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Global diabetes mellitus prevalence is increasing. Metabolic disor-
ders, such as type 2 diabetes, are associated with abnormal cardiac
electrophysiology and increased risk of arrhythmias. Patients with
both diabetes types (1 and 2) suffer from sudden cardac death (SCD)
as a leading cause of mortality. Cardiovascular death is defined as
death attributable to cardiovascular disease (CVD) occurring shortly
within the symptom onset. This usually arises from life-threatening
ventricular tachyarrhythmias that lead to hemodynamic instability,
and subsequent shock and death. A variety of pathways have been
suggested that link hypoglycaemia to the development of adverse
cardiovascular outcomes, including blood coagulation abnormali-
ties, inflammation, endothelial dysfunction and sympathoadrenal
responses. We propose a four-step framework for the optimisation of
SCD risk factors in diabetic patients, to include: raising awareness to
influence health behaviour, provision of screening programs, use of
technology within educational programs to improve patient engage-
ment and effective provision of diabetic community teams.

Keywords

Diabetes mellitus; Cardiovascular disease; Sudden cardiac death; Hypogly-

caemia; Cardiomyopathy

1. Introduction

The global prevalence of diabetes mellitus is increasing,
paralleling increasing rates of obesity, dietary changes and
sedentary lifestyles. In 1980, just 4.3% of all adults had dia-
betes (108 million); this later increasing to 9.0% in 2014 (422
million) and is now expected to reach 12.5% (700 million) by
2025 [1]. In addition to this, complications resulting from di-
abetes accounted for 6% of global mortality in the year 2000
[2].

Diabetes is associated with multiple co-morbidities, in-
cluding increased risk of cardiovascular disease (CVD), as
well as nephropathy (up to a quarter of type-2 diabetic pa-
tients present with microalbuminuria [3]), neuropathy (pe-
ripheral neuropathy associated in up to half of patients with
diabetes [4]), retinopathy (seen in up to 10% of patients in

Rev. Cardiovasc. Med. 2021 vol. 22(2), 301-314
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the pre-diabetic stage [2]) and certain types of cancer [5, 6].
Metabolic disorders such as type 2 diabetes and metabolic
syndrome result in abnormal cardiac electrophysiology, in-
creasing the risk of arrhythmias that may precipitate SCD [7-
9].

SCD is defined as death attributable to CVD occurring
shortly within the symptom onset, usually arising from life-
threatening ventricular tachyarrhythmias that cause hemo-
dynamic instability, leading to shock and death [10]. Over
350,000 sudden cardiac deaths occurred in 2014 in the USA
[11], making it an important public health issue.

A recent meta-analysis suggests that diabetic patients have
twice the risk of SCD in the general population (relative risk:
2.02 (95% CI: 1.81-2.25)) [12]. Given that it occurs shortly
after the onset of symptoms, there is little time for effec-
tive medical interventions. A majority of SCD occur among
the general segments of the population, therefore screening
methods applicable to the general population are required.
There continues to be interest in identifying clinically useful
markers for SCD among the general population, as epidemi-
ological studies have shown that half of SCD victims have no
previously diagnosed CVD at the time of death [13, 14].

It is now evident from previous perspective studies that
patients with diabetes are at an increased risk of cardiovas-
cult death both in the general population and among different
patient groups [12]. This review aims to organise the patho-
physiology of SCD in diabetes and outline the potential risk
factors. Moreover, this review aims to propose a framework
for the optimisation of SCD risk factors in patients with dia-
betes.

2. Pathophysiology of SCD in diabetes

Hypertension and insulin resistance mechanisms are likely
to be the most important in the pathophysiology of metabolic
syndrome and incident SCD in Diabetes. Indeed, insulin re-
sistance, inflammation and endothelial dysfunction are all in-
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carinic acetylcholine receptors (M1-M5).

terrelated pathophysiological processes contributing to the
development of hypertension, metabolic syndrome and car-
diovascular disease [15].

Elevated fasting plasma glucose is associated with an in-
creased risk of SCD [16].
been linked with a pro-inflammatory state and the elevation
of inflammatory markers [17]. Low-grade inflammation may
also increase the risk of metabolic syndrome, although some
of this risk is mediated through obesity and factors related to
insulin resistance [16], which contributes to an increased risk
of SCD.

Moreover, insulin resistance has

3. Biochemical mechanisms of SCD in
diabetes mellitus

There are various biochemical mechanisms that may lead
to cardiac mortality in diabetic patients. These fall within
four distinct categories:

(1) Nervous system involvement, including arrhythmo-
genic effects caused by cardiac autonomic neuropathy (CAN),
repolarization disorders and hypoglycaemia-mediated sym-
pathetic activation.

(2) Disorders involving the coagulation cascade, includ-
ing atherosclerosis-induced myocardial ischaemia, endothe-
lial dysfunction, platelet aggregation or thrombophilic ef-
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fects.

(3) Pro-inflammatory tendencies, leading to myocardial
alterations, fibrosis, associated hypertension and/or uraemia.

(4) Repolarization failures i.e., disorders of potassium bal-
ance (as seen in diabetic nephropathy and hypoglycaemia)
[18].

(Note that the following biochemical mechanisms are not
necessarily arranged in the above order, yet they will all fall
into one if not more of the above categories).

4. The role and function of the autonomic
nervous system on inflammation in diabetes
mellitus

Physiological control of the autonomic nervous system
(ANS) function is divided into the sympathetic nervous sys-
tem (SNS) and parasympathetic nervous system (PNS). SNS
stimulation traditionally results in “fight or flight” responses,
such as increased heart rate and blood pressure, heightened
arousal and mobilization of energy stores etc. (as shown in
Fig. 1) [19]. This is mediated by adrenaline, noradrenaline
and dopamine via interaction with G-protein coupled adren-
ergic receptors (a1, a2, 81, 52, 33 and dopaminergic recep-
tors D1, D2, D3) [20]. By contrast, PNS stimulation leads
to effects such as enhanced digestive functions, reduced heart

Volume 22, Number 2, 2021
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rate and cardiac contractility. The primary neurotransmitter
used here is acetylcholine, which activates nicotinic ligand-
gated ion channels and G-protein coupled muscarinic acetyl-
choline receptors (M1-M5) [19].

The ANS is understood to mediate the inflammatory re-
sponse. It can detect injury and infection, and thus activate
a cholinergic anti-inflammatory pathway which modulates
the response—this has been cited as a target for future ther-
apies of diabetes [21]. This arc is stimulated by exogenous,
Pathogen-Associated Molecular Patterns (PAMPs) or en-
dogenous, Damage-Associated Molecular Patterns (DAMPs),
which in turn stimulate receptors in the vagus nerve and
associated glomus cells. The innate immune systemic re-
sponse to PAMP and DAMPs is reduced by activation of the
vagus nerve-to-spleen pathway, which in turn leads to re-
duced inflammation and cytokine release. This is also known
as the “inflammatory reflex circuit”. It uses both the vagus
nerve (parasympathetic branch) and splenic nerve (sympa-
thetic branch), although this differentiation is still under de-
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bate [22]. It was Watkins et al. [23] who discovered that sen-
sory neurons were responsible for detecting inflammation in
tissues. Interleukin (IL)-1 is the inflammatory cytokine re-
sponsible for stimulating the sensory neurons, which is me-
diated by the vagus nerve.

Specialized glomus cells, in conjunction with the ANS,
sense levels of oxygen, glucose and other metabolites. Upon
activation, these cells release dopamine and noradrenaline,
which depolarise the sensory fibres of the vagus nerve, which
travel to the brainstem and initiate a motor efferent arc [24].
While IL-1 initiates the afferent arc via stimulation of these
glomus cells, there are several other ligands derived from
macrophages, monocytes and dendritic cells which can ac-
tivate toll-like receptors and result in increased expression
of nuclear factor-kappa B (NF-xB), consequentially releas-
ing other inflammatory cytokines, such as tumour necrosis
factor-o (TNF-«) and IL-6 [24]. There is therefore an in-
terplay between the autonomic system and inflammatory re-
sponses in both an initiatory and an inhibitory sense (Fig. 2).
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The efferent arc of this inflammatory response is known
as the cholinergic anti-inflammatory pathway [20]. Acetyl-
choline interacts with innate immune cells that express the
nicotinic acetylcholine receptor subunit a7 («7nAchR). This
has a tonic inhibitory role in the immune cells, e.g., the effects
of the parasympathetic nervous system on reducing heart
rate. This is a defensive reflex that protects the organism
from organ damage and death under prolonged exposure to
syndromes of excessive cytokine release and exposure (e.g.,
during infection, stress and trauma). This confirms the neu-
roregulatory role of the ANS in the inflammatory response.

The current literature on cardiac autonomic neuropa-
thy (CAN) reflects that there is an early-phase reduction
in parasympathetic tone/function associated with increas-
ing resting heart rate and derangement of the expira-
tion/inspiration ratio of heart rate variability [20].

It is not wholly understood if it is caused due to a loss
in parasympathetic tone or an early augmentation of sympa-
thetic tone. However, from the outset in diabetes mellitus,
there is reduced parasympathetic function and a relative in-
crease in sympathetic function, which imbalances the sympa-
thetic/parasympathetic tone [20].

Later, sympathetic denervation follows from the ventric-
ular apices to the base of the heart. This leads to an imbalance
in tone, which exposes the patient to an increased propensity
to arrhythmias [25].

Impaired glucose tolerance (also known as the pre-
diabetic stage) is also associated with reduced PNS modula-
tion of the heart and a shift towards increased sympathetic
tone. We thus infer that parasympathetic tone may decline
over time due to autonomic imbalances that shift towards in-
creased sympathetic tone during the transition from regular
to impaired glucose tolerance, before finally resulting in DM
[26].

Chronic hyperglycaemia has also been linked to inflam-
mation via increases in protein glycation causing accumu-
lation of advanced glycation end products (AGEs) in body
tissues [20].
tion of AGEs in collagen tissue shows a correlation with
the severity of peripheral and autonomic nerve abnormal-
ities in diabetes, which occurs prior to clinical manifesta-
tion [27]. These AGEs form intra-, and extracellularly via
complex protein, lipid, and nucleic acid arrangements, which
lead to cross-linking (Fig. 3) [28]. This process is controlled
through RAGE, a pattern recognition receptor, commonly
expressed, but induced by inflammation-initiating reactions.
Carboxymethyl lysine (CML) is another AGE, which patients
with diabetes often have higher levels of. It also activates
RAGE. The AGE-RAGE interaction causes a chronic cas-
cade of inflammation. Diabetic mice that had their RAGE re-
moved during a study were shown to have a reduced propen-
sity towards developing neuropathy [29]. Furthermore, a
soluble AGE receptor (SRAGE) can be used as a decoy, and
therefore can further reduce binding of ligands to RAGE and
thus, further inhibit the inflammation cascade. Severe and

Clinical evidence shows that an accumula-
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autonomic neuropathy presence has shown to have a corre-
lation to reduced levels of SRAGE in patients with Charcot
neuropathy [30]. There are low levels of RAGE expression in
regular homeostasis, however during biological stress, AGE
accumulation increases, leading to increased RAGE expres-
sion.

Asshown in Fig. 3, the hypothesis shows that in metabolic
syndromes and diabetes, “constant increases in low-level in-
flammation is mediated by a large group of exogenous and en-
dogenous ligands along with the CNS and ANS” [20]. Thus,
the loss of autonomic control, along with reduced parasym-
pathetic function (which is a common feature of loss of au-
tonomic balance in DM), initiates an inflammatory response
which, if not controlled, results in considerable morbidity
and mortality.

Interestingly, reduced heart rate variability correlates to
an increase in circulating inflammatory markers C-Reactive
Peptide (CRP), IL-6 etc. The Adiponectin-to-leptin-ratio,
which is a marker of adipose tissue-derived inflammation, is
correlated with cardiac autonomic imbalance, and can be seen
early in T2DM patients [31]. Another study found a link
between loss in HRV (heart rate variability) and IL-6 levels
[32], with another study finding an inverse association be-
tween HRV and CRP levels [33]. The authors of the previous
study concluded that this effect could be due to low-grade in-
flammation from a reduction of anti-inflammatory cascades
in the cholinergic pathway, which seems to be consistent with
the role of the cholinergic anti-inflammatory pathway being
to exert a tonic inhibitory influence on immune responses,
which shows potential as a target for future intervention.

5. Biochemical basis for thrombotic events in
diabetic patients

Perhaps the major risk factor developed in patients with
diabetes is a propensity to incur thrombotic events. Accord-
ing to one source, up to eighty percent of patients with di-
abetes mellitus die from thrombotic events [34]. Of these,
seventy-five percent are due to cardiovascular complica-
tions, with the remainder being split between cerebrovas-
cular and peripheral vascular complications. Thus, we can
assume that the vascular endothelium is dysfunctional in di-
abetes mellitus. It has been observed that coagulation acti-
vation markers (i.e., prothrombin activation fragments 1 &
2) and thrombin—anti-thrombin complexes are elevated in
diabetes. Furthermore, plasma levels of clotting factors in-
cluding fibrinogen, kallikrein, factors VII, VIII, XI and von
Willebrand Factor (vWF) are also elevated in diabetes [34].
The levels of anticoagulant protein C (PC) is also decreased.
This distorts the coagulative balance of blood towards the
pro-thrombotic side. Furthermore, the fibrinolytic system
(the primary mechanism of clot removal) is relatively inhib-
ited in diabetes. This is due to abnormal clot structure for-
mation which are more resistant to degradation, as well as
an increase in plasminogen activator inhibitor type 1 (PAI-

1) [34]. In addition to this, there is an increase in circulat-
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ing platelet agonists, along with an increased platelet contrac-
tile force (PCF), and the presence of higher levels of platelet
release products (B-thromboglobulin [35], platelet factor 4
[36], thromboxane B2 [37]). It is thus inferred that platelet
activity is increased drastically in diabetes mellitus.

6. Effect of diabetes on serum levels of
potassium

Insulin increases cell permeability to potassium via activa-
tion of the sodium-potassium ATPases on cell membranes.
Patients with Type 1 Diabetes (more so than type 2 diabetes)
suffer from insulin deficiency, which contributes to net ef-
flux of potassium from cells. Thus, hyperkalaemia can be
induced through the net efflux of potassium into the extra-
cellular space [38]. This efflux of potassium can be caused
by intracellular dehydration, which leads to sodium and wa-
ter entering the cell at the expense of potassium [39]. The
administration of dextrose in water as a short-term therapy
for hyperkalaemia may be counterproductive in patients with
type 1 diabetes mellitus due to insufficient or unpredictable
endogenous secretion of insulin.

Diabetes can also induce hypokalaemia if circulating in-
sulin levels remain too high for too long, leading to a re-
distribution of potassium ions from the extracellular to in-
tracellular fluid compartment [18]. Gastrointestinal loss of
potassium ions may also occur in patient with diabetes with
malabsorption syndromes such as diabetic-induced motility
disorders, bacterial overgrowth and chronic diarrheal states.
There may also be renal potassium loss due to osmotic diure-
sis and/or coexistent hypomagnesemia, which causes the re-
nal outer medullary potassium channel to secrete more potas-
sium to correct the imbalance [40]. Insulin-induced hypo-
glycaemia may also encourage adrenaline and aldosterone se-
cretion from the renal medulla, which can further exacerbate
mild hypokalaemia [41].

7. Biochemical link between diabetes and
cardiomyopathy

As shown in Fig. 4, there are three main metabolic dis-
turbances responsible for diabetic cardiomyopathy [42]. Di-
abetes typically starts as hyperlipidaemia (via increases in
triglycerides (TGs) and non-esterified fatty acids (NEFAs)
along with early hyperinsulinemia, which develops into pan-
creatic 3-cell failure, eventually resulting in chronic hyper-
glycaemia [42]. Patient with type 1 diabetes differ primarily
from those with type 2 diabetes as there usually isn’t a period
of hyperinsulinemia, which leads normally to early-onset (in-
stead of late-onset) hyperglycaemia. The combined effects of
increases in NEFAs, along with reduced insulin action (and
efficacy) and prolonged hyperglycaemia are considered trig-
gers to the cardiac phenotypes in diabetes, cumulatively re-
sulting in myocardial damage and remodelling [43].

NEFAs induce atypical protein kinase C activation, which
phosphorylates and thus activates kB kinase. IxB kinase
phosphorylates serine residues on insulin receptor substrate
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1 (IRS-1), which stops it from binding to SH2 domains of the
p85 regulatory subunit of phosphophatidylinositol 3-kinase
(PI3K), which impairs insulin signal transduction [44]. This
mechanism is active in skeletal muscle and adipose tissue;
however, it is less certain whether it is active in cardiac mus-
cle. Intracellular NEFA increases can also alter insulin sig-
nalling without affecting the IRS-1/PI3K activation pathway.
Akt-1 activation relies on the formation of phosphatidylinos-
itol 3,4,5-triphosphate (PtdIns(3,4,5)P3), to bind and activate
membrane-bound kinases that are responsible for phospho-
rylating serine and threonine residues on Akt-1 [45-48]. NE-
FAs are natural ligands for peroxisome proliferator-activated
receptor (PPAR) 7. This can induce the upregulation of
phosphatase and tensin homolog (PTEN), which in turn de-
phosphorylates PtdIns(3,4,5)P3, preventing the activation of
Akt-1 [48].

NEFAs can directly alter myocardial contractility inde-
pendent of altered insulin action via increasing NEFA flux
into the myocardium [49]. According to a study by Liu et al.
[50], increases in fatty acyl Coenzyme A (CoA) esters within
cardiac myocytes may modulate myocardial contraction by
opening of the Potassium ATP channel, thus reducing the ac-
tion potential, also reducing transsarcolemmal calcium flux,
leading to reduced myocardial contractility.

NEFA accumulation intracellularly can also directly lead
to cell death under circumstances in which the accumulating
NEFAs fail to undergo (-oxidation. Palmitoyl-CoA (an in-
tracellular intermediate of NEFAs) and serine react to form
sphingolipid ceramide, facilitated by tumour necrosis factor
(TNF) « [50]. Ceramide has been noted to induce cellular
apoptosis via a variety of mechanisms [51], which are said
cause lipotoxicity [49]. Lipotoxicity has been associated with
the reduction of pancreatic [3-cell reserves, however the rel-
evance of the findings in the myocardium remains uncertain.

Cellular insulin resistance typically presages “mature” di-
abetes by a decade or more and, as cellular insulin resistance
increases, the body needs to compensate by increasing cir-
culating plasma insulin levels, leading to chronic hyperin-
sulinaemia. The characteristics of the insulin resistance may
vary in organ systems, and in terms of its metabolic, mito-
genic, pro-survival and vascular impact. However, not all
tissues develop cellular insulin resistance (the myocardium
is one such tissue). Thus, the mitogenic actions of insulin
on myocardium during chronic systemic hyperinsulinaemia
commonly manifest itself as cardiac hypertrophy in diabetic
cardiomyopathy [52-54].

There are at least three cellular mechanisms by which
hyperinsulinaemia can mediate cardiomyocyte hypertrophy
(Fig. 5). One is via the PI3K«a/Akt-1 pathway: Akt-1 acti-
vates the mammalian target of rapamycin (mTOR), which
in turn activates the ribosomal subunit Sékinase-1 and ul-
timately leads to an increase in protein synthesis [55, 56].
Another action of Akt-1 is that it inactivates glycogen syn-
thase kinase-3/3 (GSK-3/3), which inhibits nuclear tran-
scription in the hypertrophic process via the nuclear fac-
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tor in activated lymphocytes (NFAT-3) [57], allowing pro-
hypertrophic transcription proteins to be transcribed. How-
ever, the PI3Ka/Akt-1 pathway can be impaired during
chronic hyperinsulinaemia, in which case these effects would
be mitigated.

There is another pathway that augments myocardial Akt-
1 activation. This is via increased nervous system activation
[58]. There is evidence that chronic Akt-1 activation in car-
diac myocytes is mediated through [32-adrenergic receptors
via protein kinase A and Ca?T -calmodulin dependent kinase
(CaMK). These mechanisms may take over when insulin sig-
nalling is reduced via the PI3K« pathway.

Finally, there are other Akt-1-independent, but insulin-
mediated pathways that also promote cardiac hypertro-
phy. The most notable example is the extracellular signal-
regulated kinase (ERK)/mitogen-activated protein (MAP)
kinase pathways [59, 60]. There is strong evidence that in-
sulin induces the activation of the p38 MAP kinase pathway
[59], as well as the prenylation of both Rho and Ras in the
setting of hyperinsulinaemia, which leads to cardiomyocyte
hypertrophy and extracellular matrix expression. Combined,
these pathways provide a foundation for the development
of cardiac hypertrophy associated with chronic hyperinsuli-
naemia (associated with type 2 diabetes).

The mechanism by which hyperglycaemia mediates tis-
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sue injury through the generation of reactive oxygen species
has been largely elucidated through the work of the Brown-
lee and colleagues (Fig. 4) [61-63]. Hyperglycaemia results
in increased glucose oxidation and mitochondrial generation
of superoxide [62]. Excess superoxide leads to DNA damage
and the activation of poly (ADP ribose) polymerase (PARP)
asareparative enzyme [61]. PARP also mediates the ribosyla-
tion and inhibition of glyceraldehyde phosphate dehydroge-
nase (GAPDH), diverting glucose from its glycolytic pathway
into alternative pathways that are considered the mediators
of hyperglycaemia induced cellular injury. Table 1 (Ref. [64-
73]) shows the end products from these pathways including
AGEs, increased hexosamine and polyol flux and activation
of classical isoforms of protein kinase C. The consequences
of the interactions with these mediators lead to multiple ad-
verse consequences inside the cardiac tissue.

8. Effect of hypoglycaemia on cardiovascular
health

Hypoglycaemia is a common homeostatic imbalance, pri-
marily affecting patients with type 1 diabetes [74], yet is fre-
quent those with type 2 diabetes. Hypoglycaemia occurs pri-
marily as a side-effect of insulin treatment, and also due to
treatment with sulfonylureas (to a lesser degree) [75]. The
associations between cardiovascular outcomes and episodes
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of severe hypoglycaemia are poorly understood. However,
there are a variety of plausible pathways linking hypogly-
caemia to the development of adverse cardiovascular out-
comes, including, but not limited to: blood coagulation ab-
normalities, inflammation, endothelial dysfunction (previ-
ously covered) and sympathoadrenal responses [76].

Hypoglycaemia is known to influence platelet aggregabil-
ity and alter several components of the inflammatory cas-
cade. Hypoglycaemia drastically increases P-selectin expres-
sion (a marker of platelet activation), as well as fibrinogen
and factor VIII levels [76]. Plasminogen activator inhibitor-
1 (PAI-1) is also reduced in studies of subjects with type 1
diabetes mellitus [76]. The combination of these two factors
encourage acute ischaemic events which are seen in patients
with diabetes mellitus and uncontrolled hypoglycaemia. In
another study, subjects with type 2 diabetes mellitus showed
greater platelet aggregation in spite of treatment with aspirin
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and adenosine diphosphate antagonists compared with con-
trol subjects without diabetes [77].

Hypoglycaemia also increases important circulating in-
flammatory markers such as CD40, CD40 ligand, interleukin-
6 (IL-6), CRP, oxidative stress, along with other proinflam-
matory and atherothrombotic biomarkers such as vascular
adhesion molecules vascular cell adhesion molecule 1, inter-
cellular adhesion molecule 1, E-selectin, vascular endothelial
growth factor, and TNF-« [76]. Interestingly however, one
study noted that in patients with type 2 diabetes mellitus, se-
vere hypoglycaemia carried a significant increase in the like-
lihood of experiencing a macrovascular event; however ele-
vated proinflammatory markers were not predictive of sub-
sequent events over a 4-year period [78]. This study further
demonstrates the complexity of the interaction between hy-
poglycaemia and cardiovascular events.
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Table 1. Different metabolic uses of glucose leading to cardiac structural and functional abnormalities in hyperglycaemia.

Mediators Mechanisms of action

Consequences

Increased AGE [64-66]

Increased hexosamine flux
(67, 68]
Increased polyol flux [69, 70]

expression [64]

stress; increased DNA fragmentation [69]; sorbitol-induced AGEs

[70]
Increased protein kinase C

activation [71-73] creased SERCA 2a function [73]

Crosslink RyRs [64]; crosslink type III collagen [65, 66]

Sp1-O-GluN acylation of transcription factors decreasing SERCA2a

Decreased regeneration of reduced glutathione leading to oxidative

Increased cardiac hypertrophy; increased extracellular matrix; de-

Decreased SR calcium release and myocyte con-
tractility; increased ventricular stiffness; impaired
ventricular filling

Prolonged calcium transients; impaired relaxation

Increased myocyte apoptosis; increased ventricular

stiffness

Impaired relaxation; increased ventricular stiffness

NB: AGE, Advanced Glycation End Products; SR, Sarcoplasmic Reticulum.

The normal physiological response to hypoglycaemia typ-
ically involves an endogenous shutdown of insulin secretion
along with release of counterregulatory hormones such as
glucagon and adrenaline, in an attempt to increase glucose
availability for tissues. Adrenaline causes vasoconstriction
and platelet aggregation, and thus in patients with signif-
icant coronary artery disease (CAD) their chances of my-
ocardial ischaemic events may increase [79]. We know that
during acute hypoglycaemia, supply of glucose to the my-
ocardium, splanchnic circulation and brain are prioritised.
Significant autonomic activation also occurs, principally of
the sympatho-adrenal system, resulting in large amounts
of adrenaline released which results in significant haemo-
dynamic changes, such as tachycardia, increased peripheral
systolic blood pressure (SBP), decreased central blood pres-
sure, increased myocardial contractility and increased ejec-
tion fraction [80, 81]. This increase in sympathetic activity,
coupled with the secretion of other hormones and peptides
(in particular endothelin, a powerful vasoconstrictor) have
marked effects on intravascular coagulability and viscosity
[82]. Increases in erythrocyte concentration increases blood
viscosity during hypoglycaemia, whilst platelet activation and
increments in factor VIII and viWF encourages coagulation.
Endothelial dysfunction can occur during hypoglycaemia due
to an increase in CRP, in addition to increased mobilization
and activation of neutrophils and platelets.

The catecholamine excess also directly affects platelet re-
activity and may potentially also be proarrhythmic. For
example, hypoglycaemia significantly prolongs the QT in-
terval, which was an independent predictor of mortality
in the MONICA/KORA Augsburg study [83]. Stahn et
al. [84] also highlighted a significant relationship between
asymptomatic hypoglycaemic episodes and ventricular asys-
toles/nonsustained ventricular tachycardia. Hypoglycaemia
may also impair autonomic function through various auto-
nomic neuropathic mechanisms discussed earlier, which can
lead to reduced heart rate variability. This has been shown
to be an independent predictor of poor outcomes in the
population with diabetes mellitus [83]. Catecholamine ex-
cess may also induce hypokalaemia and increase intracellular
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Ca®*, which can result in delayed repolarizations, along with
the prolongation of action potentials via blockade of cur-
rent through the human ether-a-go-go-related gene (hERG)
potassium channel [76]. All of these delays may be involved
in the development of lethal cardiac arrhythmias.

9. Optimising SCD risk factors
9.1 Screening

The high cardiovascular risk in asymptomatic diabetic pa-
tients has warranted significant interest in the early detec-
tion of silent CAD through screening [85]. As well as ex-
ercise electrocardiogram test (EET), recent technological ad-
vances have been useful to non-invasively assess the pres-
ence and severity of CAD. These include stress echocardio-
graphy (SE), stress radionuclide myocardial perfusion imag-
ing (MPI), coronary artery calcium scoring (CACS) and com-
puted tomography coronary angiography (CTCA) [86].

There is considerable debate regarding whether pre-
emptive coronary revascularization and intensification of
medical therapy based on routine CAD screening may re-
sult in improved outcomes for asymptomatic patients with
diabetes [87, 88]. Those who favour screening maintain
that invasive treatment leads to reduction of scintigraphic
CAD progression [89] and improvement of risk classification
[90]. On the other hand, opponents argue for optimal medi-
cal treatment without screening, as revascularization has not
been shown convincingly to decrease cardiovascular events
in patient with diabetes [91, 92]. Furthermore, randomised
controlled trials (RCT’s) have failed to show any prognostic
benefit of CAD screening. It must be noted that these trials
may have been negatively affected by a low sample size and
statistical Type Il error due to lower event rates than expected
(93, 94].

A systematic review and meta-analysis of published RCT’s
concluded, with higher statistical power, that there was a
reduction of cardiac events when using a systematic non-
invasive CAD screening strategy in asymptomatic diabetes
patients [95]. Further research is required to demonstrate the
precise magnitude of the effect in specific subgroups. This
would require larger, appropriately sized randomized trials.
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It may well be that larger benefits from screening are found
in specific subgroups, for example, the very high-risk patients
where medical therapy has failed to normalize blood glucose
levels. Other subgroups may include the elder patient with
diabetes [96] or those with high levels of exercise. The ef-
fects of screening patients with Type 1 Diabetes also needs
to be studied more extensively. Only the FACTOR-64 ran-
domized controlled trial included 12% of patients with Type
1 diabetes [97]. This corresponds to 3% of the total sample
in the systematic review by Clerc OF et al. [98] with 97% of
patients having Type 2 diabetes.

9.2 Educational programs

The cost of diabetes to the National Health Service (NHS)
in the United Kingdom exceeds £9 billion per annum (ap-
proximately a tenth of the NHS budget) [99]. A system-
atic review, involving 26 different types of articles, was con-
ducted to assess the cost-effectiveness of diabetes education.
It was found that over half of the studies reviewed indi-
cated that diabetes education was associated with reduced
cost [100]. Moreover, a cost-utility analysis using data from
a 12-month, multicentre randomised controlled trial con-
cluded that diabetes education and self-management for on-
going and newly diagnosed (DESMOND) is cost-effective
compared with usual care. There were also reductions in
CVD risk, particularly a decrease in weight and smoking
[101]. Various diabetes education courses are currently be-
ing carried out in the United Kingdom, including Dose-
Adjustment for Normal Eating (DAFNE), DESMOND and
X-PERT. These help to improve awareness and knowledge
of diabetes among patients, and empower them to manage
their own condition effectively. Various factors hinder peo-
ple to gain access to diabetes knowledge, including cost, dis-
tance and a lack of educators or centres [100]. Any diabetes
service should offer a well-structured diabetes education pro-
gramme, as well as being cost-effective, attractive to the pub-
lic and easily accessible.

9.3 Use of technology

To encourage patients with diabetes to participate in self-
management behaviours, they should have access to diabetes
self-management education (DSME). This is especially diffi-
cult in primary care and rural areas. Technology has been
proposed as a method to enhance delivery of patient infor-
mation [102-104]. Education has been previously provided
through smartphone applications, laptops and tablets [105].
Patients with diabetes are highly receptive to technology-
based education that allows them to control the pace of learn-
ing [106]. Studies have shown that the use of individual-
ized education (based on the educational needs of each per-
son) and behavioural change strategies results in improved
blood glucose control [97, 98]. Computerised education
using touchscreens or alternative technological applications
may provide a potential solution to reduced diabetes educa-
tion in rural areas [107].

Patients with diabetes experience difficulty initiating and
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sustaining healthy eating habits [100, 108]. An educational
application, such as the one piloted by Hunt CW et al. [101],
could be used to provide dietary information. This can in-
clude information on portion control, healthy food shopping
and monitoring carbohydrate intake. Hunt CW et al. [101]
delivered ten diabetes self-management educational modules
electronically via iPads to thirty adults living with Type 2 di-
abetes who attended health promotion clinics in rural com-
munities. The authors found that there was a statistically sig-
nificant increase in diabetes knowledge scores from pre- to
post- educational intervention. Diabetes education delivered
electronically can provide the necessary information about
diabetes self-management. This can especially help to im-
prove education delivery to those living in areas where access
to healthcare resources is limited.

SCD risk factors in patients with diabetes can be optimised
by targeting four key domains (Fig. 6). Firstly, patients with
diabetes must be aware of the potential risk of SCD so that be-
come in position to influence their health behaviour. We rec-
ommend that health provide basic and accurate information
in a clear and unambiguous way via multiple channels, such as
leaflets and online patient information platforms. Secondly,
we recommend that healthcare providers promote uptake of
screening for SCD risk factors in patients with diabetes, for
instance by implementing financial incentives on attendance
and employing text message reminders. Thirdly, we recom-
mend that healthcare providers optimise patient engagement
with online information. Finally, we recommend that ser-
vices are integrated with diabetic community teams to ensure
greater accessibility to healthcare provisions and engagement
with technology that can remote monitor blood glucose lev-
els, heart rate and rhythm.

10. Conclusions

Patients with diabetes mellitus suffer from cardiovascular
death as a leading cause of mortality. Mechanisms related to
hypertension and insulin resistance are likely to be the most
important in the pathophysiology underlying the metabolic
syndrome and incident SCD.

A variety of pathways have been suggested as linking hy-
poglycaemia to the development of adverse cardiovascular
outcomes, including, but not limited to blood coagulation ab-
normalities, inflammation, endothelial dysfunction and sym-
pathoadrenal responses.

Optimisation of SCD risk factors is recommended via:
raising awareness to influence health behaviour, provision
of screening programs and providing invective to encourage
uptake, use of technology within educational programs to im-
prove patient engagement and effective provision of diabetic
community teams.
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* Providing basic, accurate information through clear, unambigous messages
» Effectively communicating message via multiple channels to influence health behaviour

SCREENING

* Financial incentives on attendance of screening for SCD risk factors

* Behavioural text message reminders

EDUCATIONAL PROGRAMS

* Optimising engagement with online patient information

DIABETIC COMMUNITY TEAMS

« Integrating services with community provisions to ensure accessibility
» Remote mointoring of blood glucose levels, heart rate and rythmn

Fig. 6. Recommendations for optimising SCD risk factors in diabetic patients. SCD risk factors in patients with diabetes can be optimised by targeting

four key domains: raising awareness to influence health behaviour, provision of screening programs and providing invectives to encourage uptake, use of

technology within educational programs to improve patient engagement and effective provision of diabetic community teams.
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