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Abstract

Background: Cardiovascular disease is caused by a combination of genetic and environmental risk factors. Some risk factors can
change with age, but a genetic predisposition is permanent. Therefore, identifying the genotype of cardiovascular disease and using it
alone or in combination with existing risk algorithms can improve risk prediction. This systematic review was conducted to examine
existing studies on predictive models for cardiovascular disease using genetic risk score and to determine the clinical utility. Methods:
An electronic database search was conducted to identify studies published from January 2005 to July 2020. The literature search was
performed using the search terms “coronary artery disease”, “coronary heart disease”, “cardiovascular diseases”, “genetic risk score”,
and “polygenic risk score”. Results: Through systematic review, 29 studies were identified. In most studies, genetic risk score was
associated with the incidence of cardiovascular disease. In 23 studies, clinical utility was improved based on discrimination between or
reclassification of subjects who did and did not experience an event, but the improvement was modest. Conclusions: The predictive
model for cardiovascular disease using genetic risk score has limited usefulness in clinical practice due to methodological heterogeneity
of genetic risk score constructs. Further research to develop a standardized protocol of genetic risk score constructs and validation studies

with various cohorts from diverse populations are required.
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1. Introduction

Cardiovascular disease (CVD) is the leading cause
of mortality worldwide, causing an estimated 17.9 million
deaths each year [ 1]. Early and accurate identification of in-
dividuals at high risk of CVD facilitates timely prevention
and treatment and can lower public health costs by reducing
unnecessary disease burden [2].

Conventional risk scores such as the Framing-
ham Risk Score (FRS) [3], the American College of
Cardiology/American Heart Association 2013 risk score
(ACC/AHA13) [4], and QRESEARCH cardiovascular risk
(QRISK1 and QRISK?2) [5] have been developed and used
in clinics. Conventional risk scores are useful for both the
individual and the clinician by identifying individuals at
increased risk of future cardiovascular events and helping
them select appropriate lifestyle modifications and preven-
tive medical treatment [6]. However, these risk scores focus
on relatively short-term risk (5—10 years), which is insuffi-
cient to identify people with subclinical disease [7,8]. In
particular, conventional risk scores might not identify indi-
viduals at a younger age who could likely attain long-term
benefits [9].

The cause of CVD is a combination of genetic and
environmental risk factors [10]. Some risk factors can
change with age; however, genetic predisposition is per-
manent. Therefore, identifying genotypes for CVD and us-

ing them alone or in combination with existing risk algo-
rithms can improve risk prediction [11]. To associate geno-
type and phenotype, genetic researchers have performed
many genome-wide association studies (GWAS) and have
made significant advances in identifying CVD-associated
genetic variations/single nucleotide polymorphisms (SNPs)
[12]. In 2007, the use of multi-location genetic risk scores
(GRSs) was proposed to integrate the relatively small ef-
fects of individual genes and to better improve the accu-
racy of conventional risk scores [13]. Because GRSs allow
analysis of high genetic risk at any age, people at higher risk
for the disease can be identified before clinical signs appear
[14]. Therefore, using GRSs for CVD prediction can help
detect and prevent disease earlier.

The clinical utility of GRSs for CVD prediction de-
pends not on the strength of their association with typical
CVDs, but on their capability to predict future CVD events
[15]. Although research on GRSs for CVD has been pro-
gressing, the effects of GRSs on clinical decision-making
are unclear and the predictive power remains limited. Com-
parison of GRSs that were added to well-established and
validated risk prediction models is insufficient [16] and has
shown mixed results. Because information on the current
development of CVD prediction models using the GRS and
comprehensive evaluation based on the models are lack-
ing, systematic efforts are needed. Therefore, in the present
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study, the methodological characteristics of individual stud-
ies were identified, and the clinical utility of the GRS pre-
diction model was evaluated by systematic review of the
literature on CVD prediction models using GRSs.

2. Methods

This review was conducted and reported in accordance
with the Preferred Reporting Items for Systematic Reviews
(PRISMA) guideline [17].

2.1 Search strategy

To retrieve published studies for this review, sys-
tematic searches were conducted using three electronic
databases: PubMed, Embase, and SCOPUS. We attempted
to reconcile the definition of CVD prior to selecting a
search term. CVD is a general term for conditions af-
fecting the heart or blood vessels. The major contribut-
ing factor to CVD is atherosclerosis, which is narrowing
of the arteries resulting from subendothelial deposition of
cholesterol, cholesterol esters, and calcium within the ves-
sel walls. Rupture of atherosclerotic plaques yields blood
clots that result in myocardial infarction or stroke [18,19].
Based on these mechanisms, CVD was defined as a com-
posite of coronary heart death, stable or unstable angina,
fatal or non-fatal myocardial infarction, coronary artery by-
pass grafting or percutaneous coronary intervention, and is-
chemic stroke events. Depending on the type of CVD in the
included study, coronary artery disease (CAD) or coronary
heart disease (CHD) was sometimes used instead of CVD,
and all terms were included in the search. The following
MeSH terms and keywords were used: (“‘coronary artery
disease” OR “coronary heart disease” OR “cardiovascular
diseases” OR “ischemic heart disease” OR “angina pec-
toris” OR “myocardial infarction” OR “stroke”) AND (“ge-
netic risk score” OR “polygenic risk score” OR “genome-
wide association study”). Studies were searched from Jan-
uary 2005, when a public database of common variations in
the human genome was reported, to July 2020. To identify
additional studies, the bibliography of each included study
was searched manually.

2.2 Selection criteria

After elimination of duplicates, studies related to the
subject were screened through titles and abstracts. Next,
studies were selected by full-text review based on the in-
clusion and exclusion criteria. Three authors indepen-
dently selected the studies, and inconsistencies were re-
solved through discussion.

The inclusion and exclusion criteria were as follows:
(1) The study population was adults dwelling in the com-
munity. Studies in which subjects were recruited from hos-
pitals or clinical trials were excluded. Studies focusing on
animals, children, and diseased adults were excluded. Al-
though some studies began when subjects were children,
studies in which disease occurred in adulthood were in-

cluded. (2) After the observation period, only those out-
comes referring to CVD were considered. However, hem-
orrhagic stroke was excluded due to differences in the un-
derlying pathology. (3) Studies in which GRSs were used
to predict CVD were included. All studies using GRSs con-
sisting of direct and intermediate risk factors for CVD were
included, and studies using only a single SNP or found only
an association between GRS and CVD were excluded. (4)
Studies were published in academic journals in English.

2.3 Data extraction

Two authors (HY and NIN) extracted data using a
standardized form. To increase the accuracy of coding and
data entry, the other author (EYL) independently verified
all extracted data. The following items were extracted:
Study characteristics (cohort name, ethnic group, sample
size, age [mean], % of females, incident CVD, and follow-
up period); development of a GRS (reference for SNP se-
lection, selected phenotypes, number of SNPs used in GRS
construction, and GRS calculation method); and evaluation
of GRSs to predict CVD risk (base model for comparison
with GRSs, whether family history was included in the base
model, association between GRS and CVD, risk discrimi-
nation and reclassification to determine clinical utility of
the GRS for CVD).

2.4 Assessment of risk bias

Each selected study was assessed for risk of bias us-
ing the Risk of Bias Assessment Tool for Non-randomized
Studies (RoBANS 2.0) developed in 2011 by Health Insur-
ance Review and Assessment Service (Wonju-Si, Repub-
lic of Korea) [20]. Evaluation items included target group
comparability, target group selection, confounding vari-
ables, measurement of exposure, evaluator blinding, eval-
uation of results, incomplete data, and selective outcome
reporting. Individual studies were rated as “high”, “low”,
or “unclear” with respect to bias and were assessed inde-
pendently by the three authors. Where inconsistency was
noted, a consensus was reached through discussion among
the authors.

3. Results

The search resulted in 27,485 studies retrieved; 28
studies were selected based on the inclusion and exclusion
criteria and one study was added from the manual search.
Fig. 1 shows the search and selection processes.

Table 1 (Ref. [9,13,15,21-46]) shows the characteris-
tics of the 29 studies. The sample size of the cohort used
in the analysis varied from 1306 to 482,629 (median 6041).
Studies in which prediction of CVD using GRSs was con-
ducted primarily included Caucasian or European-ancestry
populations, and only three studies included Asians (in-
cluded as a category in one study).

Table 2 (Ref. [9,13,15,21-46]) shows how GRSs were
developed in the reviewed studies. To construct GRSs,
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Table 1. Characteristics of included studies.

First author (year)

Cohort name

Ethnic group

Sample size Age (mean) % FemaleIncidence of CVD Follow up (year)

Morrison A.C. (2007) [13]
Kathiresan S. (2008) [21]
Paynter N.P. (2010) [22]
Ripatti S. (2010) [23]
Vaarhorst A.A.M. (2012) [24]

Brautbar A. (2012) [25]

Lluis-Ganella C. (2012) [26]

Thanassoulis G. (2012) [27]
Hughes M.F. (2012) [28]
Ganna A. (2013) [29]
Havulinna A.S. (2013) [30]
Tikkanen E. (2013) [31]

Shah S. (2013) [32]

Benjamin A.G. (2014) [33]
Beaney K.E. (2015) [34]
Krarup N.T. (2015) [35]
De Vries P.S. (2015) [36]
Lu X. (2015) [37]
Iribarren C. (2016) [38]

Abraham G. (2016) [9]

Tada H. (2016) [39]
Antiochos P. (2016) [40]
Beaney K.E. (2017) [41]
Chang X. (2017) [42]
Iribarren C. (2018) [43]
Inouye M. (2018) [44]
Liu R. (2019) [45]

Mosley J.D. (2020) [15]

Elliott J. (2020) [46]

ARIC
Malmoé Diet and Cancer Study
WGHS
FINRISK 1992, 1997, 2002, Health 2000, MDC
CAREMA
ARIC
Rotterdam
Framingham Offspring Study
REGICOR
Framingham Heart Study
Framingham Offspring Study
MORGAM project_9 cohorts

SATSA, OCTO-Twin, GENDER, HARMONY, ULSAM, WTCCC
FINRISK 1992, 1997, 2002, 2007, Health 2000, OPERA, HBCS

FINRISK, Health 2000
WHII
BWHHS
ARIC
NPHSII
Inter99
Rotterdam
InterASIA, CCHS
GERA
FINRISK
Framingham Heart Study
Malmoé Diet and Cancer Study
CoLaus study
NPHSII
SCHS
GERA
UK Biobank
ARIC
ARIC
MESA
UK Biobank

Black and white
European
White
European
European

non-Hispanic whites

European Caucasians

Multi-ethnic
European
Caucasian or European
European
European

Caucasian

White/Europeans
European
European
European

Asian
non-Hispanic whites

Multi-ethnic

European

Caucasian

European
Asian

non-White or Minority descent

European

European and African american

European ancestry

European ancestry

13,907
5414
19,313
30,725
2559
8542
2068
2339
2351
3537
3014
4818
10,612
32,669
24,124
5059
3414
8491
2775
6041
5899
26,262
51,954
12,676
3406
23,595
4283
2775
1306
11,242
482,629
10,578
4847
2390
352,660

54.0
58.6
52.8 (median)
49.8
46.7
54.1
60.3
40.4
53.9
56.0
49.0
45.2-62.7
67.5
49.1
47.1
36.4
68.8
54.0
56.1
46.2
69.3
50.9
59.4
46.0
443
58.1
53.4
56.1
64.1
55.8
56.5
54.2
62.9
61.8
559

56.6
58.5
100.0
53.4
46.8
54.9
51.8
56.4
52.2
56.5
54.0
0.0
50.0
54.7
54.6
26.4
100.0
55.0
0.0
51.0
59.1
553
66.8
54.0
55.0
62.0
53.0
0.0
36.0
70.4
54.4
53.5
56.4
522
58.2

1452
238
777
1264
646
1110
271
215
107
429
539
1736
781
2295
3376
300
342
620
284
374
964
1078
1864
757
587
2213
133
284
395
450

12,513

836

696

227
6272

13 (median)
10.6 (median)
12.3 (median)
10.7 (median)
12.1 (median)
18 (maximum)
18 (maximum)
35 (maximum)

9.7 (mean)

13.3 (mean)

11 (median)

18 (median)
4.3 (median)
9.8 (median)

12 (median)

10

8
10 (maximum)
13.5 (median)
11.6 (median)

12.8 (mean)

6.9 (mean)

5.9 (mean)

13.6 (mean)

31.4 (mean)
14.4 (median)

5.6 (median)
13.5 (median)

8.6 (mean)

8.7 (median)

6.2 (mean)

NA
15.5 (median)
14.2 (median)
8 (median)

NA, Not Available.
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Table 2. Development of genetic risk scores.

First author (year) Reference for SNPs Phenotype No. of SNPs Method of GRS
Morrison A.C. (2007) [13] GWAS CHD 11 Unweighted
Kathiresan S. (2008) [21] GWAS Lipid 9 Unweighted
Paynter N.P. (2010) [22] NHGRI catalog® CVD/ Intermediate risk factors Risk factors 101 CVD 12 Unweighted
Ripatti S. (2010) [23] GWAS consortium?/GWAS CHD or MI 13 Weighted
Vaarhorst A.A.M. (2012) [24] NHGRI catalog CHD/Intermediate risk factors Overall 179 Risk factors 153 CHD 29 Unweighted/Weighted
Brautbar A. (2012) [25] NHGRI catalog/GWAS CHD 13 Unweighted/Weighted
Lluis-Ganella C. (2012) [26] NHGRI catalog CHD 8 Weighted
Thanassoulis G. (2012) [27] GWAS consortium/GWAS CHD or MU/Intermediate risk factors CHD or MI 13 Risk factors 89 Overall 102 Weighted
Hughes M.F. (2012) [28] GWAS consortium/GWAS CHD or MI 13/15/8 Weighted
Ganna A. (2013) [29] NHGRI catalog CHD/Intermediate risk factors Overall 395 CHD 46 Unweighted/Weighted
Havulinna A.S. (2013) [30] GWAS consortium BP 32 Weighted
Tikkanen E. (2013) [31] GWAS consortium CHD or MI 28 Weighted

Shah S. (2013) [32] GWAS Lipid TC: 19 LDL: 21 HDL: 12 TG: 16 Unweighted
Benjamin A. G. (2014) [33] Cplus4D consortium® CHD/Intermediate risk factors Overall 50 Risk factors 17 Non-risk factors 33 Weighted
Beaney K.E. (2015) [34] GWAS consortium/GWAS CHD 13/19 Weighted
Krarup N.T. (2015) [35] Cplus4D consortium CAD 45 Unweighted

De Vries P.S. (2015) [36] Cplus4D consortium CHD 49/103/152 Weighted

Lu X. (2015) [37] GWAS BP 22 Weighted
Iribarren C. (2016) [38] Cplus4D consortium CAD/ Intermediate risk factors CAD 8/12/36 Overall 51 Weighted
Abraham G. (2016) [9] Cplus4D consortium CHD 49,310 Weighted

Tada H. (2016) [39] GWAS CHD 27/50 Weighted
Antiochos P. (2016) [40] Cplus4D consortium/GWAS CHD 38/53/153 Unweighted/Weighted
Beaney K.E. (2017) [41] GWAS consortium/GWAS CHD 19/21 Weighted
Chang X. (2017) [42] NHGRI catalog CHD/ Intermediate risk factors 156 Unweighted
Iribarren C. (2018) [43] Cplus4D consortium CAD/Intermediate risk factors 12/51 Weighted
Inouye M. (2018) [44] GWAS consortium CAD 1,745,180 Weighted

Liu R. (2019) [45] GWAS CAD 267 Weighted
Mosley J.D. (2020) [15] GWAS consortium CHD 6,630,149 Weighted
Elliott J. (2020) [46] Cplus4D consortium CAD 1,037,385 Weighted

% NHGRI catalog: The NHGRI-EBI Catalog of human genome-wide association studies.
b GWAS consortium: combining two or more of “International Consortium for Blood Pressure GWAS” or “Global BPgen” or “The Cohorts for Heart and Aging Research in Genomic

Epidemiology” or “Myocardial Infarction Genetics” or “Coronary Artery Disease”.
¢ Cplus4D consortium: CARDIoGRAMplusC4D GWAS consortium.

SNP, Single nucleotide polymorphism; GRS, Genetic risk sore; GWAS, Genome-wide association studies; CHD, Coronary heart disease; CVD, Cardiovascular disease; MI, Myocardial
infarction; BP, Blood pressure; TC, Total cholesterol; LDL, Low density lipoproteins; HDL, High density lipoproteins; TG, Tri-glyceride; CAD, Coronary artery disease.
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Table 3. Evaluation of genetic risk score for predicting cardiovascular disease risk.

First author (year) Base model Family history ~Association between GRS and CVD (HR) Discrimination and risk reclassification

Morrison A.C. (2007) [13] ACRS - Whites 1.10*/Blacks 1.20* Discrimination: improved

Kathiresan S. (2008) [21] ATPIII + 1.15% Discrimination: not improved Risk reclassification: improved

Paynter N.P. (2010) [22] ATPIII Reynolds only Reynolds NS not improved

Ripatti S. (2010) [23] TRF + CHD 1.66*/CVD 1.50*/MI 1.46* not improved

Vaarhorst A.A.M. (2012) [24] TRF + Weighted CHD GRS 1.12%* Discrimination: not improved Risk reclassification: improved in
weighted CHD GRS

Brautbar A. (2012) [25] ARIC, Rotterdam: - Unweighted GRS*/Weighted GRS* only improved in ARIC

ACRS Framingham off
spring: FRS

Lluis-Ganella C. (2012) [26] TRF + REGICOR 1.21*/Framingham 1.07* Discrimination: only improved in Framingham Risk reclassification:
improved in the intermediate risk group

Thanassoulis G. (2012) [27] TRF + 13-GRS 1.05%/102-GRS 1.00 (NS) not improved

Hughes M.F. (2012) [28] FRS subgroup (menNA Discrimination: partially improved Risk reclassification: improved

aged 50-59) Subgroup: improved discrimination and risk reclassification

Ganna A. (2013) [29] FRS - Overall 1.54*%/CHD-specific GRS 1.52* Discrimination: CHD-specific GRS improved Risk reclassification: im-
proved

Havulinna A.S. (2013) [30] FRS - SBP GRS 1.23*/DBP GRS 1.26* Discrimination: not improved Risk reclassification: improved in the in-
termediate risk group

Tikkanen E. (2013) [31] TRF + CHD 1.27*/CVD 1.18*/ACS 1.27* improved

Shah S. (2013) [32] FRS - WHIIT all lipid GRS (NS) BWHHST TC GRS 1.37*/LDL GRS not improved

1.44%
Benjamin A. G. (2014) [33] TRF - Full GRS} 1.28*%/Non-risk GRS 1.29*/Risk GRS} 1.05(NS) Discrimination: improved
Beaney K.E. (2015) [34] FRS - 19-GRST 1.43 (NS)/13-GRS¥ 2.31* Discrimination: not improved Risk reclassification: improved in the in-

Krarup N.T. (2015) [35] European SCORE risk-

factors
De Vries P.S. (2015) [36] TRF +
Lu X. (2015) [37] TRF +
Iribarren C. (2016) [38] FRS -
Abraham G. (2016) [9] FRS ACC/AHA only FINRISK
Tada H. (2016) [39] TRF +
Antiochos P. (2016) [40] TRF +
Beaney K.E. (2017) [41] QRISK2 +
Chang X. (2017) [42] ATPIII -
Iribarren C. (2018) [43] FRS +
Inouye M. (2018) [44] TRF +
LiuR. (2019) [45] TRF -
Mosley J.D. (2020) [15] Revised ACC/AHA -
Elliott J. (2020) [46] TRF +

termediate risk group

MI 1.06%/CAD 1.01 (NS)

49-GRS 1.11*/103-GRS 1.07*/152-GRS 1.13* not improved

CVD 1.11* improved
8-GRS 1.21*/12-GRS 1.20*/36-GRS 1.23*/51-GRS 1.23* improved
FINRISK 1.74*/FHS 1.28* Discrimination:
27-GRS 1.70*/50-GRS 1.92* Discrimination:

Unweighted 38-GRS 1.16 (NS)/53-GRS

1.38*/Weighted 38-GRS 1.29*/53-GRS 1.39*/153-GRS 1.50* proved
19-GRST 1.31*%/21-GRS¥ 1.39*

proved
Men 4.16 */Women 2.82 *

(NS)/All minority Groups 1.48%/51-GRS All minority Groups

1.43%
1.71% Discrimination:
European 1.32*/African 1.11 (NS) Discrimination:

ARIC 1.24*/MESA 1.38*
1.32*

not improved
improved

Discrimination:

1.25*/153-GRS Discrimination:

Discrimination:

Discrimination:
12-GRS African-Americans 1.86*/Latinos 1.52*/Asians 1.19 Discrimination:

improved Risk reclassification: not improved

improved Risk reclassification: improved in FINRISK
improved Risk reclassification: not improved
improved Risk reclassification: weight 153-GRS im-

19-GRS improved Risk reclassification: 19-GRS im-
improved Risk reclassification: improved

not improved Risk reclassification: improved partially

improved
improved in the European

T OR, Odds Ratio; I RR, Relative risk; * significant.

GRS, Genetic risk score; CVD, Cardiovascular disease; HR, Hazard ratios; ACRS, ARIC CHD risk score; ATPIII, Adult treatment panel I1I; NS, not significant; TRF, Traditional risk factor; CHD, Coronary
heart disease; MI, Myocardial infarction; FRS, Framingham heart study risk score; NA, not available; SBP, systolic blood pressure; DBP, diastolic blood pressure; ACS, Acute coronary syndrome; TC, Total
cholesterol; LDL, Low density lipoproteins; CAD, Coronary artery disease; ACC/AHA, American College of Cardiology/American Heart Association risk score; QRISK2, QRESEARCH cardiovascular

risk 2014 version.
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Fig. 1. PRISMA flow chart for inclusion in the systematic review. PRISMA, Preferred Reporting Items for systematic reviews and

Meta-analysis.

most studies have used large-scale data such as the Na-
tional Human Genome Research Institute (NHGRI) catalog
or large international consortia, such as CARDIoGRAM-
plusC4D (Coronary ARtery Disease Genome-wide Repli-
cation and Meta-analysis plus The Coronary Artery Dis-
ease). The number of SNPs used in GRSs ranged from 8—
6,630,149. In the past, only a limited number of SNPs as-
sociated with CVD or intermediate risk factors were used.
In recent years, however, millions of SNPs have been used
for GRS calculations. In 19 studies, GRSs were calculated
by assigning weights based on the effect of each SNP, and
in six studies, a simple count of the total number of risk al-
leles was used. Three studies analyzed both weighted and
unweighted values.

Table 3 (Ref. [9,13,15,21-46]) shows the comparison
between base models and models with added GRS. In most
base models, covariates included age, systolic blood pres-
sure, total cholesterol, high-density lipoproteins, diabetes,
and smoking status. In addition, sex, body mass index, di-
astolic blood pressure, lipid-lowering and antihypertensive
agents, and serum markers were added or omitted depend-
ing on the existing risk score used (data not shown). In 17
studies, family history was included in the base model. An
association between incidence of CVD and GRS was ap-
parent in 27 studies. In a number of studies, C-statistic,
the net reclassification index (NRI), or integrated discrim-
ination index (IDI) was calculated to assess improvement
between the base models and models with added GRS. In
examination of C-statistic, discrimination was improved in
some or all models in 18 studies. NRI results showed im-

proved risk reclassification in some or all of the 17 studies.
In two of those, classification improved only in the interme-
diate risk group. In 11 studies, clinical utility was confirmed
by showing improvements in both discrimination and re-
classification. The C-statistic value that discriminated CVD
was 0.650 to 0.880 (mean [+ SD]: 0.751 [+ 0.057], me-
dian: 0.747) in the base models and 0.640 to 0.881 (mean
[£ SDJ: 0.756 [+ 0.057], median: 0.753) in models with
added GRS. Increments range from —0.030 to 0.043 (mean
[£+ SDJ: 0.006 [+ 0.010]).

On assessment of risk bias in each selected study, one
study showed high bias in the ‘incomplete data’ category
and another study showed high bias in the ‘selective out-
come’ category. However, we included the two studies be-
cause the bias was insufficient to question the quality of the
study results.

4. Discussion

This study was conducted to systematically review ex-
isting studies in which GRSs were used for CVD prediction
and to determine the clinical relevance. Based on a system-
atic review process, 29 studies were identified. The GRSs
developed in the reviewed studies were associated with in-
cidence of CVD. A total of 23 studies showed clinical util-
ity by improving discrimination or reclassification between
subjects who did and did not experience an event.

The association between incidence of CVD and GRS
implied that a genetic signal was present among the selected
markers, and GRSs can be used for predicting of individ-
ual trait. Although individual SNPs have minimal effect
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on CVD prediction, GRSs containing multiple SNPs poten-
tially can be a strong predictor of disease [47].

In the present study, the ability of GRS predictive
models to discriminate was improved, but the improvement
was modest. The first procedure in generating a GRS is
‘variable selection’ to determine which SNPs should be in-
cluded in the model [48]. In GWAS for CVD, 163 loci
were reported through 2018, after the discovery of chro-
mosome 9p21 risk locus in 2007. In addition, over 300 ad-
ditional loci with false discovery rate values <5% indicate
CAD risk and might be useful for improving CAD risk pre-
diction [49]. In several studies, genome predictive models
that consider all accessible genetic variants were shown to
identify more efficiently individuals at high risk of com-
plex diseases [50,51]. More recently, very large GRSs have
been constructed using more than 1 million SNPs. How-
ever, because large GRSs included many SNPs below the
genome-wide significance threshold for association with
CVD, many SNPs might not contribute to the explanatory
power of GRSs [15]. Our review shows a recent trend in
constructing GRS using a large number of SNPs, but there
has been no noticeable trend for predictive ability. These in-
consistent results prevent prediction of the number of SNPs
required for accurate and robust GRSs for CVD. Although
there is a number of challenges in this regard [52], due to
the genetic structure of CVD, much larger sample sizes will
be required to detect a sufficiently large number of variants
to make meaningful contributions to risk prediction models
and to construct useful predictive risk scores [53]. Select-
ing the best set of truly susceptibility SNPs to increase the
impact of GRS on clinical decision-making is likely to be
stable only after GWAS has reached huge sample sizes con-
taining hundreds of thousands of individuals [54].

The choice of phenotypes for deriving SNPs to be used
for GRSs should be considered. GRSs can be constructed
using SNPs that are clinically disease-associated [55]. In
the current review, studies were included in which GRSs
consisting of only CVD-associated SNPs, as well as inter-
mediate risk factor-associated SNPs, or a combination of
the two types of SNPs were used. Although GRSs con-
sisting of only CVD-associated SNPs as well as CVD plus
intermediate risk factor-associated SNPs showed improve-
ment in discrimination over conventional risk scores, GRSs
consisting of only CVD-associated SNPs were the best pre-
dictor of CVD. These results indicate that intermediate risk
factor-associated SNPs do not improve the prediction of
CVD. Although intermediate traits might not be useful for
predicting individual future risk of CVD, studies in which
the risk variants linked to underlying causal genes are eval-
uated could identify new therapeutic targets for prevent-
ing disease [49]. Early discrimination of dyslipidemia pa-
tients with or without CVD can lead to timely treatment
with lipid-lowering drugs and consequently lower the risk
of CVD to the level equivalent to that of the general public
[56]. Therefore, further studies are needed to identify SNPs
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strongly associated with symptoms, because SNPs associ-
ated with intermediate risk factors might be useful for ex-
plaining variations in the subclinical phenotype [57].

A family history is not always a risk factor, but can be
casily identified [58]. According to the American Choles-
terol Guidelines, family history of CVD is a relative indi-
cator in the evaluation for primary preventive support to
reinforce statin recommendations [59]. In several studies,
family history was included in the base model to identify
genetic associations. However, inclusion of family history
did not lead to a difference in predicted values. Phenotypes
are the result of both genetic and environmental interactions
[60]. Significant risk factors due to the shared nature of
family genes should be elucidated in future genetic studies.

Furthermore, studies in which CVD was predicted us-
ing GRSs mainly included subjects of Caucasian or Euro-
pean ancestry and only three studies included Asians. The
predictive capacity and diagnostic accuracy of findings in
GWAS show biases when tested in non-European cohorts
using GRSs derived from European-based GWAS. Until
recently, 80% of the subjects involved in genetic studies
were of European ancestry, 14% were Asians, and 6% were
others [61]. The involvement of individuals from diverse
ethnicities in medical genomics is needed to evaluate the
link between disease and related genetic variants for vari-
ous populations for use in generalized risk prediction mod-
els [62].

The current review was limited to participants with-
out CVD or intermediate risk disease in a population-based
cohort because hyperselection of patients with these dis-
eases can overestimate the effect size and prediction value
[63]. Although meta-analysis is the best evidence-based
method to confirm the clinical utility of predictive models,
such research has not been possible due to the methodolog-
ical heterogeneity of GRSs between studies. Studies pub-
lished after the literature search in 2020 were not included,
and studies for which inclusion criteria were not identified
through the abstract and title were likely excluded, which
is another limitation. Despite these limitations, current de-
velopment of CVD prediction models using the GRS and
comprehensive evaluation based on models were systemat-
ically reviewed to emphasize the use of genetic information
in predictive models for CVD traits. The findings would be
helpful for future investigations and clinically useful if con-
sidered in the appropriate context.

5. Conclusions

Based on the results obtained in this review, GRSs
were a significant predictor of CVD, and the predictive
ability was improved but modest compared with traditional
models. However, the methodological heterogeneity was
too high to use the model as a guideline. The slight im-
provement and methodological heterogeneity of the predic-
tive model limit the generalization of GRS as predictor and
the application of GRS predictive models in clinical prac-
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tice. Therefore, further research is needed to develop a
standardized protocol of GRS constructs and to validate the
findings in various cohorts from diverse populations.
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