may be considered as
a potential novel therapy for inflammatory lung diseases, diabetes,
hypertension and cancers (Mortensen et al., 2008). Susceptibility
to SARS-CoV?2 infection may also be attributed to ACE2 poly-
morphisms, since these genetic variations are related to diabetes
mellitus, hypertension and cerebral stroke, which are particularly
observed in the Asian population (Fang et al., 2020). Upon bind-
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ACE2, the receptor of SARS-COV?2 converts angiotensin I and angiotensin II to angiotensin 1-9 and angiotensin 1-7, respectively. ACE2 also counter

regulates ACE enzyme activation. Hypertension and diabetes induce an inflammatory state in the body. Furthermore, diabetes mellitus (DM) results in

more ACE2 and spike protein glycosylation which helps viral entry. DM patients also have elevated levels of furin protease which cleavage spike protein

and helps viral entry. Anti-hypertensive and hypoglycemic drugs that block the ACE enzyme pathway upregulate the expression of ACE2 and could

facilitate virus entry.

ing of SARS-CoV to its cellular receptor ACE2, the virus results
in ACE2 downregulation (Cui et al., 2019; Su et al., 2016). The
binding of coronavirus to ACE2 alone induces no severe lung in-
jury. However, downregulating ACE2, the level and activity of
angiotensin II (Ang II) may increase, and as ACE2 level is insuf-
ficient to counter its activity, an acute lung injury may be hap-
pened. Besides, in a recent study in patients with COVID-19, Ang
II levels were reported to be significantly increased, and to be pos-
itively associated to the level of lung injury and viral load (Guo
et al., 2020a; Vaduganathan et al., 2020).However, it has not been
fully understood so far whether SARS-CoV2 infection leads to the
ACE2 downregulation. That is why that the American College of
Cardiology and the American Society of Hypertension have sug-
gested to the patients to keep taking their antihypertensive drugs.
So, there may be beneficial effects in taking Ang II receptor block-
ers, TZDs, ACE inhibitors, statins and GLP-1 agonists in the con-
text of low ACE2 expression (Danser et al., 2020; Muniyappa and
Gubbi, 2020). Overall, there is currently no definite relationship
between the susceptibility to COVID-19 and the use of RAS in-
hibitors (Li et al., 2020b).

In a study conducted among COVID-19 patients, the males,
those with older age, and underlying diseases, such as hyperten-
sion, coronary heart disease, cardiomyopathy, and chronic kidney
disease had high troponin T levels ¢ TNT. The patients with high ¢
TNT levels also had the increased levels of leukocyte count, pro-
lactin, D-dimer, N-terminal pro-brain natriuretic peptides and C
reactive protein, and a reduced level of lymphocyte counts (Guo et
al., 2020b). The patients with such characteristics had an increased
risk for developing severe complications, including acute respira-
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tory distress syndrome, acute renal coagulopathy, acute lung in-
jury and malignant arrhythmia. Besides, those with elevated TNT
levels had the highest fatality rates, compared to those without
such an elevation (Madjid et al., 2020).

D-dimer is developed from lysis and formation of cross-linked
fibrins and reflects the activation of fibrinolysis and coagulation
(Zhang et al., 2018, 2020b). It has been shown that COVID-19
was connected to hemostatic abnormalities. In specific, elevated
D-dimer levels were seen in mortality cases (Connors and Levy,
2020; Zhou et al., 2020). Factors affiliated with mortality are high
D-dimer, elevated IL-6, increased PT, and other biomarkers that
indicate inflammation, high levels of troponin, and comorbidities
such as coronary artery disease, old age, hypertension, and dia-
betes (Connors and Levy, 2020; Guan et al., 2020).

A study suggested that serum levels of Inflammation-related
biomarkers, including serum ferritin, C-reactive protein, IL-6 and
coagulation index, and D-dimer, were significantly higher (P <
0.01) in patients with diabetes. This indicates that diabetic patients
are more susceptible to inflammatory storms, and ultimately, rapid
COVID-19 deterioration (Guo et al., 2020c). Moreover, new stud-
ies manifested a strong and independent connection between obe-
sity and the severity of COVID-19, even in the absence of other
co-morbidities (Lighter et al., 2020; Mosleh et al., 2020; Simon-
net et al., 2020). Obesity can be defined as a chronic inflammatory
condition linked with abnormal paracrine and endocrine activities
of adipocyte-derived factors. Obesity can cause disarrangement
in vascular homeostasis and can lead to endothelial disease. Even
though the procedure that leads obesity to aggravate COVID-19
infections are not completely understood, endothelial diseases are
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probably the necessary association (Engin, 2017; Korakas et al.,
2020; Mosleh et al., 2020). Prothrombotic conditions are obvious
in COVID-19 infected patients, along with stroke, high levels of
D-dimer, deep venous and arterial thrombosis, microvascular and
intracardiac thrombi, and pulmonary embolism. It is assumed that
endothelial diseases and endotheliitis (the blood vessel wall in-
flammation) cause the formation of thrombus (Ciceri et al., 2020;
Mosleh et al., 2020). Nevertheless, the prediction reliability and
the ideal cutoff value for D-dimer to prognose mortality are not
assessed properly (Tang et al., 2020; Zhang et al., 2020b).

Several studies have indicated that individuals with diabetes are
at a greater risk for SARS-CoV2 infection, and developing severe
complications like death (Bloomgarden, 2020; Hill et al., 2020).
It is confirmed that diabetic patients are more vulnerable to in-
fections, especially pneumonia and influenza. Nevertheless, good
glycemic control is beneficial, which lowers the infection risk in
these patients. Diabetic patients are generally more susceptible to
be severely infected by viruses, especially respiratory ones (Gupta
et al., 2020a). It has also been recently announced that viral clear-
ance in the patients with COVID-19 is delayed (Iacobellis, 2020;
Li et al., 2017a). A current study in Italy revealed that diabetic
patients accounted for more than two-thirds of SARS-CoV2 death
cases (Remuzzi and Remuzzi, 2020). Correspondingly, a Chinese
report revealed that among the COVID-19 patients admitted to an
intensive care unit, 48% had a comorbidity, within which hyper-
tension was the most common comorbid disease (30%), followed
by diabetes (19%) and coronary heart disease (8%). (Zhou et al.,
2020).

Several mechanisms are suggested as the underlying reasons
for why diabetic patients are prone to COVID-19 infection, includ-
ing high-affinity cellular binding and effective virus entry, delayed
viral clearance, decreased function of T cells, being more liable to
inflammation and cytokine storm and CVD comorbidities (Mu-
niyappa and Gubbi, 2020). Interestingly, having blood glucose of
diabetic patients under control (maintaining blood glucose within
the range of 3.9 to 10.0 mmol/L), adverse outcomes and mortal-
ity rate of the disease may be mitigated (Zhu et al., 2020). Also,
in a non-obese diabetic (NOD) diabetic mouse model study, an
increase was found in the ACE2 protein levels, compared to the
control group, which was ameliorated following insulin treatment
(Roca-Ho et al., 2017). Similarly, a recent study suggested that a
reduction in glycosylated ACE2 in the lungs and consequent gly-
cosylated viral binding sites may ameliorate COVID 19 symptoms,
which suggests a paracrine loop theory. This theory implicates
that infection of pancreas and lung with SARS-CoV2 may lead to
a hyperglycemic state followed by the upregulation in glycosylated
ACE?2; hence, further virus binding and inflammation may occur
(Brufsky and Lotze, 2020).

A theory suggests that the DC-SIGN (dendritic cell-specific
ICAM-3-grabbing nonintegrin) and L-SIGN (DC-SIGNR,
CD209L, or lymph / liver-specific SIGN) carbohydrate receptor
is possibly a part of pathogenesis of the COVID-19 (Brufsky
and Lotze, 2020). Dendritic cells (DC) express DC-SIGN. As a
C-type lectin family membrane receptor, DC-SIGN is expressed
on DCs with a primary role in identifying high mannose glycans
found on pathogens or other cellular receptors (Garcia-Vallejo and
van Kooyk, 2013). With the expression of L-SIGN, as the other
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SIGN detected in humans (Gardner et al., 2003), both mannose
receptors are implicated in virus capturing and entry into cells
(Marzi et al., 2004).
alveolar cells of humans, is correlated with ACE2 (Jeffers et al.,
2004) and may increase ACE2 mediated binding and cellular
entrance of viral pseudotypes expressing the SARS-CoV spike
protein S (Marzi et al., 2004). Lentiviral pseudotyped viruses

L-SIGN, which is expressed on type II

that express SARS-CoV S protein need endosome acidification
for viral entry (Yang et al., 2004). DC-SIGN mediates these
pseudotyped vectors' binding to human DC with uptake into the
endosome, followed by endosome polarization and virus delivery
in an "infectious synapse" (Yang et al., 2004). De-glycosylation
decreases the infectivity of viral pseudotypes that express
SARS-CoV spike protein (Han et al., 2007). Specific asparagine
glycosylation sites in three clusters within the SARS CoV S
protein seem to be important for DC / L-SIGN, but not ACE2,
mediated SARS Co-V pseudotype entry (Han et al., 2007).
Infectivity mediated by DC / L-SIGN is decreased in proportion
to the number of mutated glycosylated sites, showing that the
glycosylated sites' number, and not just specific mutation, is
significant (Han et al., 2007), which shows a mechanism for
enhancement in viral virulence through increasing glycosylation
of the SARS-CoV-2 spike (Brufsky and Lotze, 2020).

In T2D, as the most common type of diabetes, the excessive
adipose tissue induces a mild chronic inflammatory status, which
affects glucose regulation and insulin sensitivity. Also, Hyper-
glycemia and inflammation induced by diabetes result in a defec-
tive and inefficient immune system. Accordingly, this defective
immunity is characterized by a diminished mobilization of poly-
morph nuclear leukocytes, chemotaxis and phagocytic activity.
These changes are results of a decrease in inflammatory cytokine
production in response to lipopolysaccharide, which is the prohi-
bition of tumor necrosis factor-alpha activity by T cells and im-
munoglobulin glycation (Iacobellis, 2020). It has been announced
that diabetes affects both arms of immunity. The innate immu-
nity impairment is characterized by the inhibition in neutrophil
chemotaxis, phagocytic activity and intracellular killing of mi-
crobes. Also, the adaptive immunity impairment can be identified
by a delay in both Th1 cell activation and the hyperinflammatory
process (Hodgson et al., 2015). Laboratory findings of the diabetic
patients with COVID-19 revealed higher levels of neutrophil and
leukocyte counts, fasting blood glucose, serum urea and creatinine
and creatinine kinase isoenzyme MB, compared to those without
diabetes on the point of admission. In another study, it was found
that the SARS-CoV?2 patients with underlying disease of diabetes
presented much more severity of COVID-19 infection. These pa-
tients, compared to non-diabetic patients, developed more medi-
cal complications and higher incidence rates of antibiotic therapy,
invasive and non-invasive mechanical ventilation and death. The
COVID-19 patients also showed decreased levels of CD4 and CD8
Lymphocyte counts and increased levels in cytokine and proin-
flammatory T17 CD4 cells ratio (Guan et al., 2020; Wu and Mc-
Googan, 2020; Xu et al., 2020; Yang et al., 2020; Zhang et al.,
2020a).

ACE2 expression has been found to be increased in the lungs
of patients with diabetes (Rao et al., 2020). In rodent models
of DM, increasing in ACE2 expression was also observed iin the
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lungs, heart, pancreas and kidney (Roca-Ho et al., 2017; Wysocki
et al., 2006). ACE2 overexpression in diabetes can be modu-
lated with insulin treatment (Roca-Ho et al., 2017; Wysocki et al.,
2006). In contrary, the administration of hypoglycemic drugs such
as glucagon-like peptide -1 (GLP-1) agonists (e.g., liraglutide)
and thiazolidinediones (TZDs) (e.g., pioglitazone) may lead to the
ACE?2 upregulation. Moreover, ACE inhibitors can be used as an-
tihypertensive drugs, as statins may induce ACE2 overexpression,
as well (Ferrario et al., 2005; Romani-Pérez et al., 2015; Tikoo et
al., 2015; Wosten-van Asperen et al., 2011; Zhang et al., 2014). Fu-
rin is a protease involved in the cleavage process of the S1 and S2
domains of spike protein, and its circulating levels may be elevated
in diabetic patients (Fernandez et al., 2018). This elevation can be
considered as one of the reasons explaining the susceptibility of
diabetic patients to SARS-CoV?2 infection (Fig. 2). Diabetic pa-
tients are regularly on GLP-1 receptor agonists and/or Dipeptidyl
peptidase-4 inhibitors (DPP4), as a class of oral hypoglycemic
drugs. Also, the effect of DPP4 inhibitors on the immune sys-
tem has not yet been fully known. It has been observed that DPP4
inhibition may not remarkably accelerate the risk of upper respi-
ratory tract infection (Yang et al., 2016). However, several stud-
ies indicated the anti-inflammatory and anti-adipogenic effects of
DPP4 and GLP-1 agonist administrations, respectively (lacobel-
lis, 2015). The anti-inflammatory effects of GLP-1 is mediated
through decrease in macrophage infiltration (Iacobellis, 2020). A
reduction in insulin resistance and M1/M2 macrophage polariza-
tion has also been associated with the inhibition of DPP4 and GLP-
1 activation.

Furthermore, in a mouse model, ACE2 gene expression was re-
ported to be increased by estrogen (Bornstein et al., 2020). There-
fore, as men are at the higher risk for acquiring COVID-19 and
having more disease severity than women, ACE2 may be sug-
gested as a protective factor for SARS-CoV2 infection along with
its pathogenicity. Recent studies have also reported that ACE2
gene expression was much higher in the tissues of younger adults
and women, which is shown to has an inverse correlation with the
disease severity (Chen et al., 2020a). Brufsky reported a possible
explanation that the experiments of gene expression may not be
capable of measuring the posttranslational modifications, includ-
ing glycosylation of proteins (Brufsky and Lotze, 2020). Unlike
the amount of ACE2 protein, ACE2 activity in the lungs was re-
ported to neither rise nor fall by the insulin administration in the
NOD diabetic mouse model (Roca-Ho et al., 2017). Since the an-
tibody binding to proteins could be affected by glycosylation, as
measured by Western blot analysis, the above-mentioned findings
of the NOD diabetic mouse model study were consistent with an
increase in glycosylated ACE2, as opposed to total ACE2 (Bass
et al., 2017). Brufsky associated it to the amount of glycosylated
ACE?2 receptor, which is responsible for virus binding as well as
fusion, not the amount of ACE2 alone. He also suggested a better
glycemic control in pre-diabetic and diabetic patients as a potential
mechanism to slow down the COVID-19 spread and to reduce the
severity of symptoms, which may be regarded to the high Alc as
a potential risk factor for COVID-19 (Brufsky and Lotze, 2020).
Moreover, the patients with SARAS-CoV2 who have comorbidi-
ties of diabetes, hypertension and CVD should be under the obser-
vation of ACE2 modulating drugs. In this regard, to better clarify
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the mechanism involved in COVID-19 severity, a full description
of the drugs consumed is required (Fang et al., 2020).

3.3 Diabetes mellitus and hypertension in the patients with
MERS

The MERS-CoV epidemic appeared in Saudi Arabia in June
2012 (Mohd et al., 2016). The intermediate host of the virus were
dromedary camels, from which the virus could be transmitted to
humans via close contact. It was supposed that in the faraway past,
the MERS-CoV was probably transmitted to dromedary camels
from its origin, i.e. bats (Memish et al., 2020; Mohd et al., 2016).
Up to November 30, 2019, a total number of 2494 laboratory-
confirmed cases of MERS-CoV were reported. The virus resulted
in 858 deaths (case-mortality rate: 34.4%) within 26 countries.
The most of cases were from Saudi Arabia, including 2102 infec-
tion cases with a case-mortality rate of 37.1% (Madjid et al., 2020).
Male sex, older age and underlying medical conditions such as car-
diac diseases, diabetes mellitus, chronic kidney disease, hyperten-
sion, respiratory disease and cancers were identified as the clini-
cal risk factors responsible for MERS mortality (Matsuyama et al.,
2016; Park et al., 2018). A transmission study was performed in a
single extended family, and indicated that, among the confirmed
MERS-CoV positive members, there was more than 3 times higher
possibility of suffering from a comorbid disease (Arwady et al.,
2016). Another study reported that among 17 diabetic cases, 15
(88%) patients had poor outcome of the disease, including admis-
sion to intensive care unit and death. Meanwhile, only 7 out of 18
cases with comorbidities other than diabetes, had poor outcomes
of the disease. It was concluded that diabetes, in particular, has
significant effects on the severity of MERS-CoV disease (Garbati
et al., 2016). However, due to the target populations and also the
designs of the studies, there was a high heterogeneity within the
risk levels related to the different comorbidities. In several stud-
ies, diabetes was indicated as an important risk factor leading to
severe or fatal MERS disease. When a MERS patient has diabetes
as comorbidity, the odds ratio of developing severe or fatal MERS
disease is ranged from 2.47 to 7.24, depending on the target popu-
lation and also on the design of the study (Alraddadi et al., 2016;
Arwady et al., 2016; Banik et al., 2016; Choi et al., 2016).

A methodical analysis on 637 MERS-CoV cases showed the
comorbidity of hypertension, cardiac diseases, obesity and dia-
betes to be 50%, 30%, 16% and 50%, respectively (Badawi and
Ryoo, 2016). It is suggested that diabetes and conditions related
to it may downregulate the humoral and innate immune systems
by lowering the functions of neutrophils and T cells (Casqueiro et
al., 2012). In vitro (laboratory), hyperglycemia damages critical
components of innate immunity, including phagocytosis, chemo-
taxis and the bactericidal activity of macrophages and neutrophils,
which may cause secondary infections (Benfield et al., 2007). A
study by ((Badawi et al.)) also showed an etiological relationship
between diabetes and acute viral respiratory infections. However,
the direct effect of diabetes on severe respiratory infections still re-
quires more investigations. The rate of diabetes under acute viral
conditions should be evaluated to clarify the etiologic role of dia-
betes in case of infection seriousness (Garcia et al., 2012). ((Kulc-
sar et al.)) in a study used expression of human DPP4 to make
mice susceptible to MERS-CoV, and applied a diet with a high-fat
amount to induce them to T2D (Kulcsar et al., 2019). Being in-
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fected by MERS-CoV, mice that had diabetes showed a long phase
of acute disease and late recovery, which were not depended on the
virus titers. Their analysis demonstrated that the mice with dia-
betes developed delayed inflammation prolonged to 21 days since
infection. The mice with diabetes had less inflammatory mono-
cytes and macrophages. They also had fewer CD4 positive T cells,
which was associated with fewer amounts of the expressions of
Cxcll0 and Ccl2. In addition, the mice with diabetes had higher
amounts of expressing /117« and lower amounts of the expressions
of 1112b, Tnfa, Argl, and 116. All these findings suggest that the
higher disease severity in MERS cases with T2D, as comorbidity,
is probably due to their deregulated immune response, which may
lead to more acute and prolonged lung pathology.

3.4 Diabetes mellitus and hypertension in patients with
SARS

Several studies on individuals suspected to pass out due to
SARS-CoV infection have evidenced some atypical pathological
changes, including fatty degeneration, hydropic degeneration and
interstitial cell affecting the pancreas, kidney and heart (Shi et al.,
2005). SARS-CoV may lead to CVDs, as well. In addition, my-
ocardial infarction and the acute coronary syndrome were reported
to occur following the SARS infection (Chong et al., 2004; Peiris et
al., 2003). In a small cohort study on 75 hospitalized patients diag-
nosed with SARS, acute myocardial infarction (AMI) was reported
to cause death in 2 out of 5 fatal cases (Peiris et al., 2003). In a
study among 121 individuals infected by SARS-CoV, a majority of
the patients (79.3%) had a good health history and only 20.7% (25
cases) had concurrent medical problems, including hypertension
(n =7), asthma (n = 4), diabetes mellitus (n = 5), old pulmonary
tuberculosis (n = 1), valvular heart disease (n = 2), chronic renal
failure (n = 2), CVD (n = 1), bronchiectasis (n = 1), and stroke (n
= 2). These patients were managed based on the guidelines (Ho,
2003; Yu et al., 2006).

Based on the results of a previous study among patients with
SARS , having diabetes and/or other comorbidities (including can-
cers, CVD and chronic obstructive pulmonary disease) were cor-
related with a composite risk of intubation, death and the need
for admission to an intensive care unit (Dodek, 2004). In another
previous study, even mild SARS cases who received no glucocorti-
coid medicines during the study had higher levels of fasting plasma
glucose (FPG), suggesting that hyperglycemia may be an indepen-
dent death predictor, within (Yang et al., 2006). During follow-up,
they also found that diabetes occurred during the hospitalization of
20 out of 39 individuals who received no corticosteroids through-
out the SARS course. Additionally, diabetes was reported in two
of the patients after 3 years of follow-up. Among the SARS-CoV
infected individuals and their paired, healthy non- SARS-CoV in-
fected siblings there were similarities in the rates of FPG, postpran-
dial plasma glucose (PPG) and insulin even 3 years after follow-up,
which indicated the temporary damage of SARS-CoV to islets.

The researchers' retrospective analyses showed that a history of
ambient hyperglycemia and diabetes prior to initiation of steroid
therapy were two independent risk factors for higher mortality and
morbidity rates. This study was the first study that showed the
high fatality rate of diabetic individuals experiencing SARS-CoV
infection. Since then, there have been a growing number of stud-
ies demonstrating the enhanced rates of morbidity and mortality
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among diabetic individuals hospitalized with various severe med-
ical conditions, such as myocardial infarction, despite the inde-
pendent predictive role of the high FPG levels among hospitalized
nondiabetic patients (Umpierrez et al., 2002; Van den Berghe et
al., 2001, 2003). The diabetogenic effects of steroid drugs are also
recorded. A previous study (Xiao et al., 2004) has demonstrated
that 33 (34.7%) out of 95 SARS patients treated by steroids, experi-
enced steroid-induced diabetes. These results, altogether, provide
the evidence that hyperglycemia may increase the severity of viral
infections, mortality rates and the risk of severe hypoxia among
diabetic patients experiencing SARS. Insulin therapy and inten-
sive monitoring to achieve an appropriate metabolic control may
enhance the SARS patients' outcomes, which may be due to the
potentially damaging effects of ketosis and hyperglycemia on the
organs' function (Yang et al., 2006).

It was indicated that the binding of SARS-CoV spike (S) pro-
tein to its target cells' cellular receptor may mediate the SARS-
CoV infection (Li et al., 2003; Turner et al., 2004b; Yang et al.,
2010). Considering the extensive usage of ACE inhibitors (ACEIs)
for the treatment of cardiovascular diseases such as hypertension,
there was an interest in ACE2, as a possible treatment. This possi-
bility was highlighted with the relatively high ACE2 expression's
level in kidney and heart (Donoghue et al., 2000; Tipnis et al.,
2000). Despite its close resemblance to ACE and the maintenance
of several important active site characteristics, ACE2 showed a
distinctive choice as substrates, which may particularly function as
carboxypeptidase that eliminates single amino acids, unlike ACE
that eliminates dipeptides from a peptide's C-terminus (Donoghue
et al., 2000; Tipnis et al., 2000; Turner et al., 2004b). Addition-
ally, evidence shows that ACE2 acts as a functional receptor for
the S protein of SARS-CoV (Li et al., 2003; Turner et al., 2004b).
A study conducted on the location of ACE2 protein in 15 hu-
man organs showed that ACE2 was plentiful in the small intes-
tine and lung epithelia, where SARS-CoV could enter (Hamming
et al., 2004). Another study (Harmer et al., 2002) on 72 human
tissues evidenced the expression of ACE2 mRNA in testis, lung
parenchyma, bronchus and gastrointestinal, renal and cardiovas-
cular tissues, and pancreas, as well.

The most serious type of acute lung injury is known to be acute
respiratory distress syndrome (ARDS). ARDS, as a clinical dis-
ease with high mortality rate, is mostly caused by an elevated
rates of permeability in pulmonary vessels and pulmonary edema,
which is often induced by coughing, sepsis and pneumonia (such
as those caused by human influenza, bird flu, and SARS viruses)
(Lin et al., 2020). As mentioned earlier, ACE, as an important
enzyme in RAS, transforms angiotensin (Ang) I to the vasocon-
strictor Ang II. Accordingly, Ang II is believed to cause the most
of RAS' pathophysiological and physiological effects. This typical
conception of the RAS was questioned after the discovery of the
ACE2 enzyme, which diminishes Ang II and takes part in the pro-
duction of the antiproliferative and vasodilatory peptide, Ang 1-7
(Dean and Burrell, 2007). Extremely expressed in lung, ACE2was
proved to have protective effects in acute lung injury (Imai et al.,
2005; Lin et al., 2020). Lung tissue has an extreme activity in
the RAS and is the leading site for Ang II synthesis. Ang II is
also known as an important pulmonary vasoconstrictor. Notably
is that during hypoxia, RAS is triggered. In this regard, Ang Il may
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not only promote the growth response of vascular smooth muscle
cells, but may also elevate directly the vascular remodeling and
avoid pneumonia and the shunts associated with lung injury (Kiely
et al., 1997). However, Ang II can also enhance the development
of pulmonary edema and hinder the lung's function (Imai et al.,
2005). Itis currently understood that the impact of RAS inhibitors
on ACE2 is largely due to the ACE2 expression in the plasma, kid-
ney and heart (Li et al., 2020a). ACE2 expression has also indirect
associations with hypertension. It was also reported that (Crack-
ower et al., 2002) among rats, the gene maps of ACE2 to a defined
quantitative trait locus had an association with hypertension. Be-
sides, two single nucleotide polymorphisms in ACE2 gene locus
had an association with human CVD (Turner et al., 2004a). Fur-
thermore, in streptozotocin-induced diabetes among rats, protein
and renal tubule ACE2 mRNA expression have considerably de-
creased, but the expression of ACE2 protein increased in diabetic
glomeruli (Tikellis et al., 2003; Turner et al., 2004b).

Up to now, there is no proof that the use of RAS inhibitors can
cause patients to be more susceptible to the virus. Nonetheless, a
previous study reported that treatment with an ACEI may degrade
the ACE2 expression, but with no considerable impact on its ac-
tivity (Ferrario et al., 2005).

4. Conclusions

Diabetes may downregulate the humoral and innate immune
systems through reducing the functions of neutrophils and T cells,
which may result in secondary infections. Similarly, hyperten-
sion was found in association with several comorbidities, which
can increase the risk and severity of infectious diseases. That is
why that the individuals with diabetes mellitus and hypertension
are reported to be at higher risks for the late viral clearance of
the coronavirus, and the worsened prognosis in SARS, MERS and
COVID-19 infections. In SARS and COVID-19, this may also be
due to the association of the comorbidities with higher levels of
ACE2expression. Itis also hypothesized that virus binding and fu-
sion are also due to the amount of glycosylated ACE2 receptor and
not the amount of ACE2, alone. Therefore, better glycemic con-
trol in pre-diabetic and diabetic patients is suggested as a potential
mechanism to slow down the COVID-19 spread, besides reducing
the severity of its symptoms. Furthermore, the control of blood
pressure and lipids should be carried out in the T2DM patients.
There is a need for careful consideration on the usage of ACE in-
hibitors in diabetes, hypertension, COVID-19 and SARS patients.
Furthermore, diabetes and hypertension are considered comorbidi-
ties and these patients with COVID-19 should receive early outpa-
tient treatment according to a multi-drug algorithm (McCullough
et al., 2020). More information regarding the profile of hazards
in the hospitalized SARS-CoV?2 patients can be helpful in person-
alized treatments and better decision-making for this vulnerable
population.
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