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Artificial Intelligence (AI), in general, refers to the ma-
chines (or computers) that mimic "cognitive" functions that
we associate with our mind, such as "learning" and "solv-
ing problem". New biomarkers derived from medical
imaging are being discovered and are then fused with
non-imaging biomarkers (such as office, laboratory, phys-
iological, genetic, epidemiological, and clinical-based
biomarkers) in a big data framework, to develop AI sys-
tems. These systems can support risk prediction and mon-
itoring. This perspective narrative shows the powerful
methods of AI for tracking cardiovascular risks. We con-
clude that AI could potentially become an integral part
of the COVID-19 disease management system. Countries,
large and small, should join hands with the WHO in build-
ing biobanks for scientists around the world to build AI-
based platforms for tracking the cardiovascular risk as-
sessment during COVID-19 times and long-term follow-up
of the survivors.

Keywords
COVID-19; cardiovascular; myocarditis; artificial intelligence; risk as-
sessment; non-invasive monitoring

1. Introduction
The SARS-CoV-2 is a single-stranded ribonucleic acid (RNA)

virus belongs to the corona family of viruses, which can lead
to several pulmonary and extrapulmonary complications such as
viral pneumonia, acute respiratory distress syndrome (ARDS),
cardiovascular disease, cerebrovascular disease, or even systemic
hyper-inflammation syndrome that leading to a multiorgan fail-
ure (WHO, 2020). The first case of SARS-CoV-2 is diagnosed in
Wuhan, the capital city of the Hubei province in the People's Re-
public of China (Eder, 2020; Edmonds, 2020). It was suspected
that the SARS-CoV-2 was by horseshoe bats, mutating into pan-
golin as intermittent hosts, and then made their way into humans
(Bale, 2020). The SARS-CoV-2 is believed to be transmitted from
human-to-human mainly through virus-laden droplets (generated
by coughing, sneezing, or talking), and through close contacts
with infected persons or through touching surfaces or objects with
the virus on it (Tan and Aboulhosn, 2020). It has a spread func-
tion of three (Ro = 3), which means every person, on average,
can infect another three people, thereby growing exponentially. It
can severely affect or be fatal to high-risk category groups such
as the elderly (age > 60 years), or patients having pre-existing
conditions like chronic obstructive pulmonary disease, diabetes,
asthma, hypertension, cardiovascular diseases, obesity, and can-
cer. Due to the combination of its high contiguousness and vir-
ulence, it has become a global threat causing the pandemic (N.
Chen et al., 2020b; Guan et al., 2020; C. Huang et al., 2020; Wang
and Bhatt, 2020; Wu and McGoogan, 2020). As of 25th Octo-
ber 2020, COVID-19 has nearly 43 million infections and nearly
1.1 million deaths worldwide (Worldometer, 2020). It is specu-
lated that the spread of COVID-19 is due to international travels
from Asia to Europe and the USA (Eder, 2020; Edmonds, 2020).
The top ten countries with the most cases of COVID-19 are the
United States of America, India, Brazil, Russia, Spain, France,
Argentina, Colombia, Mexico, Peru, and the United Kingdom (see
Fig. 1, left). They account for 80% of all mortality, of which 21%

are in the United States alone, consisting of 210,000 deaths (Jef-
frey, 2020; Worldometer, 2020). Interesting recent studies shown
the data of cardiovascular entity is more often and serious compli-
cation which increases mortality and morbidity in COVID-19 pa-
tients (Kwenandar et al., 2020; Wu and McGoogan, 2020). Thus,
it is a wake-up call to understand the nature of COVID-19, how
it causes organ failure, especially heart, and how we can monitor
these patients before, during, or long-term follow-up of the sur-
vivors after COVID-19 times using smart, accurate, and affordable
systems.

The pathophysiology of the SARS-CoV-2 is not yet fully estab-
lished. Recent studies have shown that the virus gains entry into
the cells through the angiotensin-converting enzyme 2 (ACE2) re-
ceptors that clamp the S-protein on the surface of SARS-CoV-2
(see Fig. 1, right) (Hoffmann et al., 2020). The ACE 2 receptors
are human homologs that are widely expressed in the cells of the
heart, lungs, kidney, and intestine (Turner et al., 2004). The ACE2
plays a counterbalancing role in the renin angiotensin-converting
system (RAS) (Akhmerov andMarbán, 2020; Zou et al., 2020) and
is a carboxypeptidase that converts angiotensin II (Ang II) into an-
giotensin (1-7) (Ang 1-7) (Donoghue et al., 2000).

Reports from admitted patients in various hospitals in Wuhan
suggest serious cardiac injury in at least 12%-26% of admitted pa-
tients (L. Chen et al., 2020; C. Huang et al., 2020; S. Shi et al.,
2020; Zheng et al., 2020). The cardiac injury is thought to be
due to the presence of mural cells (pericytes) in the heart, hav-
ing a high expression of ACE2 (L. Chen et al., 2020). The re-
cent article by Libby (2020) also showed that the release of cy-
tokines during the infection could affect the intramural coronary
vessels of the patients without any pre-existing cardiovascular dis-
ease (CVD). It has been seen that patients who had SARS showed
tissue fibrosis and microangiopathy, and thus needed their heart
to be monitored (Ferreira et al., 2018; Inciardi et al., 2020b; Wu
and McGoogan, 2020). Wu et al. (2017) had recently emphasized
the role of studying the long-term effects of clinical treatments
in SARS patients. The authors compared SARS survivors against
healthy controls and showed that there were significant differences
in the serum metabolomes and thus there is a need for special
monitoring of patients with SARS. The patients with cardiovas-
cular disorders have a high vulnerability to SARS-CoV-2 (S. Shi
et al., 2020) that can lead to complications such as myocardial in-
jury, systemic inflammation, which further leads to cardiac failure,
plaque rupture, arrhythmias, venous thromboembolism, and coro-
nary thrombosis (Bansal, 2020; Driggin et al., 2020). The SARS-
CoV-2 may predispose patients to thrombotic disease due to ex-
cessive inflammation, platelet activation, endothelial dysfunction,
and stasis (Bikdeli et al., 2020). Therefore, it is of prime impor-
tance to address the issues like, how do we monitor patients (a)
who are asymptomatic or mildly symptomatic, (b) have moderate
to severe symptoms of COVID-19 perhaps requiring hospitaliza-
tion, (c) have recovered from COVID-19 in an early pandemic, (d)
who can get re-infected after recovery, and (e) what happens to the
patients who have the acute CVDdue to hospital overloading (Huet
et al., 2020). Should we have a risk assessment system in place,
which can study and regularly monitor cardiac conditions? The
complete management requires more than just temporary check-
ups of patients, but a global tracking scheme that can prepare us for
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Fig. 1. Left: World map showing the COVID-19 (Courtesy: https://ourworldindata.org). Right: SARS-binding to ACE2 receptor by the
spike protein (S protein) to gain intracellular entry (Courtesy AtheroPoint™, Roseville, CA, USA).

further pandemics. It is thus essential to understand the pathways
for heart injury, and further to understand what kinds of tools and
techniques one can use to track pandemics like COVID-19, thereby
preventing its spread. This can further help in the development of
the drug-delivery systems.

Artificial Intelligence (AI) (Flach, 2001; James et al., 2013)
techniques such as machine learning (ML) and deep learning (DL)
in medicine refers to the cognitive functions by machines in under-
standing trends, generating warnings, diagnosis, prognosis, and
treatment of patients (Naudé, 2020). It is already deeply embed-
ded in several fields of medicine, such as medical imaging (Biswas
et al., 2019; Saba et al., 2019), drug-delivery design (Hassanzadeh
et al., 2019), and computational biology (Angermueller et al.,
2016; Libbrecht and Noble, 2015). The advancements in Internet-
of-Things (IoT) technologies have made a significant effort to-
wards "call-to-action for telemedicine" (Ohannessian et al., 2020;
Thomas et al., 2020) that would strengthen tele-consultation, re-
mote patient monitoring, and diseasemanagement protocols (Port-
noy et al., 2020; Wang and Bhatt, 2020), and computer-aided di-
agnosis in general (Acharya et al., 2008; El-Baz and Suri, 2011).
Evidence suggests that telemedicine (TM) (Ganasegeran and Ab-
dulrahman, 2020), in combination with AI has the potential to lo-
cate, diagnose, and treat the patients in times of epidemics such
as the Zika pandemic in 2007-17 (Daughton and Paul, 2019) and
Influenza A H1N1 Pandemic in 2009-11 (Signorini et al., 2011).
Thus, the AI-based telemedicine technologies have the potential to
provide ideal solutions in non-invasive patient care systems, which
is suitable for the current and long-term tracking of COVID-19
patients. This perspective is mainly geared towards the tools and
techniques for COVID-19 patient management using AI-based so-
lutions in a big data framework for pandemic management and
provides recommendations for future pandemic prevention.

This paper is illustrated in 7 sections, which are as follows.
Section 1 covers introduction (already explained above) and Sec-
tion 2 covers the basics of four pathways leading to cardiac injury.
The motivation and role of AI for risk assessment of CVD is pre-
sented in Section 3. Section 4 shows the applications of imaging
and non-imaging-based applications of AI in medicine. Section 5
presents the tracking of surrogate markers for CVD during COVID
times and beyond. Section 6 presents the recommendations and

preparedness for handling current and future pandemics. The con-
clusion of this review is presented in Section 7.

2. Pathophysiology and the pathways to heart
injury
2.1 Importance of ACE2 receptor

Several studies have found that SARS-CoV-2 uses the ACE2
receptor for entering into the cell (de Wit et al., 2016; Hoffmann
et al., 2020; Wu et al., 2012) (see Fig. 1), right where the SARS-
CoV-2 is labeled as A and the ACE2 as well as the gray color cell,
labeled B). ACE2 is a carboxypeptidase that converts angiotensin
II (Ang II) into angiotensin (1-7) (Ang 1-7) and is homologous to
angiotensin-converting enzyme 1 (ACE1). ACE2 is key enzyme in
the renin angiotensin-converting system (RAS) (Bernstein, 2002;
Donoghue et al., 2000; Turner et al., 2004). ACE1 and ACE2 are
widely expressed in cardiomyocytes, cardiac fibroblasts, coronary
endothelial, mural cells (in the heart), type 2 pneumocytes (in the
lungs), and enterocytes (in the intestine) (Williams and Scholey,
2018; Zou et al., 2020).

2.2 Pathophysiology of SARS-CoV-2 on the myocardial cell
Several published studies have shown that SARS-CoV-2 can

cause both pulmonary and extrapulmonary complications like car-
diovascular (CV) complications (Geng et al., 2020; Xiong et al.,
2020). Another solid evidence by Zunyou, Wu et al. (Wu and
McGoogan, 2020), and Kevin J et al. (Clerkin et al., 2020) sub-
mitted a summary of the report to the Chinese center for disease
control and prevention indicating 1023 deaths in 44672 confirmed
cases with COVID-19, i.e. a case-fatality rate (CFR) of 2.3, and
stating that patients with underlying cardiovascular disease or hy-
pertension had a higher CFR compared with people without co-
morbidities. Thus, it is a wake-up call to understand the nature
of COVID-19, how it causes organ failure, especially heart and
how we can monitor these patients before, during, or long-term
follow-up of the survivors after COVID-19 times using smart, ac-
curate, and affordable systems. Additionally another interesting
Chinese cohort study by Shi et al. (S. Shi et al., 2020) found that
COVID patients with cardiac injury had high mortality compared
with those without cardiac abnormality 51.2% vs 4.5% in 416 hos-
pitalized patients between January 2020-February 2020. The fol-
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lowing are the commonmechanisms responsible for CV complica-
tions in COVID-19, these include (i) myocardial oxygen demand
mismatch, (ii) dysregulation of the RAAS after SARS-CoV-2, (iii)
systemic inflammatory response, and (iv) myocarditis.

Pathway (I) Myocardial oxygen demand mismatch (shown
in Fig. 2): This pathway triggers by entering of SARS-CoV-2
through the respiratory pathway and binds to the ACE2 receptor
on the surface of alveolar type 2 (AT2) cells in the pulmonary ep-
ithelium (Filardi and Morano, 2020; Zheng et al., 2020). These
results in exaggerated neutrophil accumulation cause enhance in
vascular permeability of subendothelial space which leads to the
formation of alveolar exudates (C. Huang et al., 2020; Wang et
al., 2019). Further, it leads to pulmonary edema resulting in an
alveolar gas exchange disorder known as "acute respiratory dis-
tress syndrome" (ARDS), which results in depletion of oxygen
levels causing hypoxia (Barnes et al., 2020; Fadini et al., 2020).
Supporting evidence by Kwenandar et al. (2020) has shown that
COVID-19 patients had up to 33% prevalence of cardiovascular
manifestations like myocardial injury (MI), sudden cardiac arrest,
heart failure, and coagulation abnormality. Additionally, S. Shi et
al. (2020) has shown that SARS-CoV can infect pulmonary and
myocardial cells through the ACE2 pathway, thereby causing lung
edema, ARDS, and myocardial injury.

Pathway (II) Dysregulation of the RAAS after SARS-CoV-2
(shown in Fig. 2): This pathway gets initiated due to intracellular
host cell entry of SARS-CoV-2. Resulting in the loss of ACE2,
which in turn leads to (a) a decrease in levels of cardioprotective
Ang (1-7) (shown in a panel of green color) and (b) an increase
in levels of Ang II (shown in a panel of pink color). Hence, the
increase of Ang II promotes endothelial dysfunction and inflam-
mations, accelerating the process of atherosclerosis (Dong et al.,
2008; Lovren et al., 2008; Sahara et al., 2014; Tikoo et al., 2015;
Yousif et al., 2012; Zhang et al., 2010). SARS-CoV-2 entry causes
the downregulation of ACE2 levels and the activation of RAAS
(Oudit et al., 2009). Generally, in RAAS, Ang-I is converted to
Ang-II by ACE1. Ang-II is associated with several processes and
is thought to promote vasoconstriction, proinflammation, profi-
brotic, prothrombosis, and proliferation of cells that are harmful
to the human body. Hence Ang (1-7) is generated from degrada-
tion of Ang II by ACE2 as a counter-regulatory mechanism (Zhang
and Baker, 2018), causing the opposite effects of Ang II. Ang (1-
7), therefore, results in vasodilatation, antiapoptotic, antifibrotic,
antithrombotic, and antiproliferative effects that are cardioprotec-
tive. During SARS-CoV-2 infection, reduction in ACE2 results
in the (a) down-regulation of processes associated with Ang (1-7)
and (b) activation of all the processes related to Ang II, has a detri-
mental effect on the blood vessels, thereby leading to endothelial
cell damage, which leads to atherosclerotic cardiovascular events.

Pathway (III-A) Systemic inflammatory response (shown
in Fig. 2): An increase in Ang II promotes inflammatory cy-
tokines that exaggerate an inflammatory response causing a cy-
tokine storm. It represents an advanced stage of severe illness char-
acterized bymultiple organ failure (Siddiqi andMehra, 2020). The
rise in these inflammatory cytokines includes interleukin (IL)-6,
IL-7, IL-22, CXCL-10, which results in a decrease in plaque sta-
bility that favors the plaque rupture causes micro thrombosis and
cardiac injury (Y. Huang et al., 2020; Schoenhagen et al., 2002;

Xiong et al., 2020). As supporting evidence by Ruan et al. (2020)
presented a study with 150 COVID-19 patients from Wuhan that
higher levels of inflammatory cytokines patients have high mor-
tality. Additionally, Guo et al. (2020) have shown that COVID-19
patients had elevated inflammatory cytokines and troponin (TnT)
suggestive of cardiac injury and an increase in mortality.

Pathway (III-B) Myocarditis and SARS-CoV-2 (shown in
Fig. 2): Myocarditis is an inflammatory response of cardiac my-
ocytes which may be results due to SARS-CoV-2 infection (Siri-
panthong et al., 2020), The association between myocarditis and
coronavirus is well-known from the times of Middle East res-
piratory syndrome coronavirus (MERS-CoV) infection, but still
the evident link between SARS-CoV-2 and myocarditis is not yet
well established. We hypothesized that viral infection can reaches
heart via intravascular circulation and activates immune response,
aimed to clearing the virus. These causes in increasing of cy-
tokines and immune cell infiltration in the myocardium (Blauwet
and Cooper, 2010). As a consequence these results in direct virus
related cardiac injury (virus directly infects and damages cadiac
cells) due to autoimmunity (through the mechanisim of molecu-
lar mimicry the activated immune system also attacks the cardiac
cells). Further it was noticed that the patients with history of my-
ocarditis does not subsides but persist long time which can lead to
dilated cardiomyopathy (Blauwet and Cooper, 2010) and increases
the risk of mortality (Alhogbani, 2016; Hinojar et al., 2016).

3. The role of machine learning in CVD risk
assessment of COVID-19 heart patients
3.1 Blood vessel damage due to COVID-19 causing heart
injury

Acute cardiac injury is a commonly observed phenomenon
among COVID-19 patients. In such patients, viral involvement
of cardiomyocytes and systemic inflammation are common mech-
anisms for cardiac injury Bansal (2020). The understanding of
interrelationship of COVID-19 and CVD is important for optimal
management of such patients Bansal (2020). Recently, both Lin
et al. (2012) and Gasso et al. (2020) in their independents work,
showed a case study where the patient with multivessel sponta-
neous coronary artery dissection (SCAD) having SARS-CoV-2 led
to myocardial infarction. Tan et al. (Tan and Aboulhosn, 2020)
concluded that COVID-19 causes severe injury to the pulmonary
and cardiovascular system, even leading to death. The authors
shared that patients having congenital heart disease (CHD) are sus-
pect to COVID-19, leading to comorbidities. Lippi et al. (2020)
showed that the 14 days quarantine period requires physical ac-
tivities for the prevention of metabolic and cardiovascular loss;
otherwise, it will lead to impairing aerobic capability and increas-
ing hypertension. The authors categorized this period as a pre-
ventive cardiological framework. South et al. (2020) was the first
one to question the potential consequence of the renin-angiotensin-
aldosterone system (RAAS) blockade to COVID-19 patients hav-
ing respiratory disease, thereby posing a question about the block-
age of ACE2 and its viability to attenuate the COVID-19. Fur-
ther, this study suggested the role of monitoring COVID-19 pa-
tients over time based on the COVID-19 severity. Fang et al. (2020)
investigated the role of diabetes mellitus and hypertension in the
augmented risk of COVID-19. The authors reported that ACE2
receptors are found in epithelial cells of the lung, blood vessels,
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Fig. 2. The four pathways (I, II, III-A, and III-B) showing how COVID-19 causes cardiac injury (Courtesy AtheroPoint™, Roseville, CA, USA).

kidney, and intestine. Furthermore, the authors also indicated that
the upregulation of ACE2 receptors is seen in patients with hyper-
tension and type 1 or type 2 diabetes mellitus which were treated

with ACE inhibitors and angiotensin II type I receptor blockers
(ARBs) (Wan et al., 2020). Since atherosclerosis accelerates in
diabetes patients (Banchhor, 2017b; Kotsis et al., 2018; Puvvula et
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al., 2020; Viswanathan et al., 2020d), it is, therefore, vital to moni-
tor these blood vessels of patients who got infected by COVID-19.
Due to the ACE2 polymorphism, it is even essential to monitor the
organ systems of COVID-19 patients. Cai (2020) showed that the
smokers have ACE2 gene expression higher than the non-smokers.
Since the CVD is highly related to smoking (Hejjaji et al., 2020)
and smoking also severely affects the current atherosclerotic dis-
ease and increases the 10-year CVD risk (Kelishadi et al., 2004),
patients who have predisposed diseases with smoking conditions
are highly vulnerable to COVID-19. This requirement needs spe-
cial monitoring of the blood vessels in these patients.

3.2 Evidence of machine learning in CVD risk assessment

AI has played a vital role in disease classification and risk strat-
ification. Two categories of AI technologies, i.e., ML and DL have
long been active in CVD risk management (Díaz, 2020). The ML
(Bishop, 2006; Díaz, 2020) refers to the broad class of probabilis-
tic, distance, and rule-based models used in the characterization
of diseases and risk stratification, whereas, the DL (Krizhevsky et
al., 2012; LeCun et al., 2015) refers to multiple layers of brain-
mimicking neural networks employed for the same. ML-based
solutions have been adapted for risk stratification in different ap-
plications such as stroke (Acharya et al., 2013b; Cuadrado-Godia
et al., 2018a; Jamthikar et al., 2020b,a; Martis et al., 2013). Re-
cently, Dong et al. (2020) reviewed several image-based char-
acteristics and the AI-based models for accurate diagnosis and
better treatment and management of COVID-19 patients. The
authors reviewed the imaging characteristics from computed to-
mography (CT), positron emission tomography (PET), chest ul-
trasound, and MRI. The AI-based models were used for image
analysis of COVID-19 patients and reported a median AUC of
0.89 (0.78 to 0.98) and a median accuracy of 95% (88% to 95%).
Jamthikar et al. (2020b, 2019, 2020d,a) recently showed the role of
ML for CVD/stroke risk assessment by combining image-based
phenotypes and standard risk factors in a big data framework.
The same team developed recently methods using ML-based risk
stratification for binary class (Jamthikar et al., 2020e) or multi-
class frameworks (Jamthikar et al., 2020f), demonstrating superior
ML-based systems (XGBoost, RF, and SVM) compared to con-
ventional models such as Systematic Coronary Risk Evaluation
score (SCORE), Framingham risk score (FRS), and Atheroscle-
rotic CVD (ASCVD).

In a special report, the authors discussed the need of a sys-
tem of preventive cardiovascular framework for coronary artery
disease (CAD) management in the AI and big data framework
(Jamthikar et al., 2020b). Similarly, an AI-based algorithm has
also been used for CVD risk assessment in several other areas (Boi
et al., 2018; Jamthikar et al., 2020g; Khanna et al., 2019a). The
beauty of AI methods is that the memory parameters of MLmodel
can be trained and such trained models can be used for prediction
of disease severity in patients who are asymptomatic. Within a
short period, several ML-based techniques used the power of AI
in COVID-19 management (Alimadadi et al., 2020; Vaishya et al.,
2020). More about the role of AI in imaging/non-imaging frame-
work will be covered in the next section.

4. Imaging/non-imaging-based AI and its
manifestations

AI has dominated both in imaging and non-imaging fields of
medicine with over 10,000 publications in the last few years. Since
DL was predominantly image-based, to begin with (Krizhevsky et
al., 2012; LeCun et al., 2015), it has now vigorously penetrated
the imaging field (Acharya et al., 2008, 2013b; El-Baz and Suri,
2011; Liu et al., 2005; Sanches et al., 2012). On the contrary, ML
has been active before DL in imaging and non-imaging paradigms.
Few recent reviews have been published in the area of AI applica-
tions in cardiology (Jiang et al., 2017; Xu et al., 2020) and radiol-
ogy (Biswas et al., 2019; Saba et al., 2019). We have presented and
summarized a few key landmark studies.

4.1 AI-based segmentation
Medical images of internal organs are generally captured using

CT, MRI and ultrasound modalities. DL and ML strategies have
been applied to these modalities to segment the organs of interest
(Suri, 2000; Suri et al., 2002). Recently a review was presented on
the role of AI for data retrieval, segmentation of medical organs,
and diagnosis for COVID-19 (Boi et al., 2018; F. Shi et al., 2020a).
AI has also penetrated the field of cardiology for the segmentation
of the heart (Avendi et al., 2016; Genovese et al., 2019) or tracking
the heart over time (Carneiro and Nascimento, 2013). A shape
model estimation of the entire heart using AI (Wang and Smedby,
2018) has been done. One such 3D model of heart that can be
developed is shown in (Fig. 3). A recent book by El-Baz and Suri
talks about several techniques on AI applications to cardiovascular
imaging (El-Baz, 2018). This is a powerful solution to understand
the severity of heart injury during and after pandemics.

4.2 AI-based tissue characterization and classification
Characterization of the diseased tissue against normal or risk

stratification of the disease severity is well embraced by AI-based
models, for example, ML-based strategies were adapted for benign
vs. malignant prostate cancer (McClure et al., 2014; Pareek et al.,
2013), ovarian cancer (Acharya et al., 2015, 2013c), liver cancer
(Biswas et al., 2018; Kuppili et al., 2017), brain cancer (Tandel et
al., 2020), plaque tissue for risk stratification, coronary artery risk
stratification (Acharya et al., 2013a; Khanna et al., 2019a; Saba et
al., 2017; Skandha et al., 2020) are some to say.

Also, closely knitted areas to CVD are genetics and mi-
croscopy. Genetics can be used to tackle the COVID-19 pandemic
by tracking its origin (Cui et al., 2019; Jiang et al., 2020; Li et
al., 2020a; Phan, 2020; J. Zhang et al., 2020a), finding reasons
for the outbreak (Zhao and Yuan, 2020), and developing new vac-
cines (Álvarez-Machancoses et al., 2020; Hampel et al., 2020; Li et
al., 2020c; Peng et al., 2020; Yan et al., 2020b; Yassine and Shah,
2020). Similarly, microscopy imaging is a very important part of
AI-based COVID research for live-cell visualization to understand
the behavior of SARS-CoV-2 (Lugagne et al., 2020; van Valen et
al., 2016).

Patients with cancer, especially lung cancer, show an elevated
risk of COVID-19 infection (L. Zhang et al., 2020b). Such patients
need vigorous screening to first detect cancer using the imaging
modality and segment such tumors. AI plays a vital role in tumor
segmentation (Alakwaa et al., 2017; Jiang et al., 2018; Kamnitsas
et al., 2017; Pereira et al., 2016; Prastawa et al., 2004; Skourt et al.,
2018) and the classification of cancers (Tandel et al., 2019; Zlo-
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Fig. 3. 3D shape estimation of the heart (Courtesy (Keller et al., 2020)).

chower et al., 2020). Accurate detection of cancers can help in
deciding the treatment plans and can further be useful in the man-
agement of COVID-19 infection.

4.3 AI-based myocarditis imaging

There are strong evidences suggesting microbial infection due
to COVID-19 leads to myocarditis resulting in cardiac injury and
inflammation (Cau et al., 2020; Siripanthong et al., 2020; Tavazzi
et al., 2020; Woudstra et al., 2018). The abnormalities of heart
shape can be easily visualized through different imaging modali-
ties (Biswas et al., 2019; Suri, 2000). Nicol et al. (2020) showed
the role of cardiac MRI with T2-weighted mapping sequences in
identification of focal lateral subepicardial late gadolinium en-
hancement and myocardial inflammation. Another study by Zhao
et al. (Zhao and Yuan, 2020) also showed the role of CMRI for
computing the left ventricle (LV) function using 4-D imaging on
myocarditis patients. In relation to myocarditis imaging in the
COVID-19 era, there are many cases of AI-usage. A case con-
trolled research was performed on 21 patients for early gadolinium
enhancement (EGE) study. The patients were divided into posi-
tive and negative EGE groups to study LV parameters which were
accurately detected through the AI (Yuan et al., 2019). Four ex-
amples of MR images studied for a patient admitted to Cagliari
Hospital are shown in (Fig. 4). Attia et al. (2020) showed the role
of AI-based ECG where the authors computed the probability of
ejection fraction (EF)≤ 40% of 90.2%, and echocardiographic EF
of 35%. Another patient had a pre-existing EF≤ 40%, accurately
detected by AI before and after diagnosis. One other patient had a
low EF detected by AI.

The extent of myocarditis damage to the heart can also be mea-
sured through echocardiographic quantification of the left ven-
tricular ejection fraction in automated way through AI. There are
several AI models for detecting these abnormalities automatically
(Biswas et al., 2019). This is possible through automated bor-
der delineation of endocardial boundaries and then computation
of the end-systolic and diastolic volumes. In this regard, DL has
been used in several studies with varying degree of success. Hubel
andWiesel (1962) performed LV segmentation using DLwith per-
formance parameters Jaccard distance (JD) at 0.83, average error

(AV) at 0.91, mean absolute distance (MAD) at 0.95 and average
perpendicular error (AVP) at 0.83. An ML-based method for esti-
mation of LV ejection fraction was developed with sensitivity and
specificity at 0.90 and 0.92, respectively for detection of EF (Asch
et al., 2019). Further, any variation of normal behavior can also
be detected using the AI modules. With regards to this, in one
study (Ghorbani et al., 2020) a DL network was able to accurately
identified the pacemaker, enlarged left atrium, left ventricular hy-
pertrophy with an of AUC of 0.89, 0.86 and 0.75, respectively. The
performance of detection of left ventricular end systolic and dias-
tolic volumes (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2

= 0.50) from a large dataset of 2850 patients.

5. Cardiovascular risk monitoring using
surrogate markers

Since the risk of CVD is best predicted by taking the
atherosclerotic burden via an imaging modality, it is preferred to
use non-invasive scanning and risk assessments. This can be ap-
plied to all categories of patients, such as asymptomatic, mildly
symptomatic, or severely symptomatic for COVID-19. Since the
genetic makeup of the carotid artery is the same as the coronary
artery (Sugiyama et al., 2001), one can choose surrogate biomark-
ers for risk assessment. It has been well established that one
can also measure the 10-year CVD by fusing the laboratory-based
blood biomarkers (LBBM) with image-based phenotypes. Thus, a
five or 10-year CVD risk can also be determined while the patient
with cardiac injury has a laboratory test and noninvasive carotid
ultrasound scans (Johri et al., 2013; Khanna et al., 2019b; Saba et
al., 2012b).

5.1 Non-invasive monitoring of surrogate CVD markers

We have to look for ways and means for CVD risk assess-
ment, which is safe, reliable, and cost-effective for patients dur-
ing the COVID-19 pandemic. AtheroEdge™ is an automated
software tool (Molinari et al., 2014, 2011, 2010), which can be
used for monitoring the plaque build-up in carotid and coro-
nary arteries, which can be affected due to coronavirus. Athero-
Point™ has developed a commercial-grade, completely patented,
and 510(K) FDA approved software package called-AtheroEdge™
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Fig. 4. A patient (27 years old) was admitted to Cagliari University Hospital, Italy with fever and chest pain, without any significant past
medical history. The onset of symptomatology dated back about one week. His initial investigation showed elevated troponin levels at laboratory tests.
Electrocardiography displayed ST-segment elevation. Echocardiography was normal. A cardiac magnetic performance was performed. T2 STIR (panel
a) showed an increased signal in mid-basal inferior and inferior-lateral segments.T2 mapping values (panel b) showed an increased signal in mid-basal
inferolateral segment The analysis of T1 mapping (panel c) showed an increase in signal at the same segments. In the sequences acquired later after
contrast, an area of sub-epicardial LGE in mid-basal inferior and infero-lateral segments was observed with a concomitant involvement of the adjacent
pericardium (panel d) (Courtesy of Luca Saba, AOU, Italy).

1.0 (Cuadrado-Godia et al., 2019, 2018b; Khanna et al., 2019c;
Molinari et al., 2014, 2011, 2010; Saba et al., 2012a,c) that can
jointly estimate the carotid plaque and wall thickness in carotid
ultrasound (CUS) scans. AtheroEdge™ 1.0 automatically com-
putes the five imaging biomarkers, called carotid ultrasound im-
age phenotypes (CUSIP) (Khanna et al., 2019d,b; Molinari et al.,
2014). These measurements are used to compute the compos-
ite baseline risk of patients called AtheroEdge Composite Risk
Score 1.0 (AECRS1.0) (Khanna et al., 2019d,b; Viswanathan et
al., 2020b). The AtheroEdge™ 1.0 is a well-validated package
against the gold standards such as manual measurements and cross
imaging modalities such as MRI and CT (Molinari et al., 2014,
2011; Saba et al., 2018a,b, 2016, 2012c). AtheroEdge™1.0 showed
a precision of 98.7% (Krishna Kumar et al., 2017; Saba et al.,
2018a). Currently, AtheroEdge™ 1.0 is being used at multiple
diagnostic centers around the world for the collection of patient
data and more sophisticated CVD/stroke preventive screening de-
velopment (Liu et al., 2005; Molinari et al., 2014). An epidemi-
ological study of 885 patients in collaboration with the London
School of Hygiene and Tropical Medicine (LSHTE), London, UK,
was conducted by AtheroPoint™ LLC to validate the performance
of AtheroEdge™ 1.0 software (Ikeda et al., 2013; Molinari et al.,
2014). This study showed a 94.7% agreement between the auto-

mated and manual measurements, even in the presence of low-
contrast/low-resolution carotid ultrasound scans (shown in Fig. 5).
Furthermore, AtheroEdge™ 1.0 also showed higher accuracy and
reproducibility on the low-resolution images (Ikeda et al., 2013).

AtheroPoint™ showed a strong association between the CUSIP
measured using AtheroEdge™ 1.0 and (a) SYNTAX score and (b)
Ankle Brachial Index (ABI) (Ikeda et al., 2014, 2013), which are
the relevant biomarkers of CVD. Very recently, AtheroEdge™ 1.0
was used to detect the total plaque area (TPA) morphology and ge-
ometrical TPA, which are the essential phenotypes of CVD/stroke
events (Khanna et al., 2019c; Lucatelli et al., 2016). All these stud-
ies projected the use of AECRS1.0 for CUSIP measurements from
the common carotid artery. Another study was conducted to show
the relationship between the degree of leukoaraiosis (LA), mea-
sured as a hemispheric LA volume, in brain MRI and CUSIP mea-
sured using AtheroEdge™ 1.0 (Lucatelli et al., 2016).

5.2 Non-invasive CVD risk assessment beyond "current
COVID-19 time"

The AtheroEdge™ 1.0 software package computed the auto-
mated CUSIP from the given CUS scans. Multiple studies have
reported the effect of conventional cardiovascular risk factors
(CCVRF) on the annual progression of cIMT and plaque area
(PA) (Banchhor et al., 2017a; Johri et al., 2013; Osondu et al.,
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Fig. 5. (a) Carotid artery used as a surrogate of coronary artery disease. (b) Carotid artery scanning (Courtesy of AtheroPoint™, CA, USA).

2018; Rosvall et al., 2015; Viswanathan et al., 2020a,d). Based on
this concept, AtheroPoint™ LLC, USA, had developed an inte-
grated (office-based biomarkers + laboratory-based biomarkers +
carotid ultrasound image-based phenotypes) 10-year image-based
CVD/stroke risk statistical calculator called AtheroEdge™ 2.0,
that computes the AtheroEdge Composite Risk Score 2.0 (AE-
CRS2.0) (Biswas et al., 2020; Johri et al., 2013; Khanna et al.,
2019d,b; Saba and Suri, 2013; Suri et al., 2010; Viswanathan et
al., 2020b,c) (shown in Fig. 6) for 10-year risk, while AECRS1.0
was for the current risk (without CCVRF). This AECRS2.0 (Johri
et al., 2013; Khanna et al., 2019d,b; Suri et al., 2019) has been
shown to be stronger than conventional cardiovascular risk calcu-
lators (CCVRC) (Conroy, 2003; Goff et al., 2014; Hippisley-Cox
et al., 2017; Kothari et al., 2002; D’Agostino et al., 2008; Ridker
et al., 2007; Stevens et al., 2001) because AtheroEdge™ 2.0 pro-
duced a larger area-under-the-curve (AUC) in comparison to all
of the CCRVC. This is due to the integration of laboratory-based
biomarkers and office-based biomarkers with current CUSIP.
AtheroPoint™ recently showed that AtheroEdge™ 2.0 could do
a better 10-year CVD/stroke risk estimation when the carotid
bulb segment is considered compared to the common carotid
artery (Saba et al., 2019). The cumulative ranking of the ten
CCVRC demonstrated that QRISK3 was the closest calculator to
AtheroEdge™ 2.0. Additionally, in a study by ranking cardiovas-
cular risk factors, the AECRS 2.0 values ranked at the topmost po-
sitions with higher odds ratios compared to the CCVRF (Saba et
al., 2019). Since the epithelial dysfunction, which leads to plaque
rupture, can be due to SARS-CoV-2 (pathway III-B, Fig. 2), there-
fore, such calculators can be valuable to track the composite risk
on patients who are infected by COVID-19. Note that, although
there is no concrete evidence of relationship between myocardi-
tis and atherosclerosis, though the former may lead to CVDs, the
risk calculators developed are limited to coronary/carotid imag-
ing biomarkers only. In the future new risk calculator needs to
be developed based on vasopasm, myocarditis as well as coro-
nary/carotid imaging.

5.3 Role of telemedicine with and without AI in COVID-19

In monitoring, several telemedicine-based approaches have
been adapted in support of COVID-19 consultations (Smith et al.,
2020; Vidal-Alaball et al., 2020). Telemedicine has been benefi-
cial to authorities in controlling the epidemic situation in India dur-
ing cholera (Smith et al., 2020), and visceral leishmaniasis (Bhu-
nia et al., 2012) epidemics. In advanced economies, telemedicine,
in combination with AI, has used data from social media (Tham-
man et al., 2020) for successful disease tracking, quantifying dis-
ease dynamics, projecting the pandemic curve in high-risk clus-
ter zones, and regulating it from further spread (Bodnar, 2015).
For example, the data stream during the Zika epidemic (Daughton
and Paul, 2019), Influenza A H1N1 pandemic (Signorini et al.,
2011), and Chikungunya epidemic (Mahroum et al., 2018) showed
a correlation between the volume of the data streaming using
telemedicine and pandemic curve. A similar pattern was also no-
ticed during the current COVID-19 pandemic in China (Li et al.,
2020b). A linear regression model was developed to estimate the
correlation between a dataset of 115,299 Weibo posts (like Face-
book of China) extracted using keywords such as "coronavirus",
"epidemic", "Wuhan coronavirus", etc. and the number of active
cases inWuhan andMainland China. This model showed ten coro-
navirus cases per 40 posts (R2 = 0.621 and P < 0.001) in Hubei
province, while 10 coronavirus cases per 60 posts (R2 = 0.652 and
P < 0.001) in Mainland China (see Fig. 7). This information can
help authorities to locate high-risk regional areas where the posts
originate in large numbers.

Therefore, the application of AI-based telemedicine can help in
building an epidemic model to control pandemics in future smart
cities (Wong et al., 2019). Mann et al. (2020) showed that be-
tween 2nd march to 14th April 2020 the telemedicine visits in-
creased from 369.1 to 866.8 per day for urgent care and 94.7 daily
to 4209.3 (4345% increase) in non-urgent care. Gadzinski et al.
(2020) showed the role of telemedicine for COVID-19. The US
government has encouraged video visits from any originating lo-
cation, including their homes, as part of telemedicine-based care
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Fig. 6. AECRS system for composite risk score computation. Left: Renal biomarker "eGFR" has the largest contribution to the CVD risk on the left
common carotid. Right: Due to plaque, atherosclerosis phenotypes show the highest contribution in the CVD risk on the right common carotid artery
(Courtesy AtheroPoint™, Roseville, CA, USA).

Fig. 7. Linear regression analysis for the COVID-19 pandemic relating to the number of Weibo posts against the actual growth of pandemic
(daily coronavirus cases) (Li et al., 2020b).

(Newsroom, 2020). There is a standard CPT code (99213 in the
USA) that can be used for reimbursements. In a world where so-
cial distancing is the norm, telemedicine combined with AI in the
form of chatbots, wearable devices, etc. can act as a preventive
measure for COVID-19 (Wang and Bhatt, 2020).

5.4 Monitoring cycle of the patient during a pandemic

Fig. 8 shows the AI/TM application for tracking patients. There
are two major components for COVID19 screening: (i) primary
and (ii) secondary. Primary screening: Primary screening is con-
ducted with the help of the robot and AI/TM by questioning ba-
sic symptoms while keeping social distance rules. This is already
in place in several hospitals around the world. If the COVID-19
symptoms are positive, the patient needs to be quarantined (Q1)
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Fig. 8. Role of user-interactive AI, telemedicine, and smart cities on the pandemic (Courtesy of AtheroPoint™, CA, USA).

or sent home if the patient is uninfected (G1).
The quarantined patient is monitored (M1) continuously using

AI/TM system and evaluating the CVD risk (shown in RED color).
If the COVID-19 tests (T2) are again positive, the patient must be
isolated (I) in ICU, and the patient's deteriorating condition must
be monitored (M2) using AI/TM system. At this point, the pa-
tient would need ventilation and, if worsened, showing the loss of
life/death. Secondary screening: If it turns out to be negative, over
time, the patient should undergo "secondary screening" using the
AI/TM system. COVID-19 test is conducted (T3), and if it turns
out to be positive, the feedback loop triggers again (shown as RED
dotted line). The secondary infection can be also triggered if the
patient is admitted to the hospital (Pacis et al., 2018).

5.5 Recent AI systems in monitoring and diagnosing
COVID-19

COVID-19 outbreak has led to a flurry of research and devel-
opment activities in AI-based computer-assistance tools (Suri et
al., 2020). The maximum of the research has been directed to-
wards tracking and prediction, diagnosis and prognosis, treatment,
and social control. In tracking and prediction, AI models such
as the epidemiological SIR model were used to develop contain-
ment strategies to reduce the spread rate (Maier and Brockmann,
2020; Song et al., 2020). AI research has led to the development
of cheaper and scalable computer aided-tools for diagnosis in the
area of medical imaging. A majority of this research has been per-
formed in the area of characterization of COVID-19 infected lung
scans (Butt et al., 2020; Harmon et al., 2020; Ilyas et al., 2020; In-
ciardi et al., 2020a; Jamshidi et al., 2020; Ozsahin et al., 2020; F.
Shi et al., 2020a) and mortality risk of patients (Jiang et al., 2020;
Yan et al., 2020a). AI has also the potential of new drug discovery
for COVID-19 as shown by recent works (Beck et al., 2020; Steb-
bing et al., 2020). Applications have been shown to control crowds
and implementing social distancing by collecting heat signatures
through infrared cameras in public places (Chun, 2020), and in-
formation update about medical conditions (Hense et al., 2020).

6. Recommendation for handling pandemics
using AI-based platforms

The following are the recommendations of this universal voice
on the role of artificial intelligence in cardiovascular risk assess-
ment during COVID times and beyond.

6.1 Disease-specific AI platforms
Patients with a specific disease (say diabetes, hypertension,

cancer, ARDS, and neurological disorder) must be tracked to ob-
tain biomarkers of a specific disease for training AI platforms spe-
cific to the "type of disease". The management of different dis-
eases comes from different medical departments. Therefore, the
risk stratification for different disease points can be based on dif-
ferent AI-platforms. For patients who are having multiple dis-
eases, we will need classification methods that can handle mul-
tiple diseases, and such AI-platform will be a fused AI-platform
that can accept patients having multiple diseases. This is since
AI (especially deep learning) will be able to handle the nonlinear
variations dynamically. All the above requires validation using
multimodality imaging utilizing registration models (Guo et al.,
2006; Narayanan et al., 2009; Suri et al., 2005).

6.2 Cohort sizes
A large cohort needs to be built for these patient databases spe-

cific to the disease. This can be a global endeavor for future track-
ing, diagnosis, and prognosis of the pandemic. Although DL re-
quires a large cohort for training, in some cases, where enough
training data may not be available for classifying specific diseases
(Gajardo et al., 2020), AI programmers use techniques such as data
augmentation (DA) (Mikolajczyk and Grochowski, 2018; Shorten
and Khoshgoftaar, 2019) and transfer learning (TL) (Huynh et al.,
2016; Tan et al., 2018). In DA, the main aim is at building artifi-
cial data by transforming existing data samples to help the model
train from large intraclass variances. In TL, the knowledge in the
form of trained AI model parameters on relatable diseases is used
to characterize the specific ones.

6.3 A note on personalized medicine using AI-based
systems

The advent of big data for medical health records and patient
information has given a promising expectation for a faster and ac-
curate diagnosis and treatment (Dilsizian and Siegel, 2014; Gru-
son et al., 2020; Kagiyama et al., 2019; Krittanawong et al., 2020).
AI-models are therefore required to "mine" exact information from
this data volume to assist clinicians in performing real time diag-
nostic and therapeutic recommendations. Hence it is not uncom-
mon that AI-based studies performing diagnostic and even ther-
apeutic services for cardiovascular diseases. In a recent work,
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Fig. 9. (a) Echocardiographic scan taken, (b) AI-based LV segmentation, (c) post-processing, (d) clinical interpretation, and (e) risk estimation
and prognosis (Courtesy of (Badano, 2020)).

an AI-based study segmented the plaque volume from the carotid
artery ultrasound scans and estimated the CVD risk by measur-
ing the cIMT (Biswas et al., 2018). In another work by the same
group, the AI model was used to compute the stenosis and esti-
mate the CVD risk in the same cohort (Saba et al., 2019b). An-
other example of personalized approach to heart care is shown in
Fig. 9 (Badano, 2020). The AI-based approaches can help in four-
out-of-five stages i.e, segmentation, post-processing, interpreta-
tion and risk estimation and prognosis with each stage using a
separate model. Overall, it is projected that AI-based diagnosis
and treatment will lead to effective precision care and better mon-
itoring outcomes.

6.4 Biobank developments
There is a clear need to build universal biobanks that can be

shared with genuine institutions involved in AI platform develop-
ments. There needs to be a trail of documents involved in obtain-
ing such biobanks for research and commercial developments for
the benefit of humanity. Blockchain models can be adapted to im-
prove data sharing.

6.5 Telemedicine embedded with AI
Advanced telemedicine applications with "embed A" would be

more beneficial for patient monitoring.
The input data can be fed in AI-based solutions for better clin-

ical oriented results via remote access.

6.6 Smart city developments with Blockchain,
telemedicine, and AI

With advanced AI developments and Blockchain technologies,
cities can opt for joining the model for smart city developments
using to avoid the worsening of catastrophes. A representative di-
agram of pandemic risk management using AI, telemedicine, and
smart cities is shown in Fig. 7.

7. Conclusions
This perspective presented the role of AI in medicine and

specifically throwing light on the area of diagnosis and mon-
itoring strategies for heart injury due to COVID-19. Imaging
and non-imaging biomarkers can be used for machine learning
and deep learning models. Non-invasive cardiovascular surrogate
markers may be useful for early diagnosis of acute cardiovascular
and thromboembolic complications, as well as for monitoring and
management of heart disease in such patients during COVID-19
times or beyond, such as five or ten-year risk assessment systems
which will be increasingly important for the growing number of

COVID-19 survivors. The study also presents recommendations
for efficiently utilizing the AI models during the current and fu-
ture pandemics.
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