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Extracorporeal life support (ECLS) was first implemented as an exten-
sion of cardiopulmonary bypass technology. The early use of ECLS
in patients with acute respiratory distress syndrome (ARDS) was dis-
couraging, likely due to limitations of technology and understand-
ing of the disease process. However, over the last decade, there has
been a rapid expansion in ECLS use. This ''rebirth'' in 2009 was largely
driven by the need for ECLS during the Influenza A subtype H1N1 pan-
demic and the results of the conventional ventilatory support versus
extracorporeal membrane oxygenation for severe adult respiratory
failure (CESAR) trial showing improved outcomes in patients with
ARDS on ECLS compared to traditional management. Along with the
increase in overall use of ECLS, there has been an increase in the num-
ber of patients with lung failure who are on long-term support, either
awaiting lung recovery or transplantation. Many of these patients are
awake, participating in physical rehabilitation, and even ambulat-
ing while supported with ECLS. Given the recent advances in patient
care, and improvements in ECLS technology, the movement towards
home for stable patients supported with ECLS may be on the horizon.
Patients supported with ventricular assist devices (VAD) underwent a
similar transition towards home in the 1990s, before which they were
hospital bound. The road to an ambulatory home wearable lung will
likely mirror that pathway. This review will give a brief overview of
the transition of VAD patients out of the hospital, the history of ECLS,
the current state of ECLS for lung failure, new and upcoming ECLS
technology, and hurdles on the road home for ECLS patients.
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1. Introduction
On July 18, 1963, a 42-year-old man underwent an aor-

tic valve replacement at Baylor College of Medicine. Post-
operatively, he developed cardiogenic shock and suffered a
cardiac arrest. Given his grim prognosis he was considered
for left ventricular bypass, and on July 19 an early version of
the DeBakey blood pump was implanted. Unfortunately, his
injury was non-recoverable and support was stopped after 4
days [1]. This marked the first clinical use of a left ventricu-
lar assist device (LVAD). Over the next several decades vari-
ous LVADs were developed and used clinically, primarily for
short-term support post-cardiotomy and as a bridge to heart

transplantation [2]. Patients were bound to intensive care
units (ICU) and tethered to bulky consoles.

In the late 1980s, with an eye towards long-term sup-
port, electrically-powered implantable devices were devel-
oped through the National Heart, Lung, and Blood Institute
(NHLBI) program and approved as investigational devices;
most notably theNovacor LVADand the vented electric (VE)
HeartMate LVAD [2]. In 1991, a 33-year-old man, who
was supported with the VE HeartMate while awaiting heart
transplantation at Texas Heart Institute, was allowed to leave
the hospital and visit home [3]. He was the first patient with
an LVAD to do so. Shortly thereafter, a patient with the same
device was formally discharged from the hospital and another
patient returned to work while awaiting transplantation [2].
It was quickly noted that these were not exceptional cases.
Many patients supported with these devices did not require
intensive care monitoring, and by the mid-1990s the poten-
tial for LVADs as outpatient therapy became a reality with
noted improvement in quality of life [4–6].

With continued advancement in technology and patient
care, patients with current LVADs achieve remarkable sur-
vival at 1 year (86.6%) and 2 years (79.0%) after implantation
[7]. Improvements in devices and the clinical stability of pa-
tients with LVADs have, in part, spurred recent revisions to
the heart allocation policy put forth by the United Network
of Organ Sharing [8, 9], whereby these patients now have
a lower priority listing. The potential for comparable out-
comes and quality of life to heart transplant patientsmay exist
in the near future with these devices.

Trailing these strides in the care for patients with end-
stage heart failure has been the management of patients with
end-stage lung disease. The complexity of meeting the needs
of oxygenation and/or ventilation for those with end-stage
lung disease has posed an additional technological hurdle, as
opposed to the pump failure in patients with end-stage heart
failure. While some patients are able to get by with home
supplemental oxygen, others require hospitalization formore
advanced therapies such as mechanical ventilation or extra-
corporeal life support (ECLS).

The prospect of liberating patients with end-stage lung
disease from the hospital; as destination-therapy or while
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awaiting transplantation, is an unlikely scenario with me-
chanical ventilation. However, with ECLS, an ambulatory
home wearable lung may be on the horizon. This review will
focus on the historical progress of ECLS, its current status,
new and upcoming technology, and the clinical path forward
that may drive the field towards that goal.

2. History
The first successful use of a pump-blood oxygenator was

in 1953 by John Gibbon, Jr. [10]. Blood entered down both
sides of vertical screens (1.6 m2) and was spread into a thin
film where gas exchange occurred by direct exposure to an
oxygen-rich environment. This and other early oxygenators
were limited to a few hours of use due to issues of hemoly-
sis, bleeding, and the risk of arterial gas emboli due to direct
contact of blood and gas [11–13]. The need to eliminate the
blood-gas interface was clear, and this was the impetus that
laid the foundation for ECLS.

Various materials were used as a membrane; including
plastic films, ethylcellulose, Dacron and fiberglass, and sili-
con [14–17]. These were arranged as parallel plates, and by
machining capillary channels in the membranes, blood flow
could be more carefully controlled [16]. It was a silicone
membrane oxygenator of this design thatwas used byDr. Hill
in 1972 on a 24-year-old man who had severe hypoxic res-
piratory failure following an automobile accident [18]. The
patient was supported for 75 hours until his lung function
improved allowing removal of the device.

The National Institute of Health (NIH) set forth a mul-
ticenter, randomized trial to evaluate the use of ECLS as a
therapy in adults with acute respiratory distress syndrome
(ARDS), the results of which were published in 1979 [19].
The trial was flawed as there were four different novel oxy-
genators used on fewer than 95 patients in nine centers; most
of which were new to the technology. With no survival ben-
efit seen (~10% in patients supported either with mechani-
cal ventilation alone or with ECLS), the use of ECLS in the
adult population significantly slowed over the next 20 years.
However, driven by Dr. Bartlett and colleagues, neonatal use
continued based on the successful use of prolonged ECLS for
a newborn infant, Esperanza, with severe respiratory failure
in 1975 [20]. Publishing their experience on 45 newborns
with respiratory failure in 1982, they reported a survival of
55% [21]. He used the spiral coil Kolobow Sci-Med silicone
membrane oxygenator, and introduced the surprisingly well-
tolerated cannulation of the carotid artery and jugular vein.

Contemporaneously, oxygenator development continued
with the adoption of polypropylene hollow-fiber membranes
derived from renal dialyzers, where blood flowed through the
fibers and gas around the fibers. An oxygenator of this de-
sign became first commercially available in 1981 by Terumo
Corporation. Due to its efficient gas exchange, small size,
and ease of use, it quickly achieved a majority of the market
share for short-term use [22, 23]. Modern hollow-fiber oxy-
genators have blood flowing around the fibers and gas flow-

ing through the fibers; thus providing a larger cross-sectional
area for gas exchange, and better mixing of the blood due
to the Fahraeus-Lindqvist effect [24, 25]. Together, these
changes have resulted in a reduction in the pressure head and
the problematic clotting which historically occurred within
the fibers [26]. Plasma leakage into the fibers was initially
an issue with oxygenator use beyond a few hours. The in-
troduction of polymethylpentene and skinned pores in the
early 2000s drastically reduced this complication, leading to
the oxygenators most-widely used for ECLS today [27, 28].

Interest in the use of ECLS in adults with respiratory fail-
ure was renewed when Dr. Bartlett’s group reported a 52%
survival among 255 patients supported between 1989 and
2003 [29]. Unlike the early NIH trial, their protocol-driven
approach targeted lung-rest ventilator strategies, optimiza-
tion of oxygen delivery, and minimal anticoagulation; thus
shedding light on appropriatemanagement strategies in these
patients [30]. This development set the stage for the CESAR
trial. The United-Kingdom-based multicenter study ran-
domized adults with ARDS to consideration for ECLS versus
conventional treatment, and demonstrated that patients in
the ECLS arm had an improved rate of survival without dis-
ability compared to those who received conventional treat-
ment (63% versus 47%; p = 0.03) [31].

The same year the CESAR trial results were published,
H1N1 caused a respiratory viral pandemic. In this setting,
the use of ECLS for adult respiratory failure saw a rebirth.
The Extracorporeal Life Support Organization (ELSO) reg-
istry noted more than double the cases of adult respiratory
ECLS in 2009 compared to prior years, leading to the current
era of ECLS use [32]. Since then, over the past decade there
has been a continued rise in not only the number of cases per-
formed, but also the centers performing ECLS.

3. Current status of ECLS for lung failure
There are three patient populations in which the prospect

of home ECLS therapy may become a reality: patients with
ARDS awaiting recovery, patients with lung disease awaiting
transplantation, and patients not suitable for transplantation
but suffering with end-stage disease. Per the ELSO registry,
over the last 5 years there have been over 17,000 adult res-
piratory ECLS cases with a survival of 61% [32]. Along with
the rise in overall ECLS runs, there has been an increase of
prolonged respiratory ECLS cases [33]. Posluszny et al. [34]
have defined these prolonged runs as≥14 days, and in recent
years, have shown 600 to 900 cases annually in ELSO reg-
istry analysis. More than 12% of these ECLS runs were >6
weeks long. Overall survival in these long-term patients has
been noted to range from 30 to 50% [33, 35]. However, there
have been several reports of patients with ARDS who were
bridged to recovery or lung transplantation with ECLS runs
>100 days long [36–41].

The longest case reported is of a seven-year-oldwith a 30%
burn and smoke inhalation who had recovered near normal
pulmonary function after 605 days of extracorporeal mem-
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brane oxygenation (ECMO). The patient required several
modes of ECLS: veno-arterial (VA) ECMO for one week,
veno-venous (VV) ECMO for two months, right-atrial-to-
pulmonary-artery for 16months, and extracorporeal CO2 re-
moval for twomonths [42]. It appears that lungs can recover
from severe injuries if scarring and fibrosis can be mitigated.
Consolidated stiff lungs are filled with inflammatory cells.
They cannot be forced open until these inflammatory cells are
removed. The Karolinska group has documented normaliza-
tion of a lung over months of poor elasticity without use of
high positive end-expiratory pressure (PEEP) and peak pres-
sures [43]. Since there are no adjuvant drugs for fibrosis, we
believe the lung needs rest through a safe, long-term support.

The number of ECLS runs for end-stage lung disease pa-
tients awaiting transplantation has also been growing over
the past 20 years [44–46]. Several of these patients were
on ECLS therapy for more than 50 days before undergoing
transplantation. Data from all patients indicate that survival
with this strategy is equivalent, if not better, when com-
pared to patients who are bridged with mechanical ventila-
tion [47, 48]. Improved outcomes have been noted when
patients are liberated from the ventilator and spontaneously
breathing, and are able to participate in physical therapy
[45, 46, 48]. This offers the opportunity to prevent decon-
ditioning while allowing for physical rehabilitation and im-
proved nutrition. Not only does this improve the rate of suc-
cessful bridge to transplant, but it also leads to a quicker re-
covery post-transplantation.

The ability to ambulate patients on ECLS is a stark con-
trast to the initial use of these devices. Patients were histori-
cally bed-bound; not only due to the size of the ECLS circuits,
but also due to the presumed critical acuity and fear of catas-
trophic complications such as device malfunction/damage,
bleeding, or dislodgement of cannula. With the reduction
in membrane surface area to <2 m2 and the modern cen-
trifugal pumps, the size, reliability, and hemocompatibility
of ECLS systems have dramatically improved. Anticoagu-
lation for ECLS support has primarily been heparin-based;
however, direct thrombin inhibitors are increasingly being
used [49]. Whereas anticoagulation goals have typically been
an activated clotting time of 180–220 seconds, many centers
have shifted to a partial thromboplastin time of 1.5–2.5 times
the normal range, or an anti-Xa range of 0.3–0.5U/mL.More
recently, there has been a trend towards further reduction of
anticoagulation goals, with some centers switching to sub-
cutaneous prophylaxis dosing or even no-heparin regimens
in the setting of VV ECMO [50–52]. While the data is lim-
ited, these strategies do not seem to have increased throm-
botic complications in short-term ECLS runs.

Along with the decreased concern for bleeding, advances
in cannulation approaches have made the mobilization of
patients more practical; most notably the use of single-site
dual-lumen cannula in the case of VV ECMO, or the “sport
model” with upper body cannulation in the case ofVAECMO
[53, 54]. In late 2008, we learned from C.W. Hoopes (per-

sonal communication) that patients could ambulate while
supported on ECMO, and we adopted his protocol in 2010
[55]. Since then we have been routinely ambulating patients,
even those with femoral cannulas [56, 57]. Still, given the
size of the ECLS circuit and need to transport gas tanks with
the circuit, mobilization of these patients generally requires
multiple healthcare workers to manage both the patient and
the equipment [56, 58].

4. New/future technology
Since the early 2000s, the interventional lung assist de-

vice (Xenios, Heilbronn, Germany) has been aimed towards
the treatment of hypercarbic respiratory failure. This device
can either be pumpless in an arterio-venous configuration
or pump-assisted for low-flow CO2 removal. Outside of the
ARDS population, a device such as this may be well-suited
for patients with chronic obstructive pulmonary disease. It
is currently in the process of the being adapted for long-term
ambulatory lung assist [59].

Several other ECLS systems with further oxygenation ca-
pabilities aimed for wearable ambulatory lung support have
been in development. Our group believe that ECMO might
provide a platform for recovery, bridge to transplantation,
and even satisfactory permanent support of irreversible lung
disease. With 22 years of support from the NHLBI and
more recent support from a commercial subcontractor, we
have been able to translate our laboratory prototypes into a
portable console for a wearable pump-lung unit. This device,
Breethe OXY-1 system (Abiomed, Danvers, MA, USA), has
recently become available for clinical use under 510(k) ap-
proval for use up to six hours. The system consists of an in-
tegrated pump-oxygenator unit with an oxygen concentra-
tor encased in a mobile console to obviate the need for gas
tanks during mobilization. Though human use has just be-
gun, this system had promising 30-day in-vivo performance
in large animal models [60]. We are anxious to watch its use
grow in the ICU, and anticipate its performance to justify ap-
proval for long-term use, ambulation, and even a safety study
for use at home.

Similar systems that have been under development in par-
allel are the percutaneous, paracorporeal artificial lung by the
University of Kentucky group, and the Paracorporeal Am-
bulatory Assist Lung by the University of Pittsburgh group
[61, 62]. Both of these systems have undergone in-vivo large
animal model testing with encouraging results. The Univer-
sity ofMichigan group has taken another approachwith their
compliant thoracic artificial lung [63]. This device is used in
a pulmonary artery to left atrium configuration to allow the
right ventricle to act as the pump for the oxygenator. To
date, 14-day in-vivo studies have shown good performance
with minimal clot formation, and 60-day studies are to fol-
low. TheMobybox ECMO device (Hemovent, Aachen, Ger-
man) presents yet another approach, as it is fully pneumat-
ically driven requiring no power supply [64]. Seven-day in-
vivo studies have shown no visible clotting, and the device has
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received Conformitè Europëenne (CE)marking to place it on
the market in the European Union.

Coating of ECLS blood contacting surfaces is another field
of investigation in hopes to further improve biocompatibil-
ity. Though some devices on the market do not have any
coating, others have phosphorylcholin, or heparin coated
surfaces. As of yet, there is no evidence to suggest that this re-
duces thrombotic complications for long-term support, par-
ticularly relevant to an ambulatory lung device. Research ef-
forts have focused on ionically-charged surfaces, biochemical
coatings (e.g., albumin, polyethylene glycol, nitric oxide, an-
ticoagulants), and endothelialization of surfaces [59, 65–67].
In future oxygenators, these coatings may markedly reduce
or even obviate the need for anticoagulation.

Just as hollow-fiber membranes led to the current era of
ECLS systems, the next jump may be in 3D-membranes or
microfluidic devices. The 3D-membranes designed based on
triply periodic minimal surface geometries can result in oxy-
gen transfer rates 26–69% higher than hollow-fiber mem-
brane designs [68]. Microfluidic devices take a biomimetic
approach in the design of channels on the range of 10–20 µm
in diameter to allow for more efficient gas exchange [59, 69].
Ambient air is often used as the ventilating gas opposed to
oxygen required for current devices [70]. Selvaganapathy’s
group has reported stackable modules of microfluidic devices
with flow rates ranging from 10 to 60 mL/min [71, 72]. This
work has been aimed towards assist in pre-term neonates
with recent animal work done in a swine model [73]. How-
ever, for clinical feasibility, particularly in adult patients, the
technologywould need to be scaled up (estimated 833 stacked
layers for an adult device) which may lead to hemocomplati-
bilty issues [74–76]. The prospect of 3D-microfluidic topolo-
gies may mitigate both of these issues by providing greater
surface area for gas-exchange, thus lowering priming vol-
ume.

5. Road to home

Following the ELSO annual meeting in 2017, Palmer
spoke to our group of his landmark experience with an out-
of-hospital ECMO experience [77]. His team had been sup-
porting a 59-year-old woman with idiopathic pulmonary fi-
brosis for 160 days on VV ECMO as a bridge to transplant.
She was emotionally depleted in her long wait and asked to
go home for a meal. He engineered a 440 km day-trip from
the ICU. He felt the “pasta reprieve” gave her the emotional
boost to survive an additional wait of 69 days in the ICU be-
fore a donor was located and successful transplantation could
be performed. We ask why an ICU is required if a trip home
is possible.

Despite the technological strides and clinical advance-
ments over the past 20 years in ECLS devices, there remain
challenges that need to be addressed on the path to an ambu-
latory home wearable lung. These largely consist of cannula-
tion strategies, physiologic requirements for daily activities,

device reliability and monitoring, anticoagulation, and out-
patient management.

Though centers have been able to ambulate patients who
are femorally cannulated, this would likely not be a strat-
egy suitable for discharge. Percutaneous dual-lumen can-
nula for patients requiring VV ECMO, or an upper body
cannulation strategy for those requiring VA-ECMO, would
be more preferable. However, even these peripheral can-
nulation strategies may not be ideal given the care required
to keep cannulas tethered in place and the discomfort of a
large-bore cannula maintained long-term in a patient’s neck.
Perhaps conversion to a tunneled central cannulation strat-
egy once patients reach a point of stability would permit the
safest strategy, alongwith providing easier cannula sitemain-
tenance when at home. Steuer et al. [78] have also suggested
the use of grafts sewn to a patient’s common iliac veins, which
could potentially be suitable for a low-flow CO2-removal ap-
plication.

Many patients reach a point of physical therapy and am-
bulation while supported on ECLS; however, it is likely
a more thorough assessment of physiologic requirements
would need to occur prior to hospital discharge. Certain pa-
tientsmay prove to have higher requirements than others and
pose a greater challenge. In a simulated model, Chicotka and
colleagues assessed various ECMO configurations in patients
with idiopathic pulmonary fibrosis when at rest and during
exercise to the extent where total body oxygen utilizationwas
roughly equivalent to a patient with functional New York
Heart Association III symptoms [79]. They found that re-
gardless of the configuration, blood flow and gas flow would
likely need to be increased to meet the physiologic require-
ments of patients. Assessment of device settings required
to achieve 3–4 metabolic equivalents for individual patients
would need to be done, so that patients may perform daily
activities. Furthermore, patients and their caregivers would
need to be familiar with changing the device settings during
these tasks. Alternatively, the implementation of an autoreg-
ulatory ECLS circuit responding to physiologic needs would
be needed, such as those demonstrated in animal models by
Kopp et al. and Conway et al. [80, 81].

The ability to monitor ECLS systems to predict compo-
nent failure or need for maintenance would also be essen-
tial. Tracking the device performance in terms of gas ex-
change and transmembrane pressures against baseline values
would help identify worsening efficiency of the device and
formation of thrombus, respectively. These could serve as
indicators for outpatient assessment or the need for pump-
oxygenator exchange before device failure ensues. Having a
clinical team, consisting of physicians, nurses, and ECLS spe-
cialists, available for patient issues and outpatient assessment
and management would be essential for this task.

The appropriate anticoagulation regimen would need
to be determined as well. Continuous infusion of an
intravenous anticoagulant would require additional care
and expertise, and likely be prohibitive to hospital dis-
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charge. While prophylactic subcutaneous dosing and no-
anticoagulant strategies have been used, the long-term safety
of these would need to be assessed. Utilization of a direct-
acting oral anticoagulant, or warfarin, could be another op-
tion; however, their use in the setting of ECLS remains un-
proven.

Perhaps the next steps towards evaluation of the safety and
feasibility of an at-home ambulatory lung should be tomirror
the approach takenwith the early generation durable LVADs.
The newer integrated pump-oxygenator systems may allow
for improvement in ease of care similar to the introduction of
the VE HeartMate and the Novacor LVADs. Evaluating ad-
verse events, and the need for physician intervention during
the course of ECLS therapy could be the driver for evaluation
as outpatient therapy [5]. From there, patient criteria should
be set forth to determine eligibility for discharge similar to
the VE HeartMate and Novacar bridge trials [82, 83].

6. Conclusions
From its first clinical implementation over 50 years ago,

the use of ECLS has expanded to over 450 centers [32]. The
technological advances and improvements in clinical care
have allowed for the survival of thousands of patients who
likely otherwise would have died. With longer duration
ECLS runs occurring with increasing frequency, particularly
in the setting of bridge to transplant and ARDS, and the per-
formance of physical rehabilitation and ambulation, the next
natural step in evolution of the field is the de-escalation in
acuity of care from ICUs to floor care to home. Continued
advancements in ECLS will likely lead to a similar pathway
of LVADs, making the ambulatory home wearable lung an
eventual reality.
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