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Sleepiness, fatigue, and stress in drivers are the leading causes of car
crashes. In the late two decades, there is an endeavor to monitor vital
signs, stress levels, and fatigue using adapted sensors supported by
technological advances. To the best of our knowledge, this system-
atic review is the first to investigate the role of HRV measurement
for sleepiness, fatigue, and stress level monitoring in car drivers. A
search was performed in PubMed, Embase, and Cochrane databases
using prespecified keywords. Studies were considered for inclusion
if they reported original data regarding the association between dif-
ferent HRV measurements and drivers' sleepiness, fatigue, or stress
levels. Of the retrieved 749 citations, 19 studies were finally included.
The sensibility and specificity of HRV significantly varied across stud-
ies, respectively 47.1%–95% and 74.6%–98%. Accuracy was also dif-
ferent, ranging from 56.6% to 95%. Nevertheless, in real-world con-
ditions, confounding factors could affect sympathovagal tone and
HRV. Multiple HRV parameters measurement rather than one pa-
rameter approach seems to be the optimal strategy for evaluating
the vigilance state in drivers that it would be possible to achieve a
good performance. As all studies were observational, data should
be confirmed in randomized controlled trials. In conclusion, HRV
represents a potentially valuable marker for sleepiness, fatigue, and
stress monitoring in car drivers. HRV measurements could be imple-
mented in future clinical models and sensors to detect early sleepi-
ness and fatigue and prevent car crashes. More studies with larger
populations are needed to support this evidence.
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1. Introduction
Heart rate variability (HRV) defines the changes in the

time interval of cardiac sinus node depolarization, thus re-
flecting a balance between sympathetic and parasympathetic

nervous systems activity [1]. It seems that HRV is impacted
by stress, current neurobiological evidence supporting its use
for the objective assessment of psychological health, stress,
and fatigue [2].

Neglected since the last guidelines published in 1996 by
TheTask Force of The European Society of Cardiology (ESC)
and The North American Society of Pacing and Electrophys-
iology, HRV represents a reliable marker of cardiac function
[3]. In the last decade, researchers revisited the idea of HRV
measurement, as it could help to monitor vital signs, stress
levels, and fatigue using adapted sensors, which are supported
by technological progress. Moreover, it seems that HRV
could have important clinical implications in various patho-
logical conditions involving the heart, the brain, or the kid-
ney [4, 5].

Although HRV measurement was adopted for sinus
rhythm, there is increasing evidence of its usefulness in pa-
tients with atrial fibrillation for both detection and risk strat-
ifying. The authors developed an algorithm for atrial fibrilla-
tion detection based on HRV measurements and atrial activ-
ity in one study. The results were impressive, as the proposed
model had 98% sensitivity and 97.4% specificity [6]. More-
over, the HRV index was associated with a greater risk of
cardiovascular death (p = 0.01) and all-cause death (p = 0.01)
[7]. Besides cardiovascular implications, some HRV param-
eters could also be associated with mortality in patients with
chronic kidney disease [8].

HRV could be measured using different parameters de-
rived from time-domain methods, frequency-domain meth-
ods, and non-linear methods analysis. Time-domain meth-
ods represent the easiest way to assess HRV, expressed as
fluctuations in heart rate and cycle length. Most parame-
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ters acquired from the time-domain analysis are based on
normal-to-normal (NN) intervals, representing the intervals
between consecutive QRS complexes [3, 9]. From the avail-
able time-derived parameters, four were recommended for
evaluation by the Guidelines: standard deviation of all NN
intervals (SDNN), the standard deviation of the average NN
interval over short time divisions (SDANN), the square root
of the mean squared differences of consecutive NN intervals
(RMSSD) and HRV triangular index.

Usually, SDNN and HRV triangular index are used to
appraise overall HRV [3]. Frequency-domain measure-
ments imply an analysis of individual spectral components of
HRV, ultra-low frequency (ULF), very low frequency (VLF),
low frequency (LF), high frequency (HF). Subsequently, the
power of each frequency band is calculated. Importantly,
HRV using frequency-domain methods could be analyzed
over short- or long-time intervals (2 minutes–24 hours) [3,
9]. However, variations in HRV are not linear, highlight-
ing the complexity of modulation systems. The most used
non-linear parameters for HRV assessment are represented
by approximate entropy, sample entropy, S, SD1, SD2, and
detrended fluctuation analysis [9].

Available data suggest that increased parasympathetic ner-
vous system activity is associated with increased HRV. How-
ever, a plateau level could exist, beyond which a further in-
crease in parasympathetic activity did not induce a higher
HRV [10]. HF is associated with vagal activity regard-
ing frequency-domain parameters, while LF is considered a
marker of sympathetic activity. However, few studies sug-
gested that LF might be reflecting both components of the
autonomic nervous system. In addition, HRV response to au-
tonomic nervous system modulation could be susceptible to
high inter-individual variations [3]. Besides the physiologi-
cal modulation of heart rate and, subsequently, of HRV, the
correlation between HRV and heart rate could be described
as a mathematical model of a non-linear inverse relationship
[11].

Clinical studies consistently documented that HRV pa-
rameters are used in psychomotor vigilance evaluation,
sleepiness, and fatigue detection [12–14]. Notably, HRV
assessment, especially as frequency-domain, could detect
sleepiness early, within minutes before falling asleep [15].
Thus, a practical application of HRV measurements could
consist of activity state evaluation in drivers since sleepiness,
fatigue, and drivers’ stress are the leading causes of car crashes
[16, 17]. Some reviews in the literature investigated differ-
ent approaches for sleepiness and fatigue detection in drivers;
however, the authors focused on a variety of physiological
signs, and the importance ofHRVmonitoringwas only partly
explored [18–20].

We aimed to systematically review the literature to in-
vestigate the importance of HRV assessment (expressed
as time-domain measures, frequency-domain measures, or
non-linear analysis) for sleepiness, fatigue, and stress level
monitoring in drivers.

2. Materials andmethods
We conducted the present systematic review according to

the updated Preferred Reporting Items for Systematic Re-
view and Meta-Analysis (PRISMA) [21].

2.1 Data sources and search strategy

A literature search was performed from inception to June
15, 2021, in the following databases: MEDLINE (PubMed),
Embase, and Cochrane. No time interval filter was applied.
We also screened the cited articles and Google Scholar ref-
erences, and a database of clinical trials (ClinicalTrials.gov)
to find additional studies. According to the PRISMA search
checklist, we included full search strategies for prespecified
databases in Supplementary Table 1. In addition, we re-
stricted the search to studies involving humans. In the search
process, the followingMeSH terms and keywords were used:
“heart rate variability”, “sleepiness”, “drivers”, “accidents”,
“mental fatigue” and “stress”.

2.2 Eligibility criteria and outcomes

Several inclusion criteria were prespecified: (1) studies in-
volving adult humans aged ≥18 years; (2) studies reporting
original data regarding the outcome of interest, namely the
association between different HRV parameters and drivers’
sleepiness, fatigue, or stress levels; (3) studies which evalu-
ated drivers’ outcomes during real-road or driving-simulator
conditions; (4) studies which measured standard HRV pa-
rameters stated in guidelines [3]. In addition, studies avail-
able only in abstract, letters, editorials, meta-analyses, un-
published data, overlapping population, and those from
which we could not extract data were excluded. Two inde-
pendent investigators evaluated the inclusion and exclusion
criteria for each study considered for inclusion. Disagree-
ments were solved by consensus.

2.3 Data collection

In linewith PRISMA recommendations, two independent
investigators extracted the following data from each included
study in the present systematic review: first author, year of
publication, number of participants enrolled, age, investi-
gated HRV parameters, setting, and reported results. We
presented data as numbers, percentages, ranges of variation,
median or mean values, confidence intervals, and p-values
when available. If disagreements appeared, they were solved
by consensus.

2.4 Quality assessment

We appraised the quality of included observational stud-
ies using a National Institutes of Health (NIH) tool designed
for studies without a control arm [22]. Briefly, this tool en-
compasses 14 signaling questions which help in evaluating
the overall study quality.

3. Results
Our endeavor in the prespecified databases retrieved 749

citations. After excluding duplicate references and citations
based on title or abstract evaluation, 62 studies were left for
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Fig. 1. Flowdiagramof selected studies inpresent systematic review. Our search inMEDLINE, Embase andCochrane databases retrieved 749 references,
from which 19 studies were included in this review after exclusion of citations based on title and abstract, duplicate references and those which did not meet
the inclusion criteria.

eligibility assessment. Of the screened studies, 19 met the in-
clusion criteria and were included in our systematic review.
The search and screening process were reported in Fig. 1.

All included studies had an observational, non-
randomized design [15, 23–40]. Data regarding participants
enrolled in each study, investigated HRV parameters, clinical
setting, and major findings were reported in Table 1 (Ref.
[15, 23–40]). The most of studies investigated the value of
HRV measurements for sleepiness or drowsiness detection
in drivers [15, 23–27, 29–31, 33, 34, 37, 39, 40], followed by

stress [28, 35, 38] and fatigue [32, 36] detection. In addition,
seven studies included drivers on real-roads [23, 24, 28, 33–
35, 40], while the rest performed experiments on driving
simulators. The quality of included studies in the present
systematic review was low, given that all studies were
observational and non-randomized, with a small number of
participants included (Supplementary Table 2).
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Table 1. General characteristics of studies included in the present systematic review.
Study, year Patients, No Age, median/mean

± SD/range
Investigated parameters Clinical setting Findings

Abtahi, 2017 [23] 10 38± 9 Time-domain measures and
frequency-domain measures

Drivers’ sleepiness on real roads (Karolinska
Sleepiness Scale)

HRVmeasures could have potential use in sleepiness detection (individu-
alized approach)
Statistically significant for severe sleepiness at 0.05 level:
- SDNN 53.2± 23, 95% CI (48.0–58.4)
- SDANN 37.4± 16, 95% CI (33.7–41.0)
- SDNNi 377.8± 52, 95% CI (366.2–389.4)
- NN50 52.8± 48, 95% CI (42.1–63.4)
- LF 449.5± 365, 95% CI (368.3–530.8)
- HF 241.2± 212, 95% CI (194.1–288.3)
- TP 741.4± 584, 95% CI (611.5–871.4)

Buendia et al., 2019
[24]

76 44.8± 7.8 (study 1) Time-domain measures and
frequency-domain measures

Drivers’ sleepiness on a public motorway
(Karolinska Sleepiness Scale)

HRV measures were associated with perceived sleepiness, irrespective of
pre-processing methods

45± 8.2 (study 2) Most HRV indices could distinguish between sleepy and alert drivers
35.4± 9.6 (study 3)

Fujiwara et al., 2019
[25]

34 22.7 Time-domain measures and
frequency-domain measures

Drivers’ drowsiness in comparison with elec-
troencephalography data for sleep scoring
(simulator—virtual vehicle)

The developed algorithm based on HRV indices identified 12 of 13 pre-
N1 episodes (electroencephalography data), with a false positive rate of 1.7
times per hour

Li et al., 2013 [26] 4 26–33 LF/HF ratio vs wavelet transform
method

Drivers’ drowsiness detection (Karolinska
Sleepiness Scale)

The wavelet method performed better than conventional LF/HF ratio:
95% accuracy (vs 68.8%), 95% sensitivity (vs 62.5%), 95% specificity (vs
75%)

Hendra et al., 2019 [27] 4 22 Time-domain measures and
frequency-domain measures (LF and
HF)

Drivers’ drowsiness detection based on HRV
measures and radial basis functional neural
network (driving simulator)

The developed model showed a 79.26% accuracy in drowsiness detection
(30 s segmentation in RR interval)

Lee et al., 2007 [28] 1 24 Time-domain measures Drivers’ stress detection in a laboratory and on
real roads

Heart rate was increased in a stressful driving situation, but SDNN,
RMSSD, and pNN50 parameters were decreased
At night driving, heart rate was lower, but SDNN, RMSSD, and pNN50
were higher

Mahachandra et al.,
2012 [29]

16 42.5± 11.52 Time-domain measures, frequency-
domain and non-linear measures

Drivers’ sleepiness detection using a driving
simulator (Karolinska Sleepiness Scale)

RMSSD performed better than other parameters in drivers’ sleepiness de-
tection
A 28% decline of RMSSD is a valid and sensitive parameter for sleepiness
detection

Michail et al., 2008 [30] 21 26.5 Time-domain measures and
frequency-domain measures

Drivers’ sleepiness and loss of control detec-
tion using a driving simulator

Lower values of LF and a lower LF/HF ratio were associated with sleepi-
ness, hypovigilance state, and occurrence of driving errors

Murata et al., 2008 [31] 5 21–26 Time-domain measures Drivers’ drowsiness detection based on HRV
measures and electroencephalography data (in
a laboratory)

HRV measures (RRV3) increased in the case of drowsy participants in
concordance with electroencephalography data
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Table 1. Continued.
Study, year Patients, No Age, median/mean ±

SD/range
Investigated parameters Clinical setting Findings

Patel et al.,
2011 [32]

12 47± 11 Time-domain measures and frequency-
domain measures

Early detection of drivers’ fatigue based
on HRV measures and neural network

The neural network based on HRV measures showed 90% accuracy in
fatigue detection

analysis (driving simulator) A lower LF/HF ratio was reported (1.2± 0.9) in comparison to the alert
state (1.7± 1.1), p = 0.01

Persson et al., 18 (first experiment) 41 (first experiment) Time-domain measures and frequency- Drivers’ sleepiness in real road driving Mean accuracy 56.0± 1.5 (53.5–57.9)
2019 [33] 24 (second experiment) 35 (second experiment) domain measures conditions (Karolinska Sleepiness Scale) Mean sensitivity 47.1± 3.0 (43.3–52.2)

44 (third experiment) 44 (third experiment) Mean specificity 74.6± 1.5 (72.6–76.5)
Confounding factors in the real world could modulate HRV measures

Vicente et al.,
2016 [34]

30 25–60 Time-domain measures and frequency-
domain measures

Drivers’ drowsiness detection on a driv-
ing simulator and real roads

Drowsiness detection based onHRVmeasures: positive predictive value
0.96, sensitivity 0.59, specificity 0.98
Sleep-deprivation state based on HRV measures: positive predictive
value 0.80, sensitivity 0.62, specificity 0.88
HRV could improve car safety mechanisms

Yu et al., 2016
[35]

10 20–65 Time-domain measures and frequency-
domain measures

Drivers’ stress evaluation on-road driving
experiments

HRV based on three parameters: mean RR, SDNN, and HRV triangular
index were associated with drivers’ stress level
Frequency-domain measures were not associated with stress levels

Zhao et al.,
2012 [36]

13 Time-domain measures and frequency-
domain measures

Drivers’ mental fatigue on a driving sim-
ulator

At the end of the driving task, LF increased (from 732.7 to 1057.5, p =
0.009), but HF decreased (from 859.03 to 626.18, p = 0.039), suggesting
that sympathetic activity is predominant after the task

Abe et al.,
2016 [37]

27 20–49 Time-domain measures and frequency-
domain measures

Drivers’ drowsiness detection on a driv-
ing simulator

The developed model showed a 68% average sensitivity in drowsiness
detection
Drowsiness was detected in 7 out of 8 participants based on HRV mea-
surements and multivariate statistical process control

Li et al., 2002
[38]

8 24.87 Frequency-domain measures (TP, LF,
HF, LF/HF).

Drivers’ mental stress and workload (ex-
perimental vigilance task) on a driving
simulator

After performing the vigilance task, LF increased (p< 0.05), LF/HF ra-
tio was higher, and HF decreased (p < 0.01)

Awais et al.,
2017 [39]

22 18–35 Frequency-domain measures (VLF, LF,
HF, LF/HF)

Drivers’ drowsiness detection on a driv-
ing simulator

VLF, LF, HF, and LF/HF were different between alert and drowsy
drivers (p < 0.05)
HRV parameters accuracy = 70%
EEG combined with HRV accuracy = 80.9%

Rodriguez- 10 41± 9 Time-domain measures and frequency- Professional drivers’ drowsiness detec- Alert vs drowsy states:
Ibanez et al, domain measures tion on real highway roads - SDNN 63.6± 21.1 vs 73.7± 24.3 (p < 0.005)
2012 [40] - LF/HF 3.18± 1.58 vs 4.33± 2.27 (p < 0.05)
Furman et al.,
2008 [15]

10 22–40 Time-domain and frequency-domain
measures (VLF, LF, HF, LF/HF)

Early sleepiness detection on a driving
simulator

VLF decreased consistently within 5 minutes before falling asleep

HF increased within seconds before falling asleep
LF/HF decreased within minutes before falling asleep

HF, power in high-frequency range; LF, power in low-frequency range; NN50, number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording; pNN50, NN50 count divided by the total number
of all NN intervals; RMSSD, the square root of the mean of the sum of the squares of differences between adjacent NN intervals; SDANN, standard deviation of the averages of NN intervals in all 5 min segments of the entire
recording; SDNN, standard deviation of all NN intervals; SDNNi, mean of the standard deviations of all NN intervals for all 5 min segments of the entire recording; TP, total power; VLF, power in a very-low-frequency
range.
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Sensitivity and specificity of HRV for sleepiness and fa-
tigue detection varied across studies, respectively from 47.1%
[33] to 95% [26] and from 74.6% [33] to 98% [34]. Accuracy
reported in studies was also different, ranging from 56.6%
[33] to 95% [26]. Potential confounding factors could partly
explain these discrepancies in real-road driving situations,
which might influence the balance between parasympathetic
and sympathetic activities and, subsequently, HRV measure-
ments.

Overall, results reported in studies included in the present
systematic review were consistent across studies. Sleepi-
ness and drowsiness were associated with higher HRV, while
drivers in alert states exhibited lower HRV but increased
heart rate. Regarding frequency-domain measurements,
drowsy drivers had higher HF power and reduced LF/HF ra-
tio, reflecting an increased parasympathetic activity. How-
ever, in one study, the authors observed somewhat different
results [40]. HRV time-domain parameter, SDNN, was in-
creased in drowsy drivers (p < 0.005), which is in line with
other studies, but LF/HF ratio was also higher (p < 0.05).
However, results are limited by the small number of partici-
pants enrolled (n = 10) in the analysis, who were professional
drivers with a potential different HRV response. Moreover,
sympathetic activity might be emphasized in real driving sit-
uations due to the stress of avoiding an accident [24].

One study evaluated the importance of HRV for drowsi-
ness detection and compared it with electroencephalography
(EEG) data [25]. The developed HRV-based algorithm de-
tected 12 out of 13 pre-N1 episodes (transitional sleep), sug-
gesting that HRV could be a valuable parameter for drowsy
state monitoring in drivers. Similar and concordant results
between HRV and EEG recordings were reported in another
study [31]. Moreover, to achieve better accuracy for sleepi-
ness detection, HRV measurements could be combined with
EEG data recorded using an additional electrode. In one
study, authors proposed a model which included EEG and
HRV data, with 80.9% accuracy [39].

Notably, the authors from one study [32] developed HRV
based model using artificial intelligence (neural network
analysis) and observed an excellent accuracy for fatigue de-
tection (90%). Also, LF/HF ratio decreased to 1.2 ± 0.87 in
the fatigue state from 1.8 ± 1.15 in the alert state, denot-
ing the parasympathetic activity. Another neural network
algorithmwas developed for drowsiness detection in drivers,
with a 79.26% accuracy [27].

HRV parameters appeared to help fall asleep detection
within several minutes before the event occurrence [15].
Power decrease in VLF band preceded falling asleep event
in drivers with 5 minutes. LF/HF ratio also showed a de-
creased value within minutes previous to falling asleep. Al-
though this evidence suggests that HRV could represent an
early and valuable marker of sleepiness detection, results are
limited by the small number of drivers enrolled (n = 10) and
should be confirmed in more extensive trials.

Concerning stress evaluation in drivers, three studies

[28, 35, 38] revealed that HRV measured by time methods
was lower in stressful driving situations. However, data
on frequency-domain measures were discrepant. One study
concluded that frequency-domain parameters were not asso-
ciated with stress levels in drivers [35], while another study
observed an increased LF and a higher LF/HF ratio [38].

4. Discussions
To the best of our knowledge, this systematic review is the

first to investigate the role of HRV measurement for sleepi-
ness, fatigue, and stress level monitoring in car drivers. Cur-
rently, fatigue detection systems for drivers are based on algo-
rithms that involvemonitoring steeringmovements patterns
(e.g., Bosch [41]) or detecting eye/pupil movements [42, 43].

Recently, HRVmonitoring gained interest, as it appears to
be a reliable marker of worse outcomes in various patholog-
ical conditions. One meta-analysis which involved patients
without cardiovascular disease revealed that a reduced HRV
was associated with a greater risk of first adverse cardiovas-
cular events, up to 45% [44]. Also, HRV measured as both
time- and frequency-domains was associated with cardiovas-
cular risk in another study [45]. Moreover, patients with
heart failure or myocardial infarction and a decreased HRV
exhibited a higher mortality risk [46].

AsHRVparameterswere linked to psychomotor vigilance
in clinical studies [12, 13], drivers seem to be an appropri-
ate population to benefit from HRV monitoring. Newly de-
veloped wireless sensors supported this for vital signs assess-
ment which allows remote control data collection and inter-
pretation. One study proposed a device that used a photo-
plethysmographic signal with a good performance reported
in measuring both time- and frequency-domain parameters
[47]. A complex system was recently described, which used
artificial intelligence to achieve a reasonable measure perfor-
mance and integrate most parameters, including time- and
frequency methods and non-linear data. Moreover, feedback
data are collected in order to achieve optimal function [48].
These data support integrating HRV parameters in future
car devices based on artificial intelligence to improve traffic
safety.

Notably, there are different wearable devices capable of
HRV monitoring, like Bitt Faros, Bodyguard 2, Actiheart,
and others [49]. These hardware and software features could
represent the first steps for integrating HRV monitoring in
cars, as it is required a device with reduced dimensions but
with optimal performance, which would not affect the driv-
ing process. In this regard, a system was described for HRV
measurement from the steering wheel, which displayed sim-
ilar results with electrocardiography data [50].

Multiple HRV parameters measurement rather than one
parameter approach seems to be the optimal strategy for eval-
uating the vigilance state in drivers that it would be possible
to achieve a good performance. Using also frequency-domain
parameters could help to create patterns of sleepy or stressed
drivers. As reported in the studies included in the present sys-
tematic review, sleepiness was usually associated with high
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HF power and decreased LF power, while stress driving situ-
ations were associated with increased LF power and reduced
and low HF power [23, 26]. However, HRV could be suscep-
tible to variations due to external factors related to real-roads
driving, like social stress, noise, and CO levels [51]. In this
case, non-linear parameters, in addition to the others, might
help to distinguish between different clinical states and to cre-
ate specific patterns.

Moreover, HRV parameters could be combinedwith EEG
data to increase sleepiness and stress detection [39]. In addi-
tion to vigilance detection in drivers, HRV could also be used
to predict epileptic seizures, thus improving traffic safety
[52].

Nonetheless, careful and standardized interpretation of
HRV measurements is required, as many factors could influ-
ence it. First of all, time-domain and frequency-domain pa-
rameters could vary according to the length of the analyzed
segment. Thus, variables measured from different length
recordings should be compared cautiously. In addition, ad-
vanced age could be associatedwith lower HRV values [9]. In
one study, women exhibited lower time-domain parameters
and higher HF, reflecting the parasympathetic activity [53].
Moreover, HRV could fluctuate with heart rate, as slower
heart rates are associated with higher HRV [9]. For this rea-
son, HRV parameters should be measured according to the
existing guidelines [3], so that reported resultswould be com-
parable between studies.

All studies included in our systematic review were obser-
vational, with a small number of participants, thus limiting
the results. That is why more and more extensive clinical tri-
als are required to confirm these data.

5. Conclusions
HRV represents a potentially valuable marker for sleepi-

ness, fatigue, and stress monitoring in drivers. HRV mea-
surements could be implemented in future clinical models
and sensors to detect early sleepiness and fatigue and prevent
car crashes. More studies with larger populations are needed
to support this evidence.

Author contributions
AB and AC conceived and designed the study; CB, and AB

performed the data aquisition; CB and ABr analyzed the data;
CB and AB wrote the paper; ABr and AC revised the paper.

Ethics approval and consent to participate
Not applicable.

Acknowledgment
Thanks to all the peer reviewers for their opinions and

suggestions.

Funding
Romanian Academy of Medical Sciences and European

Regional Development Fund, MySMIS 107124: Funding
Contract 2/Axa 1/31.07.2017/ 107124 SMIS.

Conflict of interest
The authors declare no conflict of interest.

Supplementarymaterial
Supplementary material associated with this article can be

found, in the online version, at https://rcm.imrpress.com/E
N/10.31083/j.rcm2203090.

References
[1] Natarajan A, Pantelopoulos A, Emir-Farinas H, Natarajan P. Heart

rate variability with photoplethysmography in 8million individuals:
a cross-sectional study. Lancet Digital Health. 2020; 2: e650–e657.

[2] KimH, Cheon E, Bai D, Lee YH, Koo B. Stress and Heart Rate Vari-
ability: a Meta-Analysis and Review of the Literature. Psychiatry
Investigation. 2019; 15: 235–245.

[3] Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ,
et al. Heart rate variability: standards of measurement, physiological
interpretation and clinical use. Task Force of the European Society
of Cardiology and the North American Society of Pacing and Elec-
trophysiology. Circulation. 1996; 93: 1043–1065.

[4] Thio CHL, van Roon AM, Lefrandt JD, Gansevoort RT, Snieder H.
Heart Rate Variability and its Relation to Chronic Kidney Disease:
Results from the PREVEND Study. Psychosomatic Medicine. 2018;
80: 307–316.

[5] Ernst G. Heart-Rate Variability-More than Heart Beats? Frontiers
in Public Health. 2017; 5: 240.

[6] Hirsch G, Jensen SH, Poulsen ES, Puthusserypady S. Atrial fibrilla-
tion detection using heart rate variability and atrial activity: a hybrid
approach. Expert Systems with Applications. 2021; 169: 114452.

[7] Hämmerle P, Eick C, Blum S, Schlageter V, Bauer A, Rizas KD, et
al. Heart Rate Variability Triangular Index as a Predictor of Cardio-
vascular Mortality in Patients with Atrial Fibrillation. Journal of the
American Heart Association. 2020; 9: e016075.

[8] Drawz PE, Babineau DC, Brecklin C, He J, Kallem RR, Soliman EZ,
et al. Heart Rate Variability is a Predictor of Mortality in Chronic
Kidney Disease: a Report from the CRIC Study. American Journal
of Nephrology. 2013; 38: 517–528.

[9] Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Met-
rics and Norms. Frontiers in Public Health. 2017; 5: 258.

[10] Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH. Rela-
tionship of heart rate variability to parasympathetic effect. Circula-
tion. 2001; 103: 1977–1983.

[11] Sacha J. Interaction between heart rate and heart rate variability. An-
nals of Noninvasive Electrocardiology. 2014; 19: 207–216.

[12] Chua EC, Tan W, Yeo S, Lau P, Lee I, Mien IH, et al. Heart rate
variability can be used to estimate sleepiness-related decrements in
psychomotor vigilance during total sleep deprivation. Sleep. 2012;
35: 325–334.

[13] Taranto Montemurro L, Floras JS, Picton P, Kasai T, Alshaer H,
Gabriel JM, et al. Relationship of Heart Rate Variability to Sleepiness
in Patients with Obstructive Sleep Apnea with and without Heart
Failure. Journal of Clinical Sleep Medicine. 2014; 10: 271–276.

[14] Escorihuela RM, Capdevila L, Castro JR, Zaragozà MC, Maurel
S, Alegre J, et al. Reduced heart rate variability predicts fatigue
severity in individuals with chronic fatigue syndrome/myalgic en-
cephalomyelitis. Journal of Translational Medicine. 2020; 18: 4.

[15] Furman GD, Baharav A, Cahan C, Akselrod S. Early detection of
falling asleep at the wheel: a Heart Rate Variability approach. 2008
Computers in Cardiology. 2008; 1109–1112.

[16] Salvati L, d’Amore M, Fiorentino A, Pellegrino A, Sena P, Villecco
F. On-Road Detection of Driver Fatigue and Drowsiness during
Medium-Distance Journeys. Entropy. 2021; 23: 135.

[17] Hartley LR, El Hassani J. Stress, violations and accidents. Applied
Ergonomics. 1994; 25: 221–230.

[18] Watling CN, Mahmudul Hasan M, Larue GS. Sensitivity and speci-
ficity of the driver sleepiness detection methods using physiological

Volume 22, Number 3, 2021 851

https://rcm.imrpress.com/EN/10.31083/j.rcm2203090
https://rcm.imrpress.com/EN/10.31083/j.rcm2203090


signals: a systematic review. Accident Analysis & Prevention. 2021;
150: 105900.

[19] Sikander G, Anwar S. Driver Fatigue Detection Systems: a Review.
IEEE Transactions on Intelligent Transportation Systems. 2019; 20:
2339–2352.

[20] Bier L, Wolf P, Hilsenbek H, Abendroth B. How to measure
monotony-related fatigue? A systematic review of fatigue measure-
ment methods for use on driving tests. Theoretical Issues in Er-
gonomics Science. 2020; 21: 22–55.

[21] PageMJ,McKenzie JE, Bossuyt PM, Boutron I, HoffmannTC,Mul-
row CD, et al. The PRISMA 2020 statement: an updated guideline
for reporting systematic reviews. BritishMedical Journal. 2021; 372:
n71.

[22] Ma L, Wang Y, Yang Z, Huang D, Weng H, Zeng X. Methodologi-
cal quality (risk of bias) assessment tools for primary and secondary
medical studies: what are they and which is better? MilitaryMedical
Research. 2020; 7: 7.

[23] Abtahi F, Anund A, Fors C, Seoane F, Lindecrantz K. Association
of Drivers’ sleepiness with heart rate variability: a Pilot Study with
Drivers on Real Roads. In Eskola H, Väisänen O, Viik J, Hyttinen
J (eds.) EMBEC & NBC 2017 (pp 149–152). Singapore: Springer.
2017.

[24] Buendia R, Forcolin F, Karlsson J, Arne Sjöqvist B, Anund A,
Candefjord S. Deriving heart rate variability indices from cardiac
monitoring-an indicator of driver sleepiness. Traffic Injury Preven-
tion. 2019; 20: 249–254.

[25] Fujiwara K, Abe E, Kamata K, Nakayama C, Suzuki Y, Yamakawa
T, et al. Heart Rate Variability-Based Driver Drowsiness Detection
and its Validation with EEG. IEEE Transactions on Biomedical En-
gineering. 2019; 66: 1769–1778.

[26] Li G, ChungW. Detection of driver drowsiness using wavelet anal-
ysis of heart rate variability and a support vector machine classifier.
Sensors. 2013; 13: 16494–16511.

[27] HendraM,KurniawanD,VinaChrismiantari R, PambudiUtomoT,
Nuryani N. Drowsiness detection using heart rate variability analy-
sis based on microcontroller unit. Journal of Physics: Conference
Series. 2019; 1153: 012047.

[28] Lee HB, Kim JS, Kim YS, Baek HJ, Ryu MS, Park KS. The relation-
ship between HRV parameters and stressful driving situation in the
real road. 2007 6Th International Special Topic Conference on In-
formation Technology Applications in Biomedicine. 2007; 198–200.

[29] Mahachandra M, Yassierli, Sutalaksana IZ, Suryadi K. Sensitivity of
heart rate variability as indicator of driver sleepiness. 2012 South-
east Asian Network of Ergonomics Societies Conference (SEANES).
2012; 1–6.

[30] Michail E, Kokonozi A, Chouvarda I, Maglaveras N. EEG and HRV
markers of sleepiness and loss of control during car driving. Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society. 2008; 2008: 2566–2569.

[31] Murata A, Hiramatsu Y. Evaluation of Drowsiness by HRV Mea-
sures: Basic Study for Drowsy Driver Detection. IEEE SMC Hi-
roshima Chapter. 2008; 2008: 99–102.

[32] PatelM, Lal SKL, KavanaghD, Rossiter P. Applying neural network
analysis on heart rate variability data to assess driver fatigue. Expert
Systems with Applications. 2011; 38: 7235–7242.

[33] Persson A, Jonasson H, Fredriksson I, Wiklund U, Ahlstrom C.
Heart Rate Variability for Driver Sleepiness Classification in Real
Road Driving Conditions. Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. 2019; 2019:
6537–6540.

[34] Vicente J, Laguna P, Bartra A, Bailón R. Drowsiness detection using
heart rate variability. Medical & Biological Engineering & Comput-
ing. 2016; 54: 927–937.

[35] YuYJ, Yang Z,OhB, YeoYK, LiuQ,HuangG, et al. Investigation on
driver stress utilizing ECG signals with on-board navigation systems
in use. 2016 14th International Conference onControl, Automation,
Robotics and Vision. 2016; 1–6.

[36] Zhao C, Zhao M, Liu J, Zheng C. Electroencephalogram and elec-
trocardiograph assessment of mental fatigue in a driving simulator.
Accident Analysis & Prevention. 2012; 45: 83–90.

[37] Abe E, Fujiwara K, Hiraoka T, Yamakawa T, KanoM.Development
of Drowsiness Detection Method by Integrating Heart Rate Vari-
ability Analysis and Multivariate Statistical Process Control. SICE
Journal of Control, Measurement, and System Integration. 2016; 9:
10–17.

[38] Li Z, Jiao K, Chen M, Yang Y, Wang C, Qi S. Spectral Analysis of
Heart Rate Variability as a Quantitative Indicator of Driver Mental
Fatigue. SAE Transactions. 2002; 111: 249–253.

[39] Awais M, Badruddin N, Drieberg M. A Hybrid Approach to Detect
Driver Drowsiness Utilizing Physiological Signals to Improve Sys-
tem Performance andWearability. Sensors. 2017; 17: 1991.

[40] Rodriguez-Ibañez N, García-Gonzalez MA, Cruz MAFdl,
Fernández-Chimeno M, Ramos-Castro J. Changes in heart rate
variability indexes due to drowsiness in professional drivers
measured in a real environment. 2012 Computing in Cardiology.
2012. 913–916.

[41] Bosch. Driver drowsiness detection. Available at:
https://www.bosch-mobility-solutions.com/en/solutions/as
sistance-systems/driver-drowsiness-detection/ (Accessed: 28 June
2021).

[42] Raju JVVSN, Rakesh P, Neelima N. Driver Drowsiness Monitoring
System. Intelligent Manufacturing and Energy Sustainability. 2020;
8: 675–683.

[43] Wikipedia TFE. Driver drowsiness detection. 2021. Available
at: https://en.wikipedia.org/wiki/Driver_drowsiness_detection
(Accessed: 28 June 2021).

[44] Hillebrand S, Gast KB, deMutsert R, Swenne CA, Jukema JW,Mid-
deldorp S, et al. Heart rate variability and first cardiovascular event
in populationswithout known cardiovascular disease: meta-analysis
and dose-response meta-regression. EP Europace. 2013; 15: 742–
749.

[45] Kubota Y, Chen LY,Whitsel EA, Folsom AR. Heart rate variability
and lifetime risk of cardiovascular disease: the Atherosclerosis Risk
in Communities Study. Annals of Epidemiology. 2017; 27: 619–625.
e612.

[46] Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, et al.
Heart rate variability as predictive factor for sudden cardiac death.
Aging. 2018; 10: 166–177.

[47] Reyes I, Nazeran H, Franco M, Haltiwanger E. Wireless photo-
plethysmographic device for heart rate variability signal acquisition
and analysis. Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society. 2012; 2012: 2092–2095.

[48] Drury RL. HRV in an Integrated Hardware/Software System Us-
ing Artificial Intelligence to Provide Assessment, Intervention and
PerformanceOptimization. InAslanidis T (ed.) AutonomicNervous
System Monitoring. London, UK: IntechOpe. 2019.

[49] Hinde K, White G, Armstrong N. Wearable Devices Suitable for
Monitoring Twenty Four Hour Heart Rate Variability in Military
Populations. Sensors. 2021; 21: 1061.

[50] Osaka M, Murata H, Fuwamoto Y, Nanba S, Sakai K, Katoh T.
Application of heart rate variability analysis to electrocardiogram
recorded outside the driver’s awareness from an automobile steer-
ing wheel. Circulation Journal. 2008; 72: 1867–1873.

[51] Schnell I, Potchter O, Epstein Y, Yaakov Y, Hermesh H, Brenner
S, et al. The effects of exposure to environmental factors on Heart
Rate Variability: an ecological perspective. Environmental Pollu-
tion. 2013; 183: 7–13.

[52] Moridani MK, Farhadi H. Heart rate variability as a biomarker for
epilepsy seizure prediction. Bratislavske Lekarske Listy. 2017; 118:
3–8.

[53] Koenig J, Thayer JF. Sex differences in healthy human heart rate
variability: a meta-analysis. Neuroscience & Biobehavioral Reviews.
2016; 64: 288–310.

852 Volume 22, Number 3, 2021

https://www.bosch-mobility-solutions.com/en/solutions/assistance-systems/driver-drowsiness-detection/
https://www.bosch-mobility-solutions.com/en/solutions/assistance-systems/driver-drowsiness-detection/
https://en.wikipedia.org/wiki/Driver_drowsiness_detection

	1. Introduction
	2. Materials and methods
	2.1 Data sources and search strategy
	2.2 Eligibility criteria and outcomes
	2.3 Data collection 
	2.4 Quality assessment

	3. Results
	4. Discussions
	5. Conclusions
	Author contributions
	Ethics approval and consent to participate
	Acknowledgment
	Funding
	Conflict of interest
	Supplementary material
	References

