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Abstract

Left ventricular (LV) twist is defined as the wringing motion of the LV around its long-axis during systole generated by rotation of the LV
apex in a counterclockwise direction, as viewed from the apex, while the LV base moves in a clockwise direction. In several cases, the LV
apex and base move in the same direction during ejection demonstrating a special condition called as LV ‘rigid body rotation’. The present
review aimed to summarize our knowledge about this rare but not fully understood entity demonstrating its theoretic pathophysiologic

background, clinical significance, associated diseases, and reversibility based on available literature.
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1. The normal twisting motion of the heart

Left ventricular (LV) twist represents the wringing
motion of the heart along its long-axis during systole gen-
erated by rotation of the LV apex in a counterclockwise
(CCw) direction, as viewed from the apex, while the LV
base moves in a clockwise (Cw) direction [1]. One of the
main components of the mechanical efficacy of the heart
is the peak systolic LV twist, resulting in 60% LV ejec-
tion fraction (EF) with only 15% fiber shortening [2]. This
wringing motion is generated by the helical arrangement
of myocardial fibers, subendocardially, the spiral holds a
left-handed helix, while there is a right-handed helix in the
subepicardium. The myocyte helix angle changes continu-
ously from the subendocardium to the subepicardium, typi-
cally ranging from +60 degree at the subendocardium to —60
degree at the subepicardium [3]. The mid-myocardial cir-
cumferential fibers shorten simultaneously with the oblique
fibers in the right- and left-handed helices during ejec-
tion providing a horizontal counterforce throughout ejec-
tion. The subepicardial fibers control the direction of the
peak systolic LV twist, mainly due to their longer arm of
movement. Therefore, the absence of the endocardial helix
would result in increased Cw basal and CCw apical rota-
tion, while the absence of the epicardial helix would cause
CCw basal and Cw apical LV rotation [4].

2. Estimation of LV rotational mechanics

In earlier years, LV rotational mechanics could be
examined only by invasive (microsonometry) or expen-
sive (magnetic resonance imaging) methodologies [1].
Two-dimensional (2D) speckle-tracking echocardiography
(STE) is a non-invasive opportunity to assess LV rotational
mechanics. However, the LV is a three-dimensional (3D)

chamber, therefore its examination in 2D theoretically is
associated with loss of information. This fact leads to
guidelines not supporting 2DSTE in the quantification of
LV rotational mechanics [5]. Moreover, significant dif-
ferences between 2DSTE- and 3DSTE-derived LV rota-
tional parameters could also be demonstrated [6]. 3DSTE
is a novel method for 3D assessment of LV. Shortly, full
volume ‘echocloud’ (3D echocardiographic dataset) is ac-
quired using 3D capable matrix transducer at the begin-
ning of 3DSTE examination in which analysis could be per-
formed online or offline using a special software by creating
a virtual 3D model of the LV. Volumetric changes in LV re-
specting the cardiac cycle, LV contractility represented by
LV strains and LV rotational parameters could be calculated
at the same time using this cast [7] (Fig. 1).

3. MAGYAR studies

The aim of our study conducted in our tertiary car-
diovascular center was to assess the diagnostic and poten-
tially prognostic values of 3DSTE-derived parameters in-
cluding LV rotational parameters. LV apical and basal ro-
tations and LV twist were measured in healthy subjects
(MAGYAR-Healthy Study) and in several pathological
states (MAGYAR-Path Study). LV rotational parameters
were measured in elite athletes (MAGYAR-Sport Study),
in twins (MAGYAR-Twin Study), in foetuses (MAGYAR-
Fetus Study) and during stress protocols (MAGYAR-Stress
Study) [7]. (‘Magyar’ means ‘Hungarian’ in Hungarian lan-
guage).

4. Near absence of LV twist—LV ‘rigid body
rotation’

In special circumstances, LV ‘rigid body rotation’
(RBR), the near absence of LV twist may develop due to
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Fig. 1. Left ventricular (LV) rotational mechanics assessed by three-dimensional (3D) speckle-tracking echocardiography. Apical

four-chamber (A) and two-chamber views (B) and basal (C3), midventricular (C5) and apical (C7) short-axis views are presented extracted

from the acquired 3D volumetric dataset. LV cast (D), curves representing apical (white arrow) and basal (yellow arrow) LV rotations

(E) and LV volumetric parameters (F) generated by the software are presented. LA, left atrium; LV, left ventricular; RA, right atrium; RV,

right ventricle; EDYV, end-diastolic volume; ESV, end-systolic volume; EF, ejection fraction; GLS, LV global longitudinal strain; GCS,

LV global circumferential strain; GAC, LV global area strain (change).

changes in the direction of the movement of the myocar-
dial fibers, the LV apex and LV base move in the same
clockwise (Cw) or counterclockwise (CCw) direction [8]
(Figs. 2,3). This phenomenon is considered to be normal
in healthy neonates with an immature heart, LV-RBR has
occurred due to the counterclockwise rotation of the basal
and apical fibers [9]. However, later the normal LV rota-
tional mechanics develops. In some special clinical circum-
stances, LV-RBR persists in adults, its real clinical signif-
icance and prevalence are not known. The present review
aimed to summarize related information from known liter-
ature mainly based on the results of the MAGYAR Studies.

5. Cardiac diseases associated with LV-RBR
5.1 Noncompaction cardiomyopathy

LV noncompaction cardiomyopathy (NCCM) or
spongiform cardiomyopathy is a rare congenital cardiomy-
opathy due to an intra-uterine arrest of compaction of the
myocardial fibres during embryogenesis [10]. NCCM is
characterized by a thin, compacted epicardium and a thick

non-compacted endocardium, with prominent trabeculation
and deep intertrabecular recesses [10,11]. Characteristic
complications of NCCM include chronic heart failure, life-
threatening ventricular arrhythmias and systemic embolic
events [10,11].

According to the literature, NCCM is the most exten-
sively examined LV-RBR-related disease, where its preva-
lence ranged from 26% to 100% (Table 1) [11-21]. van
Dalen et al. [12] assessed patients with dilated cardiomy-
opathy (DCM), healthy subjects and cases with prominent
trabeculations, of whom expert opinion in NCCM defined
some of them having NCCM, and found that LV-RBR was
an objective, quantitative and reproducible functional crite-
rion, and had a good predictive value in the diagnosis of
NCCM. Specificity and sensitivity of LV-RBR was 88%
and 78% in differentiating NCCM from LV “hypertrabec-
ulation”, respectively [12]. Cw LV-RBR was detected in
most NCCM cases [11,12,15,18-20], which was found to
be related to LV-EF [17]. Almost one-third of the relatives
of NCCM patients showed LV-RBR, the ratio of Cw and
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Fig. 2. Abnormal clockwise apical (white arrow) and nor-
mal clockwise basal (yellow arrow) left ventricular rotations
(clockwise left ventricular ‘rigid body rotation’). LV, left ven-
tricular; EDV, end-diastolic volume; ESV, end-systolic volume;
EF, ejection fraction; LV-GLS, LV global longitudinal strain; LV-
GCS, LV global circumferential strain; LV-GAC, LV global area

strain (change).

CCw direction was the same [18]. Ratio of LV-RBR was
significantly different between NCCM children and sub-
jects with hypertrabecularization [19]. In another study, re-
verse LV apical rotation (Cw LV-RBR) was present in 39%
of NCCM children [20].

5.2 Dilated or nonischaemic cardiomyopathy

LV rotational mechanics was examined only in a lim-
ited number of studies in series of DCM or nonischaemic
(NICM) cardiomyopathy patients. 88—100% of patients
showed Cw LV-RBR [22,23]. Reversed apical rotation (Cw
LV-RBR) and loss of LV torsion was found to be associ-
ated with significant LV remodelling, increased electrical
dyssynchrony, reduced systolic function, and increased fill-
ing pressures in patients with DCM, indicating a more ad-
vanced stage of the disease [22]. The normal torsion pat-
tern was observed more frequently in NICM patients with-
out mid-wall fibrosis (MWF), and LV-RBR was more fre-
quently observed in patients with MWF [24].

5.3 Hypertensive and other special cardiomyopathies

Hypertensive heart disease includes a number of com-
plications due to high blood pressure including LV hyper-
trophy, heart failure, etc. In hypertensive cardiomyopathy
patients with reduced LV-EF, 32% of subjects showed pre-
dominantly Cw LV-RBR suggesting compromised LV api-
cal rotation similarly to NCCM/DCM/NICM patients [25].
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Theoretically hypertension-related abnormalities, fibrosis,
etc. could explain these findings. CCw LV-RBR was found
in cases with peripartum and chloroquine cardiomyopathies
[26,27]. In a small study with hypertrophic cardiomyopathy
(HCM), only 1 case out of 18 showed Cw LV-RBR [21].

5.4 Infiltrative cardiac disorders

Regarding the literature, only positron emission
tomography-proven cardiac lymphoma [28] and biopsy-
proven cardiac amyloidosis (CA) [29] were found to be re-
lated to LV-RBR at this moment. Interestingly, CCw LV-
RBR could be demonstrated in all cases suggesting com-
promised LV basal rotation [28,29]. Infiltration of the my-
ocardial tissue by amyloid or lymphomatous tissue could
lead to changes in LV twisting deformation [28,29].

5.5 Congenital heart diseases

LV-RBR was reported only in a few case reports in cer-
tain congenital heart diseases (CHDs) including hypoplastic
right heart syndrome [30], univentricular heart [31] and Eb-
stein’s anomaly [32]. Interestingly, hypoplastic right heart
syndrome was associated with Cw LV-RBR, while univen-
tricular heart and Ebstein’s anomaly were associated with
CCw LV-RBR in some individual patients. Abnormalities
in the development of myocardial architecture during mor-
phogenesis could be theorised to be responsible for LV-
RBR in these diseases [30—32].

Tetralogy of Fallot (TOF) is a cardiac anomaly with
combination of ventricular septal defect, overriding aorta,
pulmonary stenosis and right ventricular hypertrophy [33—
35]. In patients with corrected TOF from the MAGYAR-
Path Study, 27% of subjects showed Cw LV-RBR, while
11% of patients had CCw LV-RBR [33]. In case of cor-
rected TOF patients with early total reconstruction, the
same values proved to be beneficial compared to those who
had early palliation and late correction. In another earlier
study, the values of the same parameters were 15% and
18%, respectively, with patients with almost zero LV ro-
tations [34] (Fig. 4). In the study of Dragulescu ef al. [35],
38% of corrected TOF patients showed CCw LV-RBR.

6. Disorders with LV-RBR without obvious
cardiac involvement

6.1 Acromegaly

Acromegaly is a rare and chronic hormonal disorder
that develops due to the hypersecretion of the human growth
hormone (GH) and insulin-like growth factor-1 (IGF-1) in
adults [36-38]. LV-RBR could be detected in 20% of the
cases with normal LV-EF (without obvious signs of clas-
sic acromegalic cardiomyopathy), which did not depend on
the presence or absence of diabetes mellitus [37,38]. LV-
RBR proved to be CCw in 75% of cases, these abnormali-
ties could be theorized to long-term effects of GH and IGF-
1.
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Fig. 3. Normal counterclockwise apical (white arrow) and abnormal counterclockwise basal (yellow arrow) left ventricular ro-

tations (counterclockwise left ventricular ‘rigid body rotation’). LV, left ventricular; EDV, end-diastolic volume; ESV, end-systolic
volume; EF, ejection fraction; LV-GLS, LV global longitudinal strain; LV-GCS, LV global circumferential strain; LV-GAC, LV global

area strain (change).

6.2 Hypopituitarism

Hypopituitarism is a rare and complex hormonal dis-
ease caused by the decreased secretion of one or more hor-
mones in the pituitary gland. LV-RBR was present in 13%
of patients, potentially due to abnormal secretion of certain
hormones [39].

6.3 Lipedema and lymphedema

While lipedema is a feminine disorder with dispropor-
tional, bilateral and symmetrical obesity of unknown path-
omechanism, excessive accumulation of lymphatic fluid
could be detected due to certain factors in lymphedema
[40]. In several cases, lipedema and lymphedema are dif-
ficult to be differentiated clinically. However, in both dis-
orders, the ratio of LV-RBR was similar (14%) with typical
CCw direction in lymphedema patients [40]. The use of
compression medical stockings had significant effects on
LV rotational mechanics both in lipedema [41] and lym-
phedema [42].

6.4 Hidradenitis suppurativa

Hidradenitis suppurativa is a dermatological disorder
where chronic inflammation was suggested to be having ef-
fects on LV rotational mechanics [43].

6.5 Haemophilia

Haemophilia is an X-linked congenital coagulation
factor deficiency. Although significant LV rotational ab-
normalities are present in haemophilia with reduced LV api-
cal rotation and twist, ratio of patients with LV-RBR is not
higher than in the normal population [44].

6.6 Hypereosinophilic syndrome

In hypereosinophilic syndrome (HES), peripheral
eosinophilia and eosinophilic tissue/end-organ damage
could be demonstrated [45]. In HES patients in the early
necrotic stage, LV rotational abnormalities including pres-
ence of LV-RBR was found in 13% of cases.

6.7 Following kidney transplantation

In all patients with end-stage renal disease, kidney
transplantation is the preferred treatment [46]. In post-
transplant patients, ratio of LV-RBR was not significantly
higher than in normal controls with CCw direction.

6.8 Twin-to-twin transfusion syndrome

In a recent case report, twin-to-twin transfusion syn-
drome was confirmed in the past medical history of an iden-
tical pair of twins who showed different patterns of LV-
RBR, Cw LV-RBR was described in the recipient twin and
CCw LV-RBR was found in the donor twin [47]. Similarly
to CHDs, abnormalities in the development of myocardial
architecture could lead to LV-RBR in twin-to-twin transfu-
sion syndrome theoretically.

7. Healthy subjects and elite athletes

In a current study demonstrating normal reference val-
ues of 3DSTE-derived LV rotational parameters and their
age- and gender-dependency, 6% of cases proved to have
LV-RBR. At the time of 3DSTE, these subjects had no ab-
normality, pathologic state, drug use, symptoms, electro-
cardiographic or echocardiographic findings, which could
explain LV-RBR. Theoretically, these subjects had subclin-
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Table 1. Studies confirming left ventricular ‘rigid body rotation’ in different cardiac disorders.

o No. of cases and ratio of Cw/CCw
Publication Method .
cases showing LV-RBR LV-RBR
Cardiomyopathies
- Noncompaction CM van Dalen et al. [11] 2D-STE 10 (100%) Cw —70%
CCw —30%
van Dalen et al. [12] 2D-STE 34 (88%) Cw —38%
initial CCw, then Cw —41%
CCw — 6%
initial Cw, then CCw — 3%
*Nemes et al. [13] 3D-STE 1 (case report) Cw
*Kalapos et al. [14] 3D-STE 7 (100%) Cw —29%
CCw—T71%
Peters et al. [15] 2D-STE 60 (53%) Cw—T72%
CCw —28%
Cortés et al. [16] 2D-STE 28 (57%) -
Sziics et al. [17] FT-MRI with LVEF <50% Cw —92%
31 (42%) CCw — 8%
with LVEF >50% Cw—12%
31 (26%) CCw —88%
Akhan et al. [18] 2DSTE NCCM patients Cw —59%
32 (53%) CCw—41%
patients’ relatives Cw —56%
31 (30%) CCw —44%
Sabatino et al. [19] 2DSTE NCCM children Cw —100%
23 (56%)
hyper-trabecularization
24 (4%)
Nawaytou et al. [20] 2DSTE NCCM children reverse apical rotation (Cw)
28 (39%) —100%
Ashwal et al. [21] 2DSTE 12 (50%) CCw — 100%
- Peripartum CM with noncom-  Peters et al. [26] 2D-STE 1 (case report) CCw
paction phenotype
- Hypertrophic CM Ashwal et al. [21] 2DSTE 18 (6%) Cw
- Chloroquine-induced CM *Nemes et al. [27] 3D-STE 1 (case report) CCw
- Dilated CM with reduced EF Popescu et al. [22] 2D-STE 50 (52%) Cw —100%
Cortés et al. [16] 2D-STE 13 (15%) -
Setser et al. [23] MRI-TT 21(76%) Cw — 88%
CCw—12%
- Non-ischaemic CM Taylor et al. [24] FT-CMR with MWF -
32 (64%)
without MWF
84 (28%)
- Hypertensive CM with re- Maharaj et al. [25] 2D-STE 41 (32%) Cw —85%
duced EF
CCw—15%
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Table 1. Continued.

Publication Method No. of cases and ratio of Cw/CCw
cases showing LV-RBR LV-RBR
Infiltrative disorders with cardiac involvement
- Cardiac lymphoma *Nemes et al. [28] 3D-STE 1 (case report) CCw
- Cardiac amyloidosis *Nemes et al. [29] 3D-STE 10 (60%) CCw —100%
Congenital heart diseases
- Hypoplastic right heart syn- *Nemes et al. [30] 3D-STE 1 (case report) Cw
drome
- Univentricular heart *Nemes et al. [31] 3D-STE 1 (case report) CCw
- Ebstein’ anomaly *Nemes et al. [32] 3D-STE 1 (case report) CCw
- Tetralogy of Fallot *Nemes et al. [33] 3D-STE 26 (38%) Cw —70%
CCw —-30%
Menting et al. [34] 2D-STE 82 (34%) Cw —46%
CCw —54%
Dragulescu et al. [35] 2D-STE 50 (38%) CCw —100%

2D, two-dimensional; 3D, three-dimensional; Cw, clockwise; CCw, counterclockwise; LV-RBR, left ventricular ‘rigid body rotation’;

CM, cardiomyopathy; LVEEF, left ventricular ejection fraction; MWEF, mid-wall fibrosis; NCCM, noncompaction cardiomyopathy;

STE, speckle-tracking echocardiography; FT-CMR, feature-tracking cardiovascular magnetic resonance.

* Results from the MAGYAR-Path Study.

ical abnormalities or undiagnosed disorders which were not
known at the time of 3DSTE [48]. In a study compar-
ing LV rotational mechanics in NCCM patients and con-
trols, 23% of healthy subjects showed CCw LV-RBR which
higher rate could be partially explained by selection bias
[17]. In contrast, none of the elite athletes doing high dy-
namic sports showed 3DSTE-proven LV-RBR in a recent
study [49]. The above mentioned results suggest further
examinations mainly focusing any diagnostic or prognostic
impact of LV-RBR in subjects without symptoms or appar-
ent abnormalities.

8. Special considerations regarding LV-RBR
8.1 Clockwise vs. counterclockwise LV-RBR

Normally, the LV base rotates clockwise, while the LV
apex rotates in counterclockwise direction. In Cw LV-RBR,
apical rotation of the LV has a clockwise direction (negative
value on 3DSTE images, Fig. 2), while in CCw LV-RBR,
basal rotation of the LV has a counterclockwise direction
(positive value on 3DSTE images, Fig. 3). Direction of
LV-RBR and their ratio in certain cardiac and non-cardiac
disorders are presented in Tables 1 and 2 (Ref. [17,36—
40,43-49]). Interestingly, while most cardiomyopathy pa-
tients showed Cw LV-RBR [11,12,15,18,19,22,23,25], pa-
tients with non-cardiac disorders without obvious cardiac
involvement (lymphedema, acromegaly, following kidney
transplantation) most likely had CCw LV-RBR [37,40,46].

8.2 Heart failure treatment, reversibility and LV-RBR

A recent report described a patient with evidence of re-
versible LV-RBR who met the clinical criteria for the diag-
nosis of both peripartum cardiomyopathy and LV noncom-
paction with reduced LV-EF. Following 6-months heart fail-
ure treatment, improvement in LV-EF could be observed to-
gether with normalization of LV rotational mechanics [26].

8.3 Vasodilation, stress test and LV-RBR

Vasodilation and stress-related LV-RBR is weakly as-
sessed. In a patient with previous coronary stenting pre-
sented with stable angina and positive exercise treadmill
test, LV-RBR could be demonstrated, its characteristics
changed dramatically during dipyridamole-induced vasodi-
latation [50]. A case of abnormal CCw rotation of the LV
base was reported in a patient with angina pectoris with-
out significant coronary artery disease (CAD) at rest, the
direction of the rotation of the LV base changed to Cw the-
oretically due to dipyridamole-induced vasodilation via im-
proved blood supply at maximum hyperaemia [51]. At the
recovery phase, LV-RBR could be detected again in this
case. On the contrary, a CAD patient showed LV-RBR dur-
ing dipyridamole stress, which normalized by the end of
stress [52].

8.4 ‘Clear’ LV-RBR vs. LV-RBR with apico-basal gradient

LV-RBR is the near absence of LV twist, when rotation
at both apical and basal levels of the LV occur in the same
Cw or CCw direction (Figs. 2,3,4). Although all segments
move in the same direction, the amplitude of their motion
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Fig. 4. Increased counterclockwise left ventricular apical rotation (white arrow) with almost zero left ventricular basal rotation

(yellow arrow).
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Fig. 5. Differences between apical and basal left ventricular rotations in the same counterclockwise direction demonstrating high
(left panel) or low (right panel) left ventricular apico-basal rotational gradient. LV, left ventricular; EDV, end-diastolic volume; ESV,
end-systolic volume; EF, ejection fraction; LV-GLS, LV global longitudinal strain; LV-GCS, LV global circumferential strain; LV-GAS,

LV global area strain.
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Table 2. Studies confirming left ventricular ‘rigid body rotation’ in different non-cardiac diseases without known cardiac

involvement.
Publication Method No. of caseé and ratio of Cw/CCw
cases showing LV-RBR LV-RBR
Healthy subjects
- Healthy subjects *Kormanyos et al. [48] 3D-STE 177 (6%) -
Sziics et al. [17] FT-MRI 31 (23%) CCw — 100%
- Sportsmen doing high dy- *Gyenes et al. [49] 3D-STE 80 (0%) -
namic sports
Endocrine disorders
- Acromegaly * Nemes et al. [36] 3D-STE 1 (case report) Cw
*Kormanyos et al. [37] 3D-STE 20 (20%) Cw —25%
CCw—75%
*Nemes et al. [38] 3D-STE with DM -
5 (20%)
without DM
19 (21%)
- Hypopituitarism *Kormanyos et al. [39] 3D-STE 31 (13%) Cw - 50%
CCw —50%
Dermatological disorders
- Lipedema *Nemes et al. [40] 3D-STE 22 (14%) Cw—-33%
CCw—-33%
reversed twist
-33%
- Lymphedema *Nemes et al. [40] 3D-STE 22 (14%) CCw — 100%
- Hidradenitis suppurativa *Nemes et al. [43] 3D-STE 1 (case report) CCw
Haematological disorders
- Haemophilia *Nemes et al. [44] 3D-STE 14 (7%) CCw
- Hypereosinophilic syndrome ~ *Nemes et al. [45] 3D-STE 11 (18%) Cw - 50%
CCw —50%
Other diseases
- Following kidney transplanta-  *Nemes et al. [46] 3D-STE 38 (8%) CCw —100%
tion
- Twin-to-twin transfusion syn-  *Nemes et al. [47] 3D-STE 2 (case report) twin A — Cw
drome
twin B - CCw

3D, three-dimensional; Cw, clockwise; CCw, counterclockwise; LV-RBR, left ventricular ‘rigid body rotation’; STE, speckle-tracking

echocardiography; FT-CMR, feature-tracking cardiovascular magnetic resonance.

* Results from the MAGYAR-Path, MAGYAR-Healthy and MAGYAR Sport Studies.

could be different leading to regional differences between
apical and basal LV rotations called as LV apico-basal gra-
dient (Fig. 5). In some disorders, LV apico-basal gradient
could be elevated like in case of CA [29]. Its clinical sig-
nificance is not known but could be considered as an over-
compensation due to absence of normally directed LV rota-
tional mechanics. Similar changes could be detected during
stress as well [S0-52].

9. Prognostic value of LV-RBR

Limited information is available regarding prognostic
impact of LV-RBR. In a recent study, reverse LV apical ro-
tation (Cw LV-RBR) was not a sensitive but a specific indi-
cator of complications in children with NCCM suggesting
its prognostic rather than diagnostic value [20].
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10. Possible pathophysiological explanations
of LV-RBR

Theoretically, changes in LV rotational mechanics
may occur due to the above mentioned special factors, as
well as due to classic risk factors, such as hypertension, hy-
percholesterolaemia, diabetes mellitus, etc. or subclinical
diseases (focal/local oedema, inflammation, fibrosis, etc.).
The effect of CAD and related haemodynamic changes
could not be excluded either.

11. The role of three-dimensional
speckle-tracking (strain) echocardiography
in current cardiology practice

Although 3DSTE is not a guideline-recommended
technique at this moment, it has several advantages as com-
pared to other echocardiographic methods. It sees the heart
as it is: a 3D organ and all volumetric, functional (strain)
and rotational parameters of heart chambers respecting the
cardiac cycle can be calculated at the same time using
the same virtual 3D models based on digitally acquired
echocardiographic datasets. Moreover, data acquisition and
analysis do not require significantly more time in practi-
cal hands than a routine echocardiographic examination.
These facts could highlight its importance in clinical prac-
tice in more complicated cases, which require more detailed
analysis (for instance in heart failure or following myocar-
dial infarction). As demonstrated above, 3DSTE-derived
parameters could help in differentiating NCCM from LV
‘hypertrabecularization” or HCM from cardiac amyloidosis
[12,53]. Moreover, prognostic impact of 3DSTE-derived
ejection fraction and 3D strain parameters has also been
demonstrated [54,55]. 3DSTE allows detailed assessment
of the right ventricle and both atria, as well [53,55]. The
role of 3DSTE in the assessment of atrioventricular valvu-
lar annuli has also been demonstrated [56].

Most of echocardiographic laboratories have access to
2D strain software and LV rotational parameters can be cal-
culated with them, 3DSTE-derived ones are recommended
according to the guidelines [5]. Although 2DSTE-derived
global longitudinal strain is well known and a widely used
parameter with a strong progmostic impact [57], limitations
of 2DSTE should always be considered, when LV rotations
are calculated.

12. Conclusions

LV-RBR is defined as the near absence of LV twist
when LV apical and basal segments move in the same
clockwise or counterclockwise direction. LV-RBR could
be demonstrated in a number of diseases with larger preva-
lence in certain disorders with cardiac involvement. How-
ever, some non-cardiac diseases without overt cardiovascu-
lar involvement show limited prevalence of LV-RBR with-
out obvious significance, which would require further in-
vestigations.
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