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As a potential causative factor in various cardiovascular diseases, the
gut microbe-generated metabolite trimethylamine N-oxide (TMAO)
has courted considerable research interest as a potential biomarker.
TMAO is a small molecule considered to be beneficial for the health
of deep-water animals due to its ability to protect proteins against
hydrostatic pressure stress. However, it may cause deleterious ef-
fects in humans as mounting evidence suggests that TMAO may en-
hance atherosclerosis, independent of traditional risk factors. This
may be mediated by its capacity to enhance inflammation, platelet
activation and thrombosis, and inhibit reverse cholesterol transport.
In humans, circulating levels of TMAO have been found to be as-
sociated with increased risk of developing atherosclerotic diseases
such as carotid atherosclerosis, coronary atherosclerotic heart dis-
ease, stroke, and peripheral arteriosclerosis. This review aims to dis-
cuss the current role of TMAO in the atherosclerosis process, using
animal models and clinical studies, with special attention to deter-
mining whether TMAO could be used as a marker for monitoring
severity and prognosis in atherosclerosis and to evaluate evidence for
its role as a mediator in the pathogenesis of atherosclerotic vascular
disease.
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1. Introduction
Atherosclerosis is a chronic inflammatory state and the

main pathological basis of cardiovascular disease (CVD)
[1]. Within the past ten years, the intestinal flora has
been recognized as an independent and important metabolic
organ, which closely links the metabolism of nutrients
with molecules that cause chronic diseases [2]. Intestinal
micro-ecological imbalance can promote the development
of atherosclerosis by increasing systemic inflammation [3–
5] and recently, a metabolite of intestinal flora TMAO, has
received widespread attention as a marker for and potential
mediator of many diseases.

Professor TangWHof the ClevelandMedical Center, was
the first researcher to report a role for elevated TMAO lev-

els as a predictor of major adverse cardiac events such as
myocardial infarction, stroke, and mortality [6]. Since then
many comparable studies have shown that increased concen-
trations of TMAO and its precursors (L-carnitine, choline,
and betaine) are associated with increased risks of cardio-
vascular adverse events and mortality [7–12]. Furthermore,
TMAO is thought to be more accurate at predicting these
events than traditional CVD risk factors such as blood lipid,
C-reactive protein (CRP) levels, or renal function [13]. In a
meta-analysis of 17 clinical studies, an every 10 µmol/L in-
crease in TMAO increased the risk of cardiovascular mortal-
ity by 7.6% [8]. High levels of TMAO are not only associated
with the risk of CVD in humans, but also increase the risk
of atherosclerosis in animal models. TMAO is believed to be
involved in the complex pathological process of atheroscle-
rotic lesions, such as the promotion of blood vessel inflam-
mation [14], enhanced expression of macrophage scavenger
receptors, and the formation of foam cells [6], as well as ex-
acerbated platelet hyperreactivity enhanced thrombosis [15],
and inhibition of bile acid synthesis [16].

Here we review the dietary sources, synthesis, and
metabolic pathways of TMAO, and provided the latest evi-
dence on the ability of TMAO to be used as a potentialmarker
for atherosclerotic vascular disease, and finally tested TMAO
as a target for the treatment of atherosclerosis.

2. Source, synthesis, andmetabolism of
TMAO

The main sources of TMAO are dietary choline, carni-
tine, and betaine. Choline is found in beef, chicken liver, ba-
con and soybeans, and betaine is found in wheat bran, wheat
germ and spinach [17]. Meat products such as lean pork,
lamb, and beef are themain sources of carnitine [18]. TMAO
can also be obtained directly from fish [19] and high protein
diets [20]; for example, two large eggs (65 grams) contain
320 mg of phosphatidylcholine, which represents the same
amount of TMAO precursor as a 12-ounce beef burgers [21].
Trimethylamine (TMA) is an intermediate of TMAO which

http://doi.org/10.31083/j.rcm2203085


Fig. 1. Role of TMAO in atherosclerosis progression. Annotation: Trimethylamine (TMA) is generated by the action of TMA lyases in the gut microbiota
from Choline, Carnitine and betaine. TMA quickly reaches the liver through the portal circulation, flavin-containing monooxygenase 3 (FMO3) significantly
oxidize TMA to form TMAO into the circulatory system. TMAO promotes inflammation of blood vessels, enhances the formation of foam cells, exacerbates
platelet hyperreactivity and thrombosis potential, alteres bile acids and cholesterol transport. These factors are associated with increased risk of developing
Atherosclerotic disease such as Carotid atherosclerosis, Coronary atherosclerotic heart disease, Stroke, and Peripheral arteriosclerosis.

is mainly metabolized by the gut microbiota from dietary
nutrients having a TMA like structure. It quickly reaches
the liver through the portal circulation and flavin-containing
monooxygenase 3 (FMO3) can oxidize TMA to formTMAO
where it is released into the circulatory system and finally ex-
creted by the kidney [6, 22] (Fig. 1). Consuming 50 mg of
deuterium-labeledmethyl d9-TMAO can be detected as early
as 15 min in plasma, and 96% of the dose is excreted through
urine instead of feces by 24 h [23]. The remaining TMAO is
reduced to TMA by the action of TMAO reductase [24].

Microbial enzymes involved in the formation of TMA
involve two main pathways, one is the TMA lyase sys-
tem (CUTC/D) which degrades choline [25]. The path-
way encoded by the CUTC gene cluster is the main path-
way for TMA production from human choline [26, 27] and
the identified CUTC amplicons are associated with various
taxa especially Clostridium XIVa strains and Eubacterium
sp [28]. Furthermore, Kymberleigh A. Romano identified
eight species representing two different phyla (Firmicutes
and Proteobacteria) that showed significant choline con-
sumption and TMA accumulation [29]. The other pathway
is the decomposition of carnitine (CntA/B and YeaW/X)
[30]. Here, CntA amplicons displayed high identity (~99%)
to Gammaproteobacteria-derived references, primarily from
Escherichia coli [28]. Recently, Robert A Koeth proposed

that the conversion of dietary carnitine to TMAO also in-
volves the L-carnitine→γBB→TMA/TMAO pathway [31].
However, only one type of Clostridium has been found to be
able to convert γBB to TMA [31]. Therefore, it is necessary
to conduct further research to investigate the composition
and activity of the intestinal flora to detect potential corre-
lations.

3. TMAO as an enhancer of
atherosclerosis-experimental model
3.1 TMAO and endothelial inflammation

Inflammatory injury of the vascular endothelium is widely
regarded as the initial stage of atherosclerosis [32]. In vitro
studies have shown an up-regulated IL-6, CRP, TNF-α and
reactive oxygen species (ROS), and reduced Nitric Oxide
(NO) production in TMAO-treated endothelial cells (ECs),
suggesting that TMAO can directly impair NO-mediated en-
dothelial function [33]. TMAO can also up-regulate the ex-
pression of vascular cell adhesion molecule 1 (VCAM-1),
promote the adhesion of monocytes, and inhibit the self-
repair capability of ECs through protein kinase C (PKC)
and NF-κB signaling, while enhancingmacrophage adhesion
[14, 34]. Furthermore, TMAO reduces the expression of
the anti-inflammatory cytokine IL-10, which can protect ECs
fromdamage caused by inflammation and increased oxidative
stress [35] (Fig. 2).
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Fig. 2. Putative molecular mechanisms underlying TMAO-induced atherogenic effects. Annotation: High concentration of TMAO plays a vital role
in endothelial hyper permeability and inflammation, oxidative stress, cholesterol metabolism, plaque formation, activation and thrombosis.

In young mice, six months of dietary supplementation
with TMAO can induced aging of the arterial endothelium.
This effect was accompanied by increased vascular nitrotyro-
sine, a marker of oxidative stress [36]. In a different study,
aged rats exhibited higher plasma TMAO, TNF-α, and IL-
1β, and increased eNOS expression in the aorta when com-
pared to young rats, all of these effects were restored to con-
trol levels by treatment with DMB (an inhibitor of TMA for-
mation) [37]. These finding clearly indicated that the in-
crease in circulating TMAO levels caused by aging can lead
to endothelial dysfunction.

It has been reported that there are severalmechanisms un-
derlying the activation of inflammation, including lysosomal
rupture, altered K+ channel gating, and activation of ROS
[38]. Krishna proved that endotheliitis caused by TMAO
is activated both in vitro and in vivo and in the presence
of blockers or inhibitors of individual pathways, and found
that the formation and activation of the NLRP3 inflamma-
somes induced by TMAO in ECs were markedly attenuated
or abolished by the ROS scavenger, N-acetyl-L-cysteine and
cathepsin B inhibitor. These results showed that TMAO
can activate NLRP3 inflammasomes in ECs through at least
two different pathways, involving increased ROS produc-
tion, destabilized lysosomes, and enhanced cathepsin B ac-
tivity [39]. Sun also confirmed that TMAO activates the
thioredoxin interacting protein (ROS-TXNIP-NLRP3) sig-
naling pathway through oxidative stress and promotes the
expression of the inflammasome NLRP3 [40]. A different
mechanism for TMAO action involves a reduction in Adeno-

sine triphosphate(ATP) production and induced endothelial
cell apoptosis by damaging the structure and function of mi-
tochondria, and the succinate dehydrogenase complex sub-
unit B (SDHB)/ROS signaling pathway has been found to
play an important role in this process [41].

It is well known that loss of integrity of tight junctions
found in the endothelium helps to enhance the permeabil-
ity of the quasi-cellular endothelium. Stimulating ECs with
TMAO can reduce the expression of the tight junction pro-
tein ZO-1 in the ECs monolayer and change ECs permeabil-
ity, which was prevented by silencing NLRP3 in the ECs
[39]. The high-mobility basal box protein 1 (HMGB1) is
also an inflammatory mediator, which can destroy cell-to-
cell connections, resulting in vascular endothelial hyper per-
meability [42]. In a study conducted by Singh, it was dis-
covered that TMAO significantly reduced the expression of
junctional proteins such as ZO-2, VE-kadrin, and Okrudin
in the EC monolayer, while this effect was markedly atten-
uated by glycyrrhizin, an HMGB1 binding compound [42].
Furthermore, TMAO can upregulate HMGB1, and HMGB1
causing further activation of toll-like receptor 4(TLR4, an
important receptor for HMGB1 binding where HMGB1 can
activate inflammatory pathways). TLR4 siRNA can protect
ECs from the interference by TMAO-related tight junction
proteins [42] (Fig. 2).

3.2 TMAO and reverse cholesterol transport (RCT)

High TMAO levels were also found to be accompanied by
low HDL levels in patients with cardiovascular disease [43].
The accumulation of oxidized low-density lipoprotein (ox-
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LDL) in LDL cholesterol macrophages can be transported
to the liver for recirculation or excreted in the form of bile
acid [44]. Previous studies have confirmed that the RCT
of choline-added APOE−/−mice was reduced by about 30%,
and total bile acids in mice and the expression of key bile acid
synthases Cyp7a1 and Cyp27a1 in the liver were also signif-
icantly reduced relative to normal chow (P < 0.05) [6, 22],
resulting in changes to the main mechanism of removing
cholesterol in the body (Fig. 2).

3.3 TMAO and atherosclerotic plaque

Several experimental models have demonstrated a role for
TMAO in the process of atherosclerosis. A TMAO-diet sig-
nificantly promoted plaque progression in APOE−/− mice
fed with high-fat for 20 weeks when compared to C57BL/6J
mice fed with a normal chow diet. However, the levels of
blood sugar, cholesterol and triglycerides had no significant
effect on the plaque area [6], and this effect could be re-
versed by reducing the level of TMAO [45]. TMAO can
also increase the formation of foam cells by up-regulating the
macrophage scavenger receptors CD36 and SR-A1, which
promote the continuous development of plaques [6]. Fur-
thermore, the CD36/MAPK/JNK pathway may play a cru-
cial role in the TMAO-induced formation of foam cells [46].
In addition, it was also found that TMAO can induce the ex-
pression of heat shock proteins GRP94 andHSP70 in J774A.1
mouse macrophages, leading to endoplasmic reticulum stress
[47] (Fig. 2). TMAO not only promotes plaque formation,
but also contributes to plaque instability. In the tandem
stenosis mouse model, which reflects plaque instability as
typically seen in patients, TMAO levels correlated with sev-
eral characteristics of plaque instability, such asmarkers of in-
flammation, platelet activation, and intraplaque hemorrhage
[48].

3.4 TMAO and Thrombus

Platelets contribute to the formation of thrombus and
foam cells and play an important role in the occurrence
and development of atherosclerosis [49]. After 2 months of
choline supplementation, healthy subjects showed a signifi-
cant>10-fold increase in plasma TMAO levels at both 1- and
2-month periods, with a corresponding enhanced platelet
aggregation response to submaximal adenosine diphosphate
[50]. Furthermore, large scale clinical association studies
(n >4000 subjects) independently demonstrated that plasma
TMAO levels are associated with risk of thrombotic events
[15]. The exact mechanisms by which TMAO activates
platelets however are still unclear.

TMAO can induce the release of calcium from platelets by
changing the inositol 1,4,5-triphosphate (IP3) signal trans-
duction pathway, and directly enhance the platelet response
to a variety of different agonists (ADP, thrombin and colla-
gen) and promote platelet hyperresponsiveness by enhanc-
ing stimulus-dependent Ca2+ release [51]. Tissue factors
are essential mediators of hemostasis and trigger thrombo-
sis [52]. Xiaoye Cheng demonstrated that TMAO promoted

tissue factor (TF) expression via activation of the NF-κB sig-
naling pathway in primaryHCAECs [53]. TMAOcan also at-
tenuate the inhibitory effect of clopidogrel on platelet aggre-
gation by inhibiting P2Y12 receptor inhibitors [54] (Fig. 2).
Recently, SarahMSkye found that the expression of theCutC
gene from intestinal microbes is sufficient to transmit en-
hanced platelet reactivity and thrombosis potential in a host
via TMA/TMAO generation [55]. These studies implicate
TMAO as a potential molecular target for the treatment of
atherosclerosis and thrombotic.

4. The role of TMAO in vasculopathy
induced by atherosclerotic risk factors

The role of TMAO in atherosclerotic vasculopathy has
been demonstrated in various models of atherosclerotic risk
factors, namely: diabetes, hypertension, and chronic kidney
disease.

4.1 Diabetes

High levels of circulating TMAO are associated with an
increased risk of both type 1 and type 2 diabetes (T2DM)
[56–58], as well as pre-diabetes prevalence [59], and dia-
betic complications such as retinal neuropathy [60]. Miao
found that LIRKO mice suffered from severe hyperglycemia
after 4 months Pigen diet, which was completely prevented
by the knockdown of FMO3 (TMAO synthase) [61]. Simi-
lar results were obtained on obese/insulin resistant subjects,
where FMO3 was significantly increased in the morbidly
obese group (P < 0.05). However, this effect was smaller
than that seen in the mouse model, possibly because diabetic
patients were treated with insulin and/or other drugs to in-
crease insulin sensitivity [61].

The exact biological mechanism of how plasma TMAO
concentration is involved in glucose metabolism remains to
be clarified. PI3K is a key protein that transduces insulin
signals into the regulation of glucose metabolism, while Akt
is an important molecule downstream of the PI3K pathway,
and its stimulation will in turn activate glycogen synthetase
(a critical regulatory enzyme for the regulation of hepatic
glycogen storage) [62]. In a study conducted by Gao it was
shown that dietary TMAO reduces the mRNA levels of PI3K
and Akt, indicating that dietary TMAO may exacerbate the
blocked insulin signaling pathway [63].

Another mechanism involving TMAO promotes the reg-
ulation of transcription factor FoxO1 caused by PERK, and
inhibition of FMO3 or manipulation of the gut microbiota
can hinder metabolic dysfunction mediated by the PERK-
FoxO1 axis [64]. Specifically, FoxO1 drives glucose gene ex-
pression and inhibited by insulin, the deletion of Foxo1 in the
liver can reduce excessive glucose production caused by gen-
eral ablation of insulin receptors [65]. PERK is a key sensor
of intracellular stress and has previously been shown to in-
duce FoxO1 by phosphorylation on serine 298 [66]. These
data indicate that TMAO may be central to the pathogenesis
of metabolic syndrome.
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4.2 Hypertension
Research conducted by Yang observed a significant de-

crease in microbial richness, diversity, and reproducibility in
the spontaneously hypertensive rat [67], suggesting that the
intestinal flora may be involved in the occurrence of hyper-
tension, although the mechanism has not yet been fully elu-
cidated. Meta-studies have shown that for every 5 µmol/L
and 10 µmol/L increase in TMAO, the prevalence of hy-
pertension will increase by 9% and 20% respectively, re-
vealing a significant dose-dependent positive correlation be-
tween TMAO concentration and the risk of hypertension
[68]. TMAO is an important metabolite of enteral malnutri-
tion andmay be involved in the pathogenesis of hypertension
as a mediator.

A different study demonstrated that patients with hyper-
tension have an increased abundance of the cutC gene in their
intestines, which in turn produces more TMAO [69]. The
integrity of the intestinal barrier is essential for maintaining
host health and preventing inflammation and atherosclerotic
processes. Kinga Jaworska confirmed that the permeability
of the colon to TMA in hypertensive patients is increased
and promotes its penetration into the circulatory system [70],
representing a novel point of view that the high concentra-
tion of TMAO in cardiovascular diseases may depend upon
the increased permeability of the colon to TMA, and changes
in colon permeability rather than TMAO levels are the indi-
cators of cardiovascular risk [70].
4.3 Chronic kidney disease (CKD)

The clearance of TMAO depends largely upon its excre-
tion by the kidneys [71]. Serum TMAO concentrations sub-
stantially increase with deterioration of kidney function, and
this effect is reversed by renal transplantation [72]. Meta-
analyses of a total of 32 eligible clinical studies involving
42,062 participants showed that TMAO was strongly in-
versely correlated with glomerular filtration rate(GFR) and
positively associated with the urine albumin-to-creatinine
ratio, serum creatinine, and urine albumin excretion rates
[73]. Jason R reported that the increase in TMAO con-
centration in CKD patients receiving coronary angiography
was related to the load of coronary atherosclerosis and may
be related to long-term mortality in CKD patients receiving
coronary angiography [72]. Moreover, it was observed that
TMAO predicts a poor overall survival rate in subjects with
CKD [74–76].

TMAO is an independent predictor of CKD phase 3–5
mortality rate [77] and in animal models, TMAO levels sig-
nificantly increase renal fibrosis compared with control (P
< 0.05), while this result can be reversed by TMA lyase in-
hibitors [78]. Thismodel was also demonstrated inApoEKO
mice, where the animals developed chronic kidney disease
with elevated TMAO levels within 14 weeks of adenine ad-
ministration, after using TMA inhibitors, and many markers
of kidney injury (creatinine, cystatin C, FGF23, and urinary
microalbumin)were significantly reduced [79]. This suggests
that TMAOmay represent a novel modifiable risk factor and

therapeutic target for improving atherosclerosis in patients
with CKD.

5. Is TMAO a reliable marker for
atherosclerosis?

As discussed so far TMAO has a role in the pathological
process of atherosclerosis, but can it also be used to clini-
callymonitor the development and prognosis of patientswith
atherosclerosis.

5.1 TMAO predicts carotid atherosclerosis

TMAO is a significant predictor of carotid plaque forma-
tion which is more significant than gender, diastolic blood
pressure, total cholesterol, or diabetes mellitus [80]. A study
from southern Germany showed that higher TMAO levels
can predict thickness of the carotid intima-media (cIMT)
[81]. TMAO is also an independent predictor of new le-
sions as seen byMRI after carotid artery stenting (CAS) [82].
In patients with severe carotid stenosis (>70%) it was found
that elevated plasma TMAO level were associated with the
increased risk of new lesions on diffusion-weighted imag-
ing(DWI) within 1–3 days of CAS1, and that a TMAO of
4.29 µmol/L can better predict ischemic brain damage which
is secondary to CAS [82].

5.2 TMAO is a predictive marker of coronary plaque development

In patients with non-ST-segment elevation myocardial
infarction (NSTEMI) and ST-segment elevation myocardial
infarction (STEMI), TMAO was found to be independently
related to the severity and prognosis of coronary atheroscle-
rosis load [83–85]. TMAO is also significantly related to
the severity of the culprit segment of calcification, including
maximum calcification arc, maximum calcification thickness,
and calcification length, and can be used as an indicator to the
calcium load of the culprit plaque [86]. Studies have shown
that repeated rupture or erosion of a plaque followed by heal-
ing, is related to the vulnerability of the plaque and a high
level of inflammation, which helps to increase the high risk of
coronary thrombosis [87, 88]. The study reported that in pa-
tients with STEMI, elevated TMAO levels indicated a higher
SYNTAX score (response to coronary atherosclerosis load)
and the presence of multivascular disease [89], and TMAO
levels in patients with plaque rupturewas significantly higher
than those with no rupture [90]. While TMAO levels in pa-
tients with repaired plaques were significantly higher than
those with unrepaired plaques, and can be used as a poten-
tial biomarker to predict healed plaque presence with a cut-
off value of 2.9µmol/L [91]. The author believes that TMAO
levels in the circulationmay reflect the vulnerability and pro-
gression of coronary plaques.

TMAO not only plays a role in the process of primary
atherosclerosis, but also contributes to late stent thrombo-
sis after revascularization. A recent study found that an
area under the curve (AUC) value for plasma TMAO of
0.85 can distinguish patients with new atherosclerosis and
old atherosclerosis in STEMI patients who underwent PCI
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surgery, by using OCT to evaluate the culprit plaque [92].
The above studies indicate that high TMAO levels can be
used as a useful biomarker to distinguish between plaque in-
stability and rupture and represents a promising diagnostic
marker for the prediction of new atherosclerosis in a stent.

5.3 TMAO is an independent predictor of stroke development and
prognosis

TMAO can cross the blood-brain barrier and cause oxida-
tive stress, thus potentially leading to brain damage [93, 94].
Research has found that higher TMAO levels are associ-
ated with increased risk of a first stroke [95–97], and are
closely related to a poor prognosis, such as post-stroke cog-
nitive impairment (PSCI). When predicting moderate to se-
vere stroke, a critical value for plasma TMAO levels has been
found to be 4.95 µmol/L [98]. Other studies however, sug-
gest an optimal value of 6.6 µmol/L [96]. PSCI is a common
consequence of stroke, affecting approximately one-third of
stroke survivors after one-year post stroke [99]. A study in-
cluded 256 patients with ischemic stroke, suggesting that in-
creases in plasma TMAO levels are related to poor cognitive
function one year after ischemic stroke, and supports TMAO
as a predictive biomarker of PSCI [100]. In patients with
acute ischemic stroke, TMAOat a concentration of 5µmol /L
can predict early deterioration in neurological function [101],
and can be used as an independent predictor of stroke severity
and infarct volume in patientswith acute ischemia [102–104].
Furthermore, TMAO is also associated with poor prognosis
in patientswith cerebral hemorrhage at 3months [105]. SuH
suggested that TMAOcan promote an increase in reactive as-
trocytes and glial scar formation through the Smurf2/ALK5
axis, thus aggravating nervous system damage after ischemic
stroke [106]. Therefore, the study of TMAO can provide im-
portant predictive insights into the development and progno-
sis in stroke patients.

5.4 TMAO predicts the risk of peripheral arterial disease (PAD)

Dr. Vichai Senthong first reported that elevated plasma
TMAO level are an important prognostic marker for patients
with PAD [107]. In these patients, the increase ofTMAO lev-
els was related to an increased risk of death by 2.7 times, af-
ter adjusting for traditional risk factors, such as inflammatory
biomarkers and a history of coronary artery disease, where
the highest quartile forTMAOcan still predict 5-yearmortal-
ity [107]. PAD is characterized by atherosclerotic stenosis of
the lower extremity vessels, leading to ischemic muscle pain
in the elderly. Compared to patientswith intermittent claudi-
cation, patients with advanced chronic severe limb ischemia
(CLI) showed higher serum carnitine and TMAO levels and
poorer long-term survival [108], whereas PAD patients with
TMAO >2.26µmol/L exhibited higher risk of cardiovascu-
lar death [109]. To date potential mortality and pathophysi-
ological predictors of PAD have not been clearly defined, this
may be the reason why mortality and ischemic amputation
rates in PAD patients are still very high [110]. These studies
confirm the clinical prognostic value of TMAO levels in pa-

tients with PAD, and these findings may be used to develop a
new prognostic indicator of risk stratification.

Taken together the experimental data on TMAO it might
be suggested that TMAO is a potent atherogenic cytokine
and increased risk of developing atherosclerotic diseases such
as CAS, coronary atherosclerosis, stroke, and PAD (Table 1,
Ref. [80–86, 89–92, 95–100, 102–105, 107–109]).

6. Treatment
Choline and carnitine are themain sources of TMAOpro-

duction related to intestinal microbiota, therefore, diet reg-
ulation is a reasonable and cost-effective intervention strat-
egy. Studies have shown that a healthy diet (vegetarian or low
calorie diet) significantly improves TMAO levels [111–113].
Interestingly, microwave cooking can reduce the content of
L-carnitine in some seafood [114]. In addition, exercise can
change the diversity and distribution of the human microbial
community [115], and voluntary exercise for 8 weeks can in-
hibit the increase in plasma TMAO in obese mice induced
by a high-fat diet and prevent heart dysfunction also [116].
Some plant extracts and fruits, such as oolong tea [117],
hawthorn [118], resveratrol [119], and ginkgolide B [120],
have been shown to reduce the levels of circulating TMAO,
which is beneficial for the improvement of atherosclerosis.

The use of prebiotics and probiotics may also help to pro-
duce a positive impact on the composition of the intestinal
flora. Thus an in-depth study of the CutC/D gene respon-
sible for the synthesis of TMA lyase and the development
of a strain that antagonizes the synthesis pathway of TMAO
represents a promising avenue of research [121]. For exam-
ple, the TMA blockers DMB and IMC can inhibit the activ-
ity of microbial choline TMA enzymes in the body, increase
the excretion of neutral sterols in mouse feces in the form
of fecal sterols (bacterial metabolite of cholesterol), and pre-
vent the accumulation of liver cholesterol driven by the diet
[122]. Akkermansia muciniphila plays a protective role by
improving intestinal barrier function to resist atherosclero-
sis [123]. Fecal microbiota transplantation (FMT) can reduce
fecal TMA content and the content of serum TMAO [124].
These strategies that have focused on gut microbiota and mi-
crobial metabolites provide promising new insights into the
treatment of atherosclerosis and CVDs.

7. Summary and future prospects
Emerging data has established a direct link between diet,

the intestinal flora metabolite TMAO, and atherosclerosis.
TMAO is involved in the complex process of atherosclerosis
and plays an important role in the pathogenesis of atheroscle-
rosis caused by various risk factors such as diabetes, hyper-
tension, and chronic kidney disease. In humans, it has been
proven that TMAO is a reliable marker for predicting the de-
velopment and prognosis of arterial vascular disease. Taken
together this convincing evidence has emerged from preclin-
ical studies suggest a strong relationship between TMAO and
atherosclerosis. Further studies have focused on molecu-
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Table 1. TMAO plays a role in atherosclerosis studies.
TMAO’s significance References

CAS

TMAO is a significant independent predictor of carotid plaque burden. [80]
Higher TMAO levels predicted increased cIMT. [81]
Plasma level of TMAO can be a predictor of ischemic brain injury secondary to CAS. [82]
The optimal cutoff value of TMAO in patients with>70% carotid artery stenosis was 4.29 µmol/L. [82]

Coronary atherosclerosis

High Plasma TMAO is associated with coronary atherosclerotic burden in patients with STIME or NSTEMI. [83],[84],[85],[89]
TMAO is positively correlated with the incidence of calcification in the culprit lesion segment. [86]
Plasma TMAO level is associated with plaque rupture. [85],[90],[92]
Plasma TMAO level is associated with healed culprit plaques. [91]
A cutoff value of TMAOwas 2.9 µmol/L in patients with STEMI can be used as a potential biomarker to predict
healed plaque presence.

[91]

AUC value for plasma TMAO of 0.85 can distinguish patients with new atherosclerosis and old atherosclerosis
in STEMI patients.

[92]

Stroke

Serum TMAO concentration exhibited higher risk of first Stroke in Chinese patients. [95],[96],[97]
TMAO level≥4.95 (6.6) µmol/L has high sensitivity and specificity for moderate to severe stroke. [96],[98]
Higher TMAO levels correlate with worse neurological deficit . [96],[100]
TMAO is an independent predictor for cognitive impairment in post-stroke patients. [99]
TMAO is an independent predictor of functional outcome and mortality of patients with ischemic stroke. [102],[103],[104]
TMAO is also associated with poor prognosis in patients with cerebral hemorrhage at 3 months. [105]

PAD
TMAO is associated with PAD severity and prognosis. [107],[108]
PAD patients with TMAO>2.26 µmol/L exhibited higher risk of cardiovascular death. [109]

lar mechanisms and the development of safe, effective, and
feasible dietary strategies to use as an anti-atherosclerotic,
involving TMAO reduction and this has led to potentially
significant public health benefits. Innovative therapeutic
approaches targeting gut microbiota and TMAO, including
lifestyle modifications, TMA inhibitors, prebiotics, probi-
otics, and Chinese herbs, have shed new light on the great
potential of targeting TMAO to elucidate the fundamen-
tal mechanisms underlying the disease. We propose to test
TMAO levels clinically to fully assess its role as a potential
marker for atherosclerosis.
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