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Abstract

Background: A machine learning model was developed to estimate the in-hospital mortality risk after congenital heart disease (CHD)
surgery in pediatric patient. Methods: Patients with CHD who underwent surgery were included in the study. A Extreme Gradient
Boosting (XGBoost) model was constructed based onsurgical risk stratification and preoperative variables to predict the risk of in-hospital
mortality. We compared the predictive value of the XGBoost model with Risk Adjustment in Congenital Heart Surgery-1 (RACHS-1)
and Society of Thoracic Surgery-European Association for Cardiothoracic Surgery (STS-EACTS) categories. Results: A total of 24,685
patients underwent CHD surgery and 595 (2.4%) died in hospital. The area under curve (AUC) of the STS-EACTS and RACHS-1 risk
stratification scores were 0.748 [95% Confidence Interval (CI): 0.707-0.789, p < 0.001] and 0.677 (95% CI: 0.627-0.728, p < 0.001),
respectively. Our XGBoost model yielded the best AUC (0.887, 95% CI: 0.866-0.907, p < 0.001), and sensitivity and specificity were
0.785 and 0.824, respectively. The top 10 variables that contribute most to the predictive performance of the machine learning model were
saturation of pulse oxygen categories, risk categories, age, preoperative mechanical ventilation, atrial shunt, pulmonary insufficiency,
ventricular shunt, left atrial dimension, a history of cardiac surgery, numbers of defects. Conclusions: The XGBoost model was more
accurate than RACHS-1 and STS-EACTS in predicting in-hospital mortality after CHD surgery in China.
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1. Introduction making for the performance of certain procedures and im-
prove patient’s outcome [11]. Several major risk stratifi-
cation categories are currently available for the prediction
of mortality and morbidity in children undergoing surgery
for CHD—Risk Adjustment in Congenital Heart Surgery-1
(RACHS-1) [12], Aristotles Basic Complexity, and Aristo-
tles Comprehensive Complexity [13], Society of Thoracic
Surgery-European Association for Cardiothoracic Surgery
(STS-EACTS) Congenital Heart Surgery (STAT) Mortal-
ity Categories [14]. These risk adjustment categories have
been developed based on projections of risk or complex-
ity and heavily rely on expert experience and consensus
[15]. These traditional tools focus on surgical procedure
categories and do not include sufficient individual patient
risk factors. Therefore, it may have lower predictive accu-
racy for individual patients. The prognosis should be deter-
mined by combined analysis of multiple features. Thus, it
is of great clinical significance to build a prediction model
that includes multiple important clinical features.

Congenital heart disease (CHD) is the most common
congenital malformations. The prevalence of CHD at birth
is about 75-90/10,000 for live births and total pregnancies,
with CHD occurring in approximately 1% of live births and
10% of aborted fetuses [1,2]. In addition, CHD is the lead-
ing cause of mortality in children with birth defects [3] and
affects 0.7% children born in China [4]. The risk of mortal-
ity in Chinese children with CHD has been increasing [5].

Surgery has been the cornerstone in the treatment of
patients with CHD [6]. Without interventions, patients with
CHD will experience significant mortality. In developed
countries, surgery has greatly improved the outcome of pa-
tients with CHD and significantly reduced the mortality rate
[7]. However, approximately 20% children who undergo
surgery for pediatric CHD are readmitted within 30 days,
and 4.2% patients who undergo surgery for CHD die [8,9].
Early mortality after cardiac surgery in the neonatal period
is approximately 10% [1].

Risk of death in CHD patients is associated with com-
plexity of surgical procedures [10]. Accurate prediction of
in-hospital death is important to facilitate clinical decisions-

Some studies have shown performance of machine
learning-assisted tools were better than standard scoring
systems [16,17]. Machine learning has the advantage of
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flexibility and scalability compared to traditional biostatis-
tical methods [18]. It is well suited for complex multidi-
mensional data and may uncover interactions that hard to
be identified and illustrated through classic statistical anal-
ysis [19]. Extreme Gradient Boosting (XGBoost) is a ma-
chine learning algorithm. It is an implementation of Gradi-
ent Boosting that was originally started as a research project
by Tianqi Chen as part of the Distributed (Deep) Machine
Learning Community (DMLC) group at the University of
Washington [20]. Currently being the fastest and the best
open source boosting tree toolkit, XGBoost has made many
optimizations, such as significant improvements in model
training speed and accuracy. Kilic evaluated the predictive
performance of XGBoost model for risk of death after car-
diac surgery, and found that the XGBoost model was supe-
rior in predictive performance compared to Society of Tho-
racic Surgeons Predicted Risk of Mortality (STS-PROM)
score [21]. Zeng et al. [22] showed that a XGBoost model
has better prediction performance for predicting postoper-
ative complications than other traditional risk adjustment
models after paediatric cardiac surgery. However, research
on the application of machine learning model for the pre-
diction of mortality risk in children with CHD is lacking,
especially in China.

The aim of the study was to establish and validate a
XGBoost model for predicting the in-hospital mortality risk
in pediatric CHD surgery, and to compare the predictive
value of the XGBoost model with the RACHS-1 and STS-
EACTS categories.

2. Methods
2.1 Study Design and Population

Patients aged 0-18 years who were diagnosed with
CHD and underwent CHD surgery at Shanghai Children’s
Medical Center, School of Medicine, Shanghai Jiaotong
University between January 1, 2006 and December 31,
2017 were included. For patients with multiple surgical
records within a month, only the information of the last
surgical record was extracted, and the previous surgical
records were regarded as “operation history”. The exclu-
sion criteria included general thoracic surgery (not involv-
ing cardiac surgery), patients with incomplete or missing in-
hospital survival records, and surgical procedures that were
performed in less than 3 patients. Our study was approved
by the Ethical Committee of Shanghai Children’s Medical
Center, School of Medicine, Shanghai Jiaotong University.
As our study only involved a retrospective review of previ-
ous clinical data, the requirement for informed consent was
waived.

2.2 Data Source and Extraction

The database was constructed by merging information
from multiple data sources, including the laboratory infor-
mation management system, hospital information system,
intensive care unit database, clinical data repository, and

the surgical record database of the cardiac surgery depart-
ment in Shanghai Children’s Medical Center. We built a
feature engineering pipeline to load and transform clinical
data during and before CHD surgery for each individual.
The collected data were divided into five categories as fol-
lows: (i) demographic data, such as sex, body mass index,
and age; (ii) preoperative clinical factors, including diag-
nosis, numbers of defects, pulse oxygen saturation, a his-
tory of cardiac surgery (any prior cardiac surgeries), num-
bers of defects, non-cardiac malformations, and other risk
factors; (iii) complexity of the CHD surgery according to
RACHS-1 and STS-EACTS morbidity categories; (iv) car-
diac Doppler ultrasound data; and (v) preoperative labora-
tory test results, including routine blood test findings, liver
function test results, and coagulation index. Variables with
more than 30% missing values were excluded.

2.3 In-Hospital Mortality and Estimation of Mortality
Rates

The study endpoint was in-hospital mortality, de-
fined as death due to any cause during hospitalization af-
ter surgery. The cause of death was defined as the disease,
situation, or occurrence that causes a series of events, ul-
timately result in death [23]. And the cause of death in
this study included cardiac, peri-operative, vascular and
non-cardiovascular causes. Cardiac deaths included sudden
death, documented ventricular arrhythmias, heart failure,
infective endocarditis and myocardial infarction [23,24].
Vascular death included haemorrhage, stroke, rupture of
aneurysm, pulmonary embolism, and dissection [23,24].
Non-cardiovascular death included malignancy, pneumo-
nia, sepsis (excluding endocarditis), other infections, peri-
tonitis, hip fracture, renal failure, suicide, and unknown
[23,24].

Mortality risk stratification was performed by classi-
fying the procedures into clusters based on estimated mor-
tality, following the statistical method proposed by a pre-
vious study [14]. First, we used a Bayesian random effect
model to calculate the posterior probability distribution of
the mortality rates of all procedures. Second, a homogene-
ity criterion was used to evaluate a partition scheme, which
measured the within-category homogeneity of the mortality
rates. The optimal partition solution to maximize the ho-
mogeneity criterion can be achieved using a dynamic pro-
gramming algorithm. Finally, we successively performed
the abovementioned calculations for 2-20 categories to de-
termine the number of categories. The optimal category
number was determined using of the Bayesian informa-
tion criterion, a trade-off between homogeneity and parti-
tion complexity. All procedures were finally categorized
into five relatively homogeneous categories. According to
the pseudo-code algorithm description (see Appendix of the
previous study) [14] we implemented handcrafted codes of
the stratification computation pipeline using Python lan-
guage (version 3.7.6, Python Software Foundation, Wilm-
ington, DE, USA).
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2.4 Construction of an In-Hospital Death Predictive
Model Using a Machine Learning Algorithm

We used the XGBoost algorithm to build a in-hospital
mortality predictive model for children with CHD. Dataset
was devided into training set and testing set according to
the 7.5:2.5 ratio. The training dataset was used for feature
selection and model training, while the testing dataset was
used for validation after model training. The importance
of each feature was assessed using the recursive feature
elimination (RFE) algorithm, and all features were sorted
based on their level of importance. The RFE algorithm was
used to recursively remove features and build a model on
the remaining features. Among all possible combination
of features, the model with the highest AUC was deter-
mined and the features included are eventually selected to
build the XGBoost model. Furthermore, Grid Search was
used to adjust the hyperparameters of model to reduce over-

fitting and improve the model accuracy. The stability of

the model is tested by Bootstrap algorithm with random
resampling of the samples, and 95% confidence interval
(95% CI) was exported. Finally, we assessed the predictive
power of the model using the area under the receiver op-
erating characteristic curves (AUC), sensitivity, and speci-
ficity. Fig. 1 presents the whole process described above.
The XGBoost was developed in Python language (version
3.7.6) with main packages scikit-learn (version 0.23.1) and
XGBoost (version 1.1.1).
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Fig. 1. Steps in the XGBoost model development.

2.5 Statistical Analysis

Continuous variables are described as the median
(range); all were non-normally distributed. Categorical
variables are described using frequency (%). To assess
the distributive balance between the training and valida-
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tion sets, comparisons between groups were performed us-
ing the Mann—Whitney U test, Fisher’s exact test, and the
chi-square test, as appropriate. The Area under receiver op-
erating characteristic (ROC) curve (AUC) with 95% confi-
dence interval (CI) was calculated to evaluate the predictive
power. In addition, the optimal threshold was chosen by
maximizing the Youden Index. The sensitivity and speci-
ficity of the predictive model were obtained based on the
threshold. All statistical tests were two sided, and p-value
of <0.05 was considered statistically significant. All analy-
ses were performed using SAS software (SAS Institute Inc.,
Cary, NC, USA), version 4.2.0.

3. Results

3.1 Characteristics and Stratification of Surgical
Procedure

A total of 24,685 patients underwent surgery for CHD
were included (Table 1). The mean age of the patients
was 316 (1-6568) days, and 14,215 (57.59%) patients were
male. A total of 591 (2.4%) in-hospital deaths occurred.
Other patient characteristics are summarized in Table 1.

Comparative analysis of in-hospital mortality and risk
categories for each procedure are listed in Table 2. The
most common procedures included ventricular septal de-
fect (VSD) membranous repair, tetralogy repair, and VSD
subarterial repair. The RACHS-1 categories consist of six
groups labeled 1-6, and the STS-EACTS categories con-
sists of five groups labeled 1-5, a higher number means a
higher mortality risk. The risk of mortality associated with
each procedure was calculated. The in-hospital mortality
rate for each procedure ranged from 0-75%, and no death
was recorded in 31 procedures. Mortality rates and risk
stratification for specific procedures were also estimated us-
ing a Bayesian random effects model.
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Fig. 2. Comparison of the prediction values of the XGBoost

model, STS-EACTS categories, and RACHS-1 categories in

the testing set.
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Table 1. Demographic and preoperative characteristics of patients.

Training set n = 18552

Testing set n = 6133

o)

2,

(i

4

Ss3id NI

Parameter Total n = 24685
Death n =442 Non-deathn= 18110 Total n= 18552 p-value Death n =149 Non-deathn=15984 Totaln=6133 p-value
Median (range) 168 (2,6459) 323 (1,6568) 317 (1,6568) <0.001 153 (1,4716) 319 (2,6410) 313 (1,6410) <0.001 316 (1,6568)
Age (days)* <365 days 329 (74.4%) 9681 (53.5%) 10010 (54.0%) <0.001 112(752%) 3205 (53.6%) 3317 (54.2%) 13327 (54.0%)
gefdays 365 days to 1095 days 51 (11.5%) 4600 (25.4%) 4651 (25.1%) 19 (12.8%) 1493 (25.0%) 1512 (24.7%) 6163 (25.0%)
>1095 days 62 (14.0%) 3812 (21.1%) 3874 (20.9%) 18 (12.1%) 1276 (21.45) 1294 (21.1%) 5168 (21.0%)
Sex* Male 278 (62.9%) 10342 (57.11%) 10620 (57.24%) 0.015 81 (54.36%) 3514 (58.72%) 3595 (58.62%) 14215 (57.59%)
x Female 164 (37.1%) 7768 (42.89%) 7932 (42.76%) 68 (45.64%) 2470 (41.28%) 2538 (41.38%) 10470 (42.41%)
<P5 percentile 82 (20.55%) 3077 (19.26%) 3159 (19.29%) 0.494 34 (25.19%) 1066 (20.14%) 1100 (20.26%) 4259 (19.53%)
BMI* P5-P95 percentile 252 (63.16%) 10539 (65.97%) 10791 (65.9%) 75 (55.56%) 3395 (64.13%) 3470 (63.92%) 14261 (65.41%)
>P95 percentile 65 (16.29%) 2360 (14.77%) 2425 (14.81%) 26(19.26%) 833 (15.73%) 859 (15.82%) 3284 (15.06%)
0 311 (70.4%) 16323 (90.1%) 16634 (89.7%) <0.001 103 (69.1%) 5364 (89.6%) 5467 (89.1%) 22101 (89.5%)
A history of cardiac surgery 1 122 (27.6%) 1663 (9.2%) 1785 (9.6%) 44 (29.5%) 583 (9.7%) 627 (10.2%) 2412 (9.8%)
>2 9 (2.0%) 124 (0.7%) 133 (0.7%) 2 (1.3%) 37 (0.6%) 39 (0.6%) 172 (0.7%)
. _ 0 429 (97.1%) 17530 (96.8%) 17959 (96.8%) 0.758 141 (94.6%) 5755 (96.2%) 5896 (96.1%) 23855 (96.6%)
Preoperative ICU admission
1 13 (2.9%) 580 (3.2%) 593 (3.2%) 8 (5.4%) 229 (3.8%) 237 (3.9%) 830 (3.4%)
A 125(29.9%) 5534 (30.87%) 5659 (30.85%) 0.919 44 (31.21%) 1840 (30.97%) 1884 (30.98%) 7543 (30.88%)
ABO blood.t B 119 (28.47%) 4942 (27.57%) 5061 (27.59%) 38 (26.95%) 1654 (27.84%) 1692 (27.82%) 6753 (27.65%)
codtype (¢} 95 (22.73%) 4210 (23.49%) 4305 (23.47%) 34 (24.11%) 1366 (22.99%) 1400 (23.02%) 5705 (23.36%)
AB 79 (18.9%) 3238 (18.07%) 3317 (18.08%) 25 (17.73%) 1081 (18.2%) 1106 (18.18%) 4423 (18.11%)
RH blood t - 3(0.72%) 77 (0.43%) 80 (0.44%) 0.431 0 (0%) 26 (0.44%) 26 (0.43%) 106 (0.43%)
cod ype + 413 (99.28%) 17866 (99.57%) 18279 (99.56%) 140 (100%) 5904 (99.56%) 6044 (99.57%) 24323 (99.57%)
premat No 437 (98.87%) 17960 (99.17%) 18397 (99.16%) 0.423 145 (97.32%) 5927 (99.05%) 6072 (99.01%) 24469 (99.12%)
remature Yes 5(1.13%) 150 (0.83%) 155 (0.84%) 4(2.68%) 57 (0.95%) 61 (0.99%) 216 (0.88%)
. . No 440 (99.55%) 18088 (99.88%) 18528 (99.87%) 0.111 149 (100%) 5982 (99.97%) 6131 (99.97%) >0.999 24659 (99.89%)
Non-cardiac malformation
Yes 2 (0.45%) 22(0.12%) 24 (0.13%) 0 (0%) 2 (0.03%) 2(0.03%) 26 (0.11%)
, No 438 (99.1%) 17920 (99.0%)  18358(99.0%) >0.999 146 (98.0%) 5920 (98.9%) 6066 (98.9%) 24424 (98.9%)
Chromosome abnormality or syndrome
Yes 4(0.9%) 190 (1.0%) 194 (1.0%) 3 (2.0%) 64 (1.1%) 67 (1.1%) 261 (1.1%)
Alloray® No 436 (98.64%)  17522(96.75%) 17958 (96.8%) 0.026 145(97.32%) 5783 (96.64%) 5928 (96.66%) 23886 (96.76%)
ey Yes 6 (1.36%) 588 (3.25%) 594 (3.2%) 4(2.68%) 201 (3.36%) 205 (3.34%) 799 (3.24%)
) No 400 (90.5%) 17800 (98.29%) 18200 (98.1%) <0.001 136 (91.28%) 5876 (98.2%) 6012 (98.03%) <0.001 24212 (98.08%)
Special treatment before surgery*
Yes 42 (9.5%) 310 (1.71%) 352 (1.9%) 13 (8.72%) 108 (1.8%) 121 (1.97%) 473 (1.92%)
Low 19 (5.4%) 873 (5.84%) 892 (5.83%) <0.001 9 (6.87%) 327 (6.56%) 336 (6.57%) 1228 (6.02%)
Preoperative HCT* Normal 285 (80.97%) 13580 (90.92%) 13865 (90.69%) 112 (85.5%) 4470 (89.7%) 4582 (89.6%) 18447 (90.41%)
High 48 (13.64%) 484 (3.24%) 532 (3.48%) 10 (7.63%) 186 (3.73%) 196 (3.83%) 728 (3.57%)
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Table 1. Continued.

Training set n = 18552

Testing set n = 6133

Ss3id dNI

Parameter Total n = 24685
Deathn=442 Non-deathn= 18110 Total n= 18552 p-value Death n=149 Non-deathn=15984 Totaln=6133 p-value
1 111 (25.3%) 10359 (57.4%) 10470 (56.6%) <0.001 27 (18.2%) 3405 (57.0%) 3432 (56.1%) <0.001 13902 (56.5%)
2 120 (27.4%) 5074 (28.1%) 5194 (28.1%) 44 (29.7%) 1708 (28.6%) 1752 (28.6%) 6946 (28.2%)
STS-EACTS categories* 3 117 (26.7%) 1407 (7.8%) 1524 (8.2%) 40 (27.0%) 443 (7.4%) 483 (7.9%) 2007 (8.2%)
4 80 (18.3%) 1198 (6.6%) 1278 (6.9%) 33 (22.3%) 409 (6.8%) 442 (7.2%) 1720 (7.0%)
5 10 (2.3%) 20 (0.1%) 30 (0.2%) 4 (2.7%) 6 (0.1%) 10 (0.2%) 40 (0.2%)
1 65 (14.7%) 3148 (17.4%) 3213 (17.3%) <0.001 19 (12.8%) 966 (16.1) 985 (16.1%) <0.001 4198 (17.0%)
2 161 (36.4%) 11341 (62.6%) 11502 (62.0%) 45 (30.2%) 3830 (64.0%) 3875 (63.2%) 15377 (62.3%)
. 3 152 (34.4%) 3124 (17.3%) 3276 (17.7%) 69 (46.3%) 1032 (17.2%) 1101 (18.0%) 4377 (17.7%)
RACHS-1 categories
4 50 (11.3%) 446 (2.5%) 496 (2.7%) 12 (8.1) 135 (2.3%) 147 (2.4%) 643 (2.6%)
5 8 (1.8%) 46 (0.3%) 54 (0.3%) 3 (2.0%) 20 (0.3%) 23 (0.4%) 77 (0.3%)
6 6 (1.4%) 5(0.0%) 11 (0.1%) 1 (0.7%) 1 (0.0%) 2 (0.0%) 13 (0.1%)
1 28 (6.33%) 10605 (58.56%) 10633 (57.31%) <0.001 14 (9.4%) 3459 (57.8%) 3473 (56.63%) <0.001 14106 (57.14%)
2 87 (19.68%) 4399 (24.29%) 4486 (24.18%) 33 (22.15%) 1477 (24.68%) 1510 (24.62%) 5996 (24.29%)
Risk stratification 3 145 (32.81%) 2228 (12.3%) 2373 (12.79%) 45 (30.2%) 717 (11.98%) 762 (12.42%) 3135 (12.7%)
4 82 (18.55%) 529 (2.92%) 611 (3.29%) 27 (18.12%) 199 (3.33%) 226 (3.68%) 837 (3.39%)
5 100 (22.62%) 349 (1.93%) 449 (2.42%) 30 (20.13%) 132 (2.21%) 162 (2.64%) 611 (2.48%)
. <90% 235 (72.76%) 3368 (24.77%) 3603 (25.89%) <0.001 80 (68.38%) 1179 (26.09%) 1259 (27.16%) 0.001 4862 (26.2%)
Pulse oxygen saturation*®
>90% 88 (27.24%) 10228 (75.23%) 10316 (74.11%) 37 (31.62%) 3340 (73.91%) 3377 (72.84%) 13693 (73.8%)
<Critical value 72 (25.9%) 3225 (20.83%) 3297 (20.92%) 0.008 22 (26.19%) 1018 (19.9%) 1040 (20%) 0.353 4337 (20.69%)
Diameter of aortic sinus* Normal 72 (25.9%) 5299 (34.23%) 5371 (34.08%) 27 (32.14%) 1732 (33.85%) 1759 (33.83%) 7130 (34.02%)
>Critical value 134 (48.2%) 6958 (44.94%) 7092 (45%) 35 (41.67%) 2366 (46.25%) 2401 (46.17%) 9493 (45.29%)
AAO* Median (range) 1.1 (0.2, 4.11) 1.2 (0.4, 14.1) 1.2(0.2,14.1) <0.001 1.15(0.5, 6.69) 1.2 (0.4, 6.62) 1.2(04,6.69) 0.635 1.2(0.2,14.1)
DAO* Median (range) 1.2 (0.6, 4.28) 1.3 (0.38, 11.1) 1.3(0.38,11.1)  0.005 1.2 (0.6, 3.45) 1.27(0.5,5.03)  1.23(0.5,5.03) 0.058 1.28(0.38, 11.1)
MPA (mm)* Median (range) 1.72 (0.34, 6.19) 1.6 (0.2, 20) 1.6 (0.2, 20) 0.022 1.7 (0.6, 17) 1.6 (0.3, 41.6) 1.6 (0.3,41.6) 0.588  1.6(0.2,41.6)
MV (m/s)* Median (range) 1(0.3,3.3) 1.2 (0.36, 3.81) 1.2(0.3,3.81) <0.001 1(0.4,2.68) 1.2(04,12) 1.2(04,12) <0.001 1.2(0.3,12)
TV2 (m/s)* Median (range) 0.8 (0.4, 2.47) 0.8 (0.2, 33) 0.8 (0.2, 33) 0.025 0.8(04,1.7) 0.8 (0.3, 10.7) 0.8(0.3,10.7) 0.487 0.8 (0.2, 33)
<Critical value 79 (27.82%) 1907 (12.24%) 1986 (12.52%) <0.001 25 (27.78%) 621 (12.06%) 646 (12.33%) <0.001 2632 (12.47%)
Left atrial dimension* Normal 79 (27.82%) 3330 (21.37%) 3409 (21.49%) 26 (28.89%) 1146 (22.25%) 1172 (22.37%) 4581 (21.71%)
>Critical value 126 (44.37%) 10343 (66.39%) 10469 (65.99%) 39 (43.33%) 3383 (65.69%) 3422 (65.31%) 13891 (65.82%)
<Critical value 209 (56.64%) 5535 (33.42%) 5744 (33.92%) <0.001 65 (50.39%) 1791 (32.81%) 1856 (33.21%) <0.001 7600 (33.75%)
LVDD* Normal 81 (21.95%) 3337 (20.15%) 3418 (20.19%) 28 (21.71%) 1095 (20.06%) 1123 (20.1%) 4541 (20.16%)
>Critical value 79 (21.41%) 7691 (46.43%) 7770 (45.89%) 36 (27.91%) 2573 (47.13%) 2609 (46.69%) 10379 (46.09%)
<Critical value 176 (48.22%) 8881 (53.7%) 9057 (53.58%) 0.022 67 (52.34%) 3050 (55.93%) 3117 (55.85%) 0.009 12174 (54.15%)
LVEF* Normal 108 (29.59%) 4846 (29.3%) 4954 (29.31%) 27 (21.09%) 1495 (27.42%) 1522 (27.27%) 6476 (28.8%)
>Critical value 81 (22.19%) 2811 (17%) 2892 (17.11%) 34 (26.56%) 908 (16.65%) 942 (16.88%) 3834 (17.05%)
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Table 1. Continued.

Training set n = 18552

Testing set n = 6133

o)

2,

(i

4

Ss3id NI

Parameter Total n = 24685
Death n =442 Non-deathn = 18110 Total n= 18552 p-value Deathn= 149 Non-death n=15984 Totaln=6133 p-value
<Critical value 191 (52.33%) 8697 (52.59%) 8888 (52.58%) 68 (53.13%) 2993 (54.89%) 3061 (54.85%) 11949 (53.14%)
LVFS* Normal 102 (27.95%) 5209 (31.5%) 5311 (31.42%) 28 (21.88%) 1600 (29.34%) 1628 (29.17%) 6939 (30.86%)
>Critical value 72 (19.73%) 2632 (15.91%) 2704 (16%) 32 (25%) 860 (15.77%) 892 (15.98%) 3596 (15.99%)
<Critical value 121 (33.06%) 4734 (28.61%) 4855 (28.7%) 36 (28.13%) 1590 (29.15%) 1626 (29.12%) 0.605 6481 (28.81%)
LVPWD Normal 101 (27.6%) 4635 (28.01%) 4736 (28%) 39 (30.47%) 1448 (26.54%) 1487 (26.63%) 6223 (27.66%)
>Critical value 144 (39.34%) 7179 (43.38%) 7323 (43.3%) 53 (41.41%) 2417 (44.31%) 2470 (44.24%) 9793 (43.53%)
None 220 (58.51%) 14125 (85.46%) 14345 (84.86%) <0.001 72 (54.96%) 4669 (85.8%) 4741 (85.07%) <0.001 19086 (84.91%)
Large artery shunt* Left to right 108 (28.72%) 1728 (10.45%) 1836 (10.86%) 37 (28.24%) 564 (10.36%) 601 (10.78%) 2437 (10.84%)
Right to left 12 (3.19%) 53 (0.32%) 65 (0.38%) 2 (1.53%) 21 (0.39%) 23 (0.41%) 88 (0.39%)
Two-way 36 (9.57%) 623 (3.77%) 659 (3.9%) 20 (15.27%) 188 (3.45%) 208 (3.73%) 867 (3.86%)
None 77 (19.74%) 6169 (36.95%) 6246 (36.55%) 29 (21.64%) 2018 (36.6%) 2047 (36.25%) <0.001 8293 (36.48%)
Atrial shunt* Left to right 114 (29.23%) 7450 (44.62%) 7564 (44.27%) 42 (31.34%) 2408 (43.68%) 2450 (43.39%) 10014 (44.05%)
Right to left 48 (12.31%) 617 (3.7%) 665 (3.89%) 10 (7.46%) 235 (4.26%) 245 (4.34%) 910 (4%)
Two-way 151 (38.72%) 2461 (14.74%) 2612 (15.29%) 53 (39.55%) 852 (15.45%) 905 (16.03%) 3517 (15.47%)
None 106 (27.39%) 4582 (27.45%) 4688 (27.45%) 34 (25.95%) 1472 (26.73%) 1506 (26.71%) <0.001 6194 (27.27%)
Ventricular shunt* Left to right 17 (4.39%) 6000 (35.95%) 6017 (35.23%) 4 (3.05%) 1996 (36.24%) 2000 (35.47%) 8017 (35.29%)
Right to left 5(1.29%) 33 (0.2%) 38 (0.22%) 0 (0%) 9 (0.16%) 9 (0.16%) 47 (0.21%)
Two-way 259 (66.93%) 6077 (36.41%) 6336 (37.1%) 93 (70.99%) 2030 (36.86%) 2123 (37.66%) 8459 (37.24%)
Negative 307 (75.8%) 13794 (81.81%) 14101 (81.66%) 98 (71.01%) 4517 (81.2%) 4615 (80.95%) 18716 (81.49%)
Slight 66 (16.3%) 2110 (12.51%) 2176 (12.6%) 28 (20.29%) 698 (12.55%) 726 (12.73%) 2902 (12.63%)
Mild 28 (6.91%) 831 (4.93%) 859 (4.97%) 11 (7.97%) 311 (5.59%) 322 (5.65%) 1181 (5.14%)
AT* Mild to moderate 2 (0.49%) 66 (0.39%) 68 (0.39%) 1 (0.72%) 16 (0.29%) 17 (0.3%) 85 (0.37%)
Moderate 2 (0.49%) 31 (0.18%) 33 (0.19%) 0 (0%) 16 (0.29%) 16 (0.28%) 49 (0.21%)
Moderate to severe 0 (0%) 14 (0.08%) 14 (0.08%) 0 (0%) 2 (0.04%) 2 (0.04%) 16 (0.07%)
Severe 0 (0%) 16 (0.09%) 16 (0.09%) 0 (0%) 3 (0.05%) 3 (0.05%) 19 (0.08%)
Negative 129 (36.13%) 4475 (27.41%) 4604 (27.6%) 32 (26.23%) 1492 (27.71%) 1524 (27.68%) 6128 (27.62%)
Slight 151 (42.3%) 7495 (45.91%) 7646 (45.83%) 53 (43.44%) 2456 (45.62%) 2509 (45.57%) 10155 (45.77%)
Mild 52 (14.57%) 3168 (19.41%) 3220 (19.3%) 22 (18.03%) 1031 (19.15%) 1053 (19.12%) 4273 (19.26%)
MR* Mild to moderate 14 (3.92%) 651 (3.99%) 665 (3.99%) 3 (2.46%) 233 (4.33%) 236 (4.29%) 901 (4.06%)
Moderate 7 (1.96%) 389 (2.38%) 396 (2.37%) 5(4.1%) 123 (2.28%) 128 (2.32%) 524 (2.36%)
Moderate to severe 1 (0.28%) 82 (0.5%) 83 (0.5%) 4 (3.28%) 27 (0.5%) 31 (0.56%) 114 (0.51%)
Severe 3(0.84%) 65 (0.4%) 68 (0.41%) 3 (2.46%) 22 (0.41%) 25 (0.45%) 93 (0.42%)
Negative 95 (32.09%) 2423 (15.11%) 2518 (15.42%) 27 (25%) 811 (15.38%) 838 (15.57%) 3356 (15.45%)
Slight 123 (41.55%) 9015 (56.21%) 9138 (55.95%) 46 (42.59%) 2993 (56.75%) 3039 (56.47%) 12177 (56.08%)
Mild 67 (22.64%) 4343 (27.08%) 4410 (27%) 29 (26.85%) 1374 (26.05%) 1403 (26.07%) 5813 (26.77%)
PI* Mild to moderate 3 (1.01%) 88 (0.55%) 91 (0.56%) 3(2.78%) 31(0.59%) 34 (0.63%) 125 (0.58%)
Moderate 8 (2.7%) 156 (0.97%) 164 (1%) 2 (1.85%) 60 (1.14%) 62 (1.15%) 226 (1.04%)
Moderate to severe 0 (0%) 4 (0.02%) 4 (0.02%) 1 (0.93%) 3 (0.06%) 4 (0.07%) 8 (0.04%)
Severe 0 (0%) 8 (0.05%) 8 (0.05%) 0 (0%) 2 (0.04%) 2 (0.04%) 10 (0.05%)
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Table 1. Continued.

Training set n = 18552

Testing set n = 6133

Ss3id dNI

Parameter Total n = 24685
Death n =442 Non-deathn= 18110 Total n= 18552 p-value Death n= 149 Non-death n=15984 Total n=6133
Negative 10 (2.83%) 235 (1.45%) 245 (1.47%) 5 (4.2%) 71 (1.33%) 76 (1.39%) 321 (1.45%)
Slight 165 (46.74%) 8606 (52.92%) 8771 (52.79%) 55(46.22%) 2845 (53.29%) 2900 (53.13%) 11671 (52.88%)
Mild 128 (36.26%) 5930 (36.47%) 6058 (36.46%) 35 (29.41%) 1922 (36%) 1957 (35.86%) 8015 (36.31%)
TR* Mild to moderate 25 (7.08%) 832 (5.12%) 857 (5.16%) 16 (13.45%) 290 (5.43%) 306 (5.61%) 1163 (5.27%)
Moderate 15 (4.25%) 468 (2.88%) 483 (2.91%) 7 (5.88%) 144 (2.7%) 151 (2.77%) 634 (2.87%)
Moderate to severe 3 (0.85%) 87 (0.54%) 90 (0.54%) 1 (0.84%) 28 (0.52%) 29 (0.53%) 119 (0.54%)
Severe 7 (1.98%) 103 (0.63%) 110 (0.66%) 0 (0%) 39 (0.73%) 39.(0.71%) 149 (0.68%)
White biood cell counte Normal 258 (83.23%) 13271 (93.91%) 13529 (93.68%) <0.001 101 (84.87%) 4390 (93.98%) 4491 (93.76%) 18020 (93.7%)
1te blooda cell count
" Abnormal 52 (16.77%) 861 (6.09%) 913 (6.32%) 18(15.13%) 281 (6.02%) 299 (6.24%) 1212 (6.3%)
Lot t Normal 93 (30%) 4199 (29.71%) 4292 (29.72%) 35(29.41%) 1395 (29.86%) 1430 (29.85%) 5722 (29.75%)
c
ymphocyte coun Abnormal 217(70%) 9933 (70.29%) 10150 (70.28%) 84(70.59%) 3277 (70.14%) 3361 (70.15%) 13511 (70.25%)
Momoevte count? Normal 147 (47.42%) 9971 (70.56%) 10118 (70.06%) <0.001 59 (49.58%) 3240 (69.35%) 3299 (68.86%) 13417 (69.76%)
onoeyte coun Abnormal 163 (52.58%) 4161 (29.44%) 4324 (29.94%) 60 (50.42%) 1432 (30.65%) 1492 (31.14%) 5816 (30.24%)
Neuttoniil counte Normal 182 (58.71%) 10609 (75.07%) 10791 (74.72%) <0.001 79 (66.39%) 3498 (74.87%) 3577 (74.66%) 14368 (74.7%)
T 1 ni
cutropitt cou Abnormal 128 (41.29%) 3523 (24.93%) 3651 (25.28%) 40 (33.61%) 1174 (25.13%) 1214 (25.34%) 4865 (25.3%)
Eosinonil counte Normal 148 (49.33%) 8182 (59.86%) 8330 (59.63%) 56 (48.7%) 2749 (60.93%) 2805 (60.62%) 11135 (59.88%)
1n 1 n
ostnophtt cou Abnormal  152(50.67%) 5487 (40.14%) 5639 (40.37%) 59(51.3%) 1763 (39.07%) 1822 (39.38%) 7461 (40.12%)
Basonmil cell counte Normal 259 (86.33%) 13083 (95.71%) 13342 (95.51%) <0.001 101 (87.83%) 4314 (95.61%) 4415 (95.42%) 17757 (95.49%)
1 n
asopiit et cot Abnormal 41 (13.67%) 586 (4.29%) 627 (4.49%) 14(12.17%) 198 (439%) 212 (4.58%) 839 (4.51%)
oimhoevie ratio® Normal 92(29.68%) 3539 (25.04%) 3631 (25.14%) 41 (34.45%) 1188 (25.43%) 1229 (25.65%) 4860 (25.27%)
mphocyte ratio
Ymphoey Abnormal  218(70.32%) 10593 (74.96%) 10811 (74.86%) 78(65.55%) 3484 (74.57%) 3562 (74.35%) 14373 (74.73%)
Red blood coll count® Normal 197 (63.55%) 11561 (81.81%) 11758 (81.42%) <0.001 81 (68.07%) 3825 (81.87%) 3906 (81.53%) 15664 (81.44%)
C 00d cell count
" Abnormal 113 (36.45%) 2571 (18.19%) 2684 (18.58%) 38(31.93%)  847(18.13%) 885 (18.47%) 3569 (18.56%)
Hemoslobin® Normal 197 (63.55%) 9645 (68.25%) 9842 (68.15%) 82 (68.91%) 3246 (69.48%) 3328 (69.46%) 13170 (68.48%)
cmogiobi Abnormal 113 (36.45%) 4487 (31.75%) 4600 (31.85%) 37(31.09%) 1426 (30.52%) 1463 (30.54%) 6063 (31.52%)
Hematoett Normal 225(71.88%) 9974 (70.54%) 10199 (70.57%) 91 (75.83%)  3317(70.92%) 3408 (71.04%) 13607 (70.69%)
ematoett Abnormal 88 (28.12%)  4165(29.46%) 4253 (29.43%) 29(24.17%) 1360 (29.08%) 1389 (28.96%) 5642 (29.31%)
Normal 230 (74.19%) 9646 (68.26%) 9876 (68.38%) 83 (69.75%) 3183 (68.13%) 3266 (68.17%) 13142 (68.33%)
Mean corpuscular volume*
Abnormal 80 (25.81%) 4486 (31.74%) 4566 (31.62%) 36(30.25%) 1480 (31.87%) 1525 (31.83%) 6091 (31.67%)
. Normal 192 (61.94%) 6948 (49.17%) 7140 (49.44%) 72(60.5%) 2299 (49.21%) 2371 (49.49%) 9511 (49.45%)
MHC/MCH (solid mass)*
Abnormal 118 (38.06%) 7184 (50.83%) 7302 (50.56%) 47(39.5%) 2373 (50.79%) 2420 (50.51%) 9722 (50.55%)
_ Normal 211 (68.06%) 10816 (76.54%) 11027 (76.35%) 77(64.71%) 3589 (76.82%) 3666 (76.52%) 14693 (76.39%)
MHC/MCHC (mass concentration)*
Abnormal 99 (31.94%) 3316 (23.46%) 3415 (23.65%) 42(3529%) 1083 (23.18%) 1125 (23.48%) 4540 (23.61%)
ADW-SD Normal 39(1258%) 6021 (42.61%) 6060 (41.96%) <0.001 21(17.65%) 2028 (43.41%) 2049 (42.77%) 8109 (42.16%)
Abnormal 271 (87.42%)  8111(57.39%) 8382 (58.04%) 98 (82.35%) 2644 (56.59%) 2742 (57.23%) 11124 (57.84%)
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Parameter Total n = 24685
Death n =442 Non-deathn= 18110 Total n= 18552 p-value Death n= 149 Non-death n=15984 Totaln=6133 p-value
Platelet o Normal 235 (75.81%) 12706 (89.91%) 12941 (89.61%) <0.001 100 (84.03%)  4220(90.33%) 4320 (90.17%) 0.023 17261 (89.75%)
atelet coun
Abnormal 75 (24.19%) 1426 (10.09%) 1501 (10.39%) 19 (15.97%) 452 (9.67%) 471 (9.83%) 1972 (10.25%)
M latelet volume* Normal 211 (68.06%) 11008 (77.9%) 11219 (77.69%) <0.001 81 (68.07%) 3625 (77.61%) 3706 (77.37%) 0.014 14925 (77.61%)
ean platelet volume
P Abnormal 99 (31.94%) 3123 (22.1%) 3222 (22.31%) 38 (31.93%) 1046 (22.39%) 1084 (22.63%) 4306 (22.39%)
APTT* Normal 148 (48.21%) 9173 (66.12%) 7211 (83.06%) 0.019 60 (50.42%) 3065 (66.85%) 3125 (66.43%) <0.001 12446 (65.9%)
Abnormal 159 (51.79%) 4701 (33.88%) 1471 (16.94%) 59 (49.58%) 1520 (33.15%) 1579 (33.57%) 6439 (34.1%)
Prothrombin time* Normal 138 (44.81%) 9721 (70.06%) 9321 (65.73%) <0.001 47 (39.17%) 3236 (70.49%) 3283 (69.69%) <0.001 13142 (69.55%)
rothrombin time
Abnormal 170 (55.19%) 4155 (29.94%) 4860 (34.27%) 73 (60.83%) 1355 (29.51%) 1428 (30.31%) 5753 (30.45%)
Total protein® Normal 84 (27.54%) 6555 (47.44%) 6639 (47.02%) <0.001 34 (28.81%) 2187 (47.85%) 2221 (47.37%) <0.001 8860 (47.1%)
otal protein
P Abnormal 221 (72.46%) 7261 (52.56%) 7482 (52.98%) 84 (71.19%) 2384 (52.15%) 2468 (52.63%) 9950 (52.9%)
: Ibumin* Normal 205 (66.99%) 12128 (87.67%) 12333 (87.22%) <0.001 81 (68.07%) 3984 (87.12%) 4065 (86.64%) <0.001 16398 (87.08%)
erum albumin
Abnormal 101 (33.01%) 1706 (12.33%) 1807 (12.78%) 38 (31.93%) 589 (12.88%) 627 (13.36%) 2434 (12.92%)
S Jobulin®* Normal 188 (61.64%) 10800 (78.2%) 10988 (77.84%) <0.001 76 (64.41%) 3601 (78.8%) 3677 (78.43%) <0.001 14665 (77.99%)
erum globulin
& Abnormal 117 (38.36%) 3011 (21.8%) 3128 (22.16%) 42 (35.59%) 969 (21.2%) 1011 (21.57%) 4139 (22.01%)
Albumin/elobulin ratio* Normal 205 (67.21%) 11065 (80.12%) 11270 (79.84%) <0.001 76 (64.41%) 3648 (79.82%) 3724 (79.44%) <0.001 14994 (79.74%)
umin/globulin ratio
& Abnormal 100 (32.79%) 2746 (19.88%) 2846 (20.16%) 42 (35.59%) 922 (20.18%) 964 (20.56%) 3810 (20.26%)
ALT* Normal 234 (76.47%) 12334 (89.09%) 12568 (88.82%) <0.001 94 (78.99%) 4055 (88.61%) 4149 (88.37%) 0.001 16717 (88.71%)
Abnormal 72 (23.53%) 1510 (10.91%) 1582 (11.18%) 25 (21.01%) 521 (11.39%) 546 (11.63%) 2128 (11.29%)
Aspartat otransh . Normal 130 (42.62%) 7806 (56.39%) 7936 (56.09%) <0.001 53 (44.54%) 2516 (54.98%) 2569 (54.72%) 0.024 10505 (55.75%)
spartate aminotransferase
P Abnormal 175 (57.38%) 6038 (43.61%) 6213 (43.91%) 66 (55.46%) 2060 (45.02%) 2126 (45.28%) 8339 (44.25%)
ALP* Normal 292 (95.74%) 13601 (98.44%) 13893 (98.39%) 0.001 115 (97.46%) 4497 (98.38%) 4612 (98.36%) 0.444 18505 (98.38%)
Abnormal 13 (4.26%) 215 (1.56%) 228 (1.61%) 3 (2.54%) 74 (1.62%) 77 (1.64%) 305 (1.62%)
Lo~eolutamvltransf Normal 202 (66.23%) 9082 (65.74%) 9284 (65.75%) 0.857 79 (66.95%) 2924 (63.97%) 3003 (64.04%) 0.505 12287 (65.32%)
-y-glutamyltransferase
e Y Abnormal 103 (33.77%) 4734 (34.26%) 4837 (34.25%) 39 (33.05%) 1647 (36.03%) 1686 (35.96%) 6523 (34.68%)
Total bilirabin* Normal 140 (48.78%) 11207 (81.73%) 11347 (81.05%) <0.001 64 (58.72%) 3648 (80.44%) 3712 (79.93%) <0.001 15059 (80.77%)
otal bilirubin
Abnormal 147 (51.22%) 2506 (18.27%) 2653 (18.95%) 45 (41.28%) 887 (19.56%) 932 (20.07%) 3585 (19.23%)
Direct bilirubin* Normal 191 (67.73%) 11953 (90.28%) 12144 (89.81%) <0.001 82 (77.36%) 3946 (90.32%) 4028 (90.01%) <0.001 16172 (89.86%)
irect bilirubin
Abnormal 91 (32.27%) 1287 (9.72%) 1378 (10.19%) 24 (22.64%) 423 (9.68%) 447 (9.99%) 1825 (10.14%)
Creatinine* Normal 283 (92.48%) 13682 (98.89%) 13965 (98.76%) <0.001 109 (91.6%) 4527 (98.97%) 4636 (98.79%) <0.001 18601 (98.76%)
reatinine
Abnormal 23 (7.52%) 153 (1.11%) 176 (1.24%) 10 (8.4%) 47 (1.03%) 57 (1.21%) 233 (1.24%)
Uric acid* Normal 150 (49.02%) 8159 (58.99%) 8309 (58.77%) <0.001 52 (43.7%) 2656 (58.07%) 2708 (57.7%) 0.002 11017 (58.5%)
ric aci
Abnormal 156 (50.98%) 5673 (41.01%) 5829 (41.23%) 67 (56.3%) 1918 (41.93%) 1985 (42.3%) 7814 (41.5%)
Eosinoohils/100 leukocvies* Normal 194 (64.45%) 10744 (78.6%) 10938 (78.29%) <0.001 67 (58.26%) 3572 (79.15%) 3639 (78.63%) <0.001 14577 (78.38%)
osinophils eukocytes
P Y Abnormal 107 (35.55%) 2926 (21.4%) 3033 (21.71%) 48 (41.74%) 941 (20.85%) 989 (21.37%) 4022 (21.62%)
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Parameter

Training set n = 18552

Testing set n = 6133

Total n = 24685

Ss3id dNI

Death n =442 Non-deathn= 18110 Total n= 18552 p-value Death n= 149 Non-death n=15984 Totaln=6133 p-value
Normal 274 (88.39%) 13121 (92.85%)  13395(92.75%) 0.003 104 (87.39%) 4317 (92.4%) 4421 (92.28%) 0.043 17816 (92.63%)
Monocytes/100 leukocytes*
Abnormal 36 (11.61%) 1011 (7.15%) 1047 (7.25%) 15 (12.61%) 355 (7.6%) 370 (7.72%) 1417 (7.37%)
) Normal 72 (23.23%) 3404 (24.09%) 3476 (24.07%) 0.726 23 (19.33%) 1150 (24.61%) 1173 (24.48%) 0.185 4649 (24.17%)
Neutrophils/100 leukocytes
Abnormal 238 (76.77%) 10728 (75.91%) 10966 (75.93%) 96 (80.67%) 3522(75.39%) 3618 (75.52%) 14584 (75.83%)
. Normal 239 (79.4%) 12199 (89.26%) 12438 (89.05%) <0.001 94 (81.74%) 4015 (88.98%) 4109 (88.8%) 0.015 16547 (88.99%)
Basophils/100 leukocytes*
Abnormal 62 (20.6%) 1468 (10.74%) 1530 (10.95%) 21 (18.26%) 497 (11.02%) 518 (11.2%) 2048 (11.01%)
TFIC* Normal 249 (80.84%) 12561 (90.65%) 12810 (90.44%) <0.001 99 (82.5%) 4145 (90.4%) 4244 (90.2%) 0.004 17054 (90.38%)
Abnormal 59 (19.16%) 1295 (9.35%) 1354 (9.56%) 21 (17.5%) 440 (9.6%) 461 (9.8%) 1815 (9.62%)
Main defect®
TGA 0 405 (91.6%) 17645 (97.4%) 18050 (97.3%) <0.001 138 (92.6%) 5825 (97.3%) 5963 (97.2%) 0.003 24013 (97.3%)
1 37 (8.4%) 465 (2.6%) 502 (2.7%) 11 (7.4%) 159 (2.7%) 170 (2.8%) 672 (2.7%)
APVC 0 419 (94.8%) 17618 (97.3%) 18037 (97.2%) 0.002 146 (98.0%) 5833 (97.5%) 5979 (97.5%) 1 24016 (97.3%)
1 23 (5.2%) 492 (2.7%) 515 (2.8%) 3 (2.0%) 151 (2.5%) 154 (2.5%) 669 (2.7%)
COA 0 431 (97.5%) 17521 (96.7%) 17952 (96.8%)  0.37 146 (98.0%) 5793 (96.8%) 5939 (96.8%) 0.632 23891 (96.8%)
1 11 (2.5%) 589 (3.3%) 600 (3.2%) 3 (2.0%) 191 (3.2%) 194 (3.2%) 794 (3.2%)
TAA 0 433 (98.0%) 18023 (99.5%) 18456 (99.5%) <0.001 145 (97.3%) 5951 (99.4%) 6096 (99.4%) 0.012 24552 (99.5%)
1 9 (2.0%) 87 (0.5%) 96 (0.5%) 4 (2.7%) 33 (0.6%) 37 (0.6%) 133 (0.5%)
AVC 0 433 (98.0%) 17585 (97.1%) 18018 (97.1%) 0.284 143 (96.0%) 5820 (97.3%) 5963 (97.2%) 0.309 23981 (97.1%)
1 9 (2.0%) 525 (2.9%) 534 (2.9%) 6 (4.0%) 164 (2.7%) 170 (2.8%) 704 (2.9%)
Single ventricle 0 421 (95.2%) 17844 (98.5%) 18265 (98.5%) <0.001 144 (96.6%) 5893 (98.5) 6037 (98.4%) 0.084 24302 (98.4%)
1 21 (4.8%) 266 (1.5%) 287 (1.5%) 5(3.4%) 91 (1.5%) 96 (1.6%) 383 (1.6%)
DORV 0 415 (93.9%) 17608 (97.2%) 18023 (97.1%) <0.001 134 (89.9%) 5821 (97.3%) 5955 (97.1%) <0.001 23978 (97.1)
1 27 (6.1%) 502 (2.8%) 529 (2.9%) 15 (10.1%) 163 (2.7%) 178 (2.9%) 707 (2.9%)
ASD 0 326 (73.8%) 11528 (63.7%) 11854 (63.9%) <0.001 105 (70.5%) 3808 (63.6%) 3913 (63.8%) 0.086 15767 (63.9%)
1 116 (26.2%) 6582 (36.3%) 6698 (36.1%) 44 (29.5%) 2176 (36.4%) 2220 (36.2%) 8918 (36.1%)
VSD 0 325 (73.5%) 10741 (59.3%) 11066 (59.6%) <0.001 106 (71.1%) 3555 (59.4%) 3661 (59.7%) 0.004 14727 (59.7%)
1 117 (26.5%) 7369 (40.7%) 7486 (40.4%) 43 (28.9%) 2429 (40.6%) 2472 (40.3%) 9958 (40.3%)
PFO 0 420 (95.0%) 16294 (90.0%) 16714 (90.1%) <0.001 142 (95.3%) 5376 (89.8%) 5518 (90.0%) 0.028 22232 (90.1%)
1 22 (5.0%) 1816 (10.0%) 1838 (9.9%) 7 (4.7%) 608 (10.2%) 615 (10.0%) 2453 (9.9%)
TOF 0 400 (90.5%) 16731 (92.4%) 17131 (92.3%)  0.14 142 (95.3%) 5508 (92.0%) 5650 (92.1%) 0.145 22781 (92.3%)
1 42 (9.5%) 1379 (7.6%) 1421 (7.7%) 7 (4.7%) 476 (8.0%) 483 (7.9%) 1904 (7.7%)
PDA 0 355 (80.3%) 15892 (87.8%) 16247 (87.6%) <0.001 118 (79.2%) 5272 (88.1%) 5390 (87.9%) 0.001 21637 (87.7%)
1 87 (19.7%) 2218 (12.2%) 2305 (12.4%) 31 (20.8%) 712 (11.9%) 743 (12.1%) 3048 (12.3%)
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Table 1. Continued.
Training set n = 18552 Testing set n = 6133
Total n = 24685
Death n =442 Non-deathn= 18110 Total n= 18552 p-value Death n=149 Non-death n=5984 Totaln= 6133 p-value

Parameter

. 0 391 (88.5%) 15070 (83.2%) 15461 (83.3%) 0.003 121 (81.2%) 5008 (83.7%) 5129 (83.6%) 0.419 20590 (83.4%)
Pulmonary hypertension
1 51(11.5%) 3040 (16.8%) 3091 (16.7%) 28 (18.8%) 976 (16.3%) 1004 (16.4%) 4095 (16.6%)
0 232(52.5%) 6418 (35.4%) 6650 (35.8%) <0.001 74 (49.7%) 2161 (36.1%) 2235 (36.4%) <0.001 8885 (36.0%)
1 33(7.5%) 4405 (24.3%) 4438 (23.9%) 18 (12.1%) 1380 (23.1%) 1398 (22.8%) 5836 (23.6%)
2 58(13.1%) 3918 (21.6%) 3976 (21.4%) 14 (9.4%) 1350 (22.6%) 1364 (22.2%) 5340 (21.6%)
3 48 (10.9%) 1700 (9.4%) 1748 (9.4%) 17 (11.4%) 554 (9.3%) 571 (9.3%) 2319 (9.4%)
Numbers of defects* 4 44 (10.0%) 1059 (5.8%) 1103 (5.9%) 15 (10.1%) 332 (5.5%) 347 (5.7%) 1450 (5.9%)
5 19(4.3%) 483 (2.7%) 502 (2.7%) 9 (6.0%) 167 (2.8%) 176 (2.9%) 678 (2.7%)
6  7(1.6%) 116 (0.6%) 123 (0.7%) 2 (1.3%) 37 (0.6%) 39 (0.6%) 162 (0.7%)
7 1(0.2%) 10 (0.1%) 11 (0.1%) 0(0.0) 3(0.1%) 3 (0.0%) 14 (0.1%)
8  0(0.0%) 1 (0.0%) 1 (0.0%) 0(0.0) 0(0.0) 0(0.0) 1 (0.0%)
. . L 0 307 (69.5%) 16599 (91.7%) 16906 (91.1%) <0.001 107 (71.8%) 5473 (91.5%) 5580 (91.0%) <0.001 22486 (91.1%)
Preoperative mechanical ventilation*
1 135(30.5%) 1511 (8.3%) 1646 (8.9%) 42 (28.2%) 511 (8.5%) 553 (9.0%) 2199 (8.9%)

Categorical variables are described using frequency (%). Continuous variables are described as the median (range).

AAO, Ascending aorta dimension; DAO, Descending aorta dimension; MPA, Main pulmonary artery dimension; MV, Mitral blood flow velocity; TV2, Transtricuspid velocity2; BMI,
Body mass index; HCT, Hematocrit; LVDD, Left ventricular end diastolic dimension; LVEF, Left ventricular ejection fraction; LVFS, Left ventricular fraction shortening; LVPWD, Left
ventricular posterior wall dimension; Al, Aortic insufficiency; MR, Mitral regurgitation; PI, Pulmonary insufficiency; TR, Tricuspid regurgitation; RDW-SD, Red blood cell volume
distribution width-standard deviation; ALP, Alkaline phosphatase; MHC/MCH, Mean hemoglobin content/mean corpuscular hemoglobin; ALT, Alanine aminotransferase; MHC/MCHC,
Mean hemoglobin concentration/mean corpuscular hemoglobin concentration; APTT, Activated partial thromboplastin time; TFIC, Tissue factor induced coagulation; TGA, transposition
of the great arteries; APVC, anomalous pulmonary venous connection; COA, coarctation of the aorta; IAA, interrupted aortic arch; AVC, atrioventricular canal; DORYV, double-outlet
right ventricle; ASD, atrial septal defect; PDA, patent ductus arteriosus; PFO, patent foramen ovale; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

Note: variables marked with * are included in the XGBoost model.
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3.2 Prediction Value of the Different Models

The performance of the XGBoost model, STS-
EACTS, and RACHS-1 risk stratification categories in the
testing set are shown in Table 3 and Fig. 2. The AUC of the
STS-EACTS and RACHS-1 risk stratification categories
was 0.748 (95% CI: 0.707-0.789) and 0.677 (95% CI:
0.627-0.728), respectively. Our XGBoost model yielded
the best AUC (AUC =0.887, 95% CI: 0.866-0.907), with a
sensitivity and specificity of 0.785 and 0.824, respectively
(Table 3).

3.3 Importance of the Top 10 Variables in the Prediction of

the XGBoost Model

The top 10 variables that contribute the most to
the prediction power of the model are listed in Ta-
ble 4. The higher the weight coefficient of a feature,
the more significant role it plays in the model for out-
come classification. The weight coefficient for satu-
ration of pulse oxygen categories, risk categories, age,
preoperative mechanical ventilation, atrial shunt, pul-
monary insufficiency, ventricular shunt, left atrial dimen-
sion, a history of cardiac surgery, numbers of defect
were 0.10638574, 0.07759346, 0.07303152, 0.07014898,
0.065226465, 0.05785214, 0.05760804, 0.052233107,
0.051096234, 0.0437589, respectively (Table 4). The ex-
cluded variables are listed in Supplementary Table 1.

4. Discussion

Prediction of in-hospital mortality risk is clinically
important for directing patient postoperative management.
In our study, we compared the XGBoost model with tra-
ditional tools for predicting mortality in pediatric CHD
surgery. To our knowledge, this is the first study to compare
machine learning algorithms with the RACHS-1 and STS-
EACTS categories for the prediction of in-hospital mortal-
ity risk in pediatric CHD surgery. And we found that in chil-
dren with CHD of China, the XGBoost model was more ac-
curate in predicting in-hospital mortality for CHD surgery
than in the RACHS-1 and STS-EACTS categories.

In our study, the in-hospital mortality rate after CHD
surgery was 2.4%, which is consistent with that previously
reported in China [5] and in western countries [25-27],
but much lower than that reported in developing countries
[28,29]. Cardiac surgeons use traditional tools such as
the RACHS-1 and STS-EACTS to report patient outcomes.
The RACHS-1 categories were constructed based on a com-
bination of the opinions of 11 experts and empirical data to
predict in-hospital mortality [12,30]. The RACHS-1 cate-
gories classifies procedures into six levels of risk of mor-
tality based on a few clearly defined criteria. In previous
studies, the risk of mortality from CHD surgery with dif-
ferent RACHS-1 stratification ranged from 0.26% to 62%
[31-33], which is consistent with the findings of our study.
An objective, empirically based tool named STS-EACTS,
without the input of an expert panel, has been developed
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for analyzing in-hospital mortality associated with CHD
surgery [14,34]. However, the RACHS-1 and STS-EACTS
categories only consider procedural characteristics and ig-
nore individual patient characteristics. Both categories lack
precision when estimating the risk for individual patients.
In addition, some procedures (19%) in our cohort could
not be classified using the RACHS-1 or STS-EACTS cate-
gories. Due to the enormous differences in patient-related
variables and CHD surgery, it is difficult to establish a mor-
tality risk prediction model.

Hence, one of the greatest challenges in medicine is
how to deal with individuals who have the same disease
but with different manifestations. Machine learning algo-
rithms may provide a solution for this problem. Further-
more, previous study further demonstrated that machine-
learning methods, especially gradient boosting models, are
promising to outperform existing clinical risk scores [35].
Machine learning models have currently been explored as
a tool to predict mortality, morbidity, and complications
in patients with CHD [22,36,37]. A XGBoost model was
constructed based on surgical risk stratification and patient
preoperative variables in this study. According to previous
studies, the AUC of the STS-EACTS and RACHS-1 cate-
gories to predict the mortality and complications of CHD
surgery in children was 0.68—0.79 [14,22,28,38,39]. In our
study, the AUC of the XGBoost model was 0.887, which
was better than that of the STS-EACTS (AUC = 0.748) and
RACHS-1 (AUC = 0.677) categories. The results showed
that the XGBoost model was able to predict in-hospital mor-
tality with improved predictive power compared to the STS-
EACTS and RACHS-1 models.

In addition to surgical risk stratification, patient-
related variables also had a significant impact on the per-
formance of the postoperative mortality risk prediction
model. The XGBoost model incorporates demographic
characteristics, preoperative echocardiography characteris-
tics, and laboratory examination results into the final pre-
dictive model. We analyzed the importance of these risk
factors in the XGBoost model. Our results showed that sat-
uration of pulse oxygen categories had the greatest impact
on the predictive performance of the model. Previous stud-
ies have shown that oxygen saturation correlates with mor-
tality in children undergoing CHD surgery [40,41]. A de-
crease in oxygen saturation at 24 hours after the operation
may increase the mortality rate of newborns with cyanotic
cardiopathies [42].

For patients with CHD who have received car-
diac intervention, preoperative mechanical ventilation and
RACHS categories may affect their mortality during hos-
pitalization [43]. Mechanical ventilation has been shown
to be a strong predictor of in-hospital mortality in children
with noncardiac surgery [44]. In addition, study has found
that newborns with severe CHD may have increased mor-
tality if they need unplanned cardiac reintervention, and ac-
cording to the results of multifactorial analysis, mechanical
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Table 2. Comparative analysis of in-hospital mortality and risk categories for procedures.

Procedure Cases (n) Death (n)  Mortality Mortality Risk stratifi- RACHS-1 STS-EACTS
(unadjusted) (model* based) cation Grade Grade

ASD hybrid repair (off pump) 87 0 0% 0.46% 1 2 2
ASD secundum repair 551 1 0.18% 0.13% 1 1 1
ASD secundum repair (patch) 1338 1 0.07% 0.14% 1 1 1
AVSD repair - depression 391 3 0.77% 0.42% 1 3 3
AVSD repair - single patch 116 1 0.86% 0.39% 1 3 3
Aortic valvuloplasty 109 1 0.92% 0.40% 1 2 2
Coronary art. fistula repair 78 0 0% 0.50% 1 2 2
Cortraitriatum repair 70 0 0% 0.50% 1 3 2
Mitral valvuloplasty 461 7 1.52% 0.85% 1 3 2
PAPVD isolated repair 115 0 0% 0.37% 1 1 1
Pulm. Infundibulum resection (indirect) 178 0 0% 0.31% 1 2 1
Subaortic fibromyectomy 155 0 0% 0.32% 1 3 1
Subaortic myectomy 80 1 1.25% 0.52% 1 3 1
Tricuspid valvuloplasty 540 3 0.56% 0.77% 1 3 2
VSD canal type repair 154 0 0% 0.33% 1 3 1
VSD membranous repair 7910 23 0.29% 0.33% 1 2 1
VSD subarterial repair 1641 1 0.06% 0.12% 1 2 1
Vascular ring repair 132 0 0% 0.37% 1 2 1
A-P window repair 31 1 3.23% 0.79% 2 2 2
A-V fistula repair 6 1 16.67% 1.53% 2 2 2
ASD common atrium repair 9 0 0% 1.27% 2 2 2
ASD repair - minimal invasive & CPB 29 0 0% 0.81% 2 2 2
ASD sinus venosus repair 38 0 0% 0.67% 2 1 2
Aortic valvotomy 56 0 0% 0.61% 2 2 2
Asc. aorta patch aortoplasty 184 6 3.26% 1.97% 2 2 2
Coarct repair - bypass or tubular graft 4 0 0% 1.53% 2 1 1
Coarct. repair - resection & E to S 377 10 2.65% 1.64% 2 1/2 2
Coarct. repair - patch aortoplasty 253 4 1.58% 1.92% 2 172 3
DORY repair - IVR 375 12 3.20% 3.09% 2 3 4
Ebstein anomaly repair 106 1 0.94% 1.17% 2 3 4
Excision of cardiac tumor 96 2 2.08% 2.39% 2 3 4
Exicion of intracardiac vegetation 11 0 0% 1.22% 2 2 2
Fontan operation - I stage 110 4 3.64% 2.97% 2 3 2
Hemitruncus repair 21 0 0% 1.02% 2 4 2
PDA closure (CPB) 32 0 0% 0.82% 2 1 2
PDA closure (off pump) 386 6 1.55% 1.62% 2 1 2
Pacemaker - re-implant 8 0 0% 1.34% 2 1 1
Pericardectomy 20 0 0% 0.99% 2 1 2
Pericardial drainage 160 8 5% 3.26% 2 1 4
Pulm. Infundibulum incision & resection 46 1 2.17% 1.99% 2 2 1
Pulmonary art. sling repair 20 0 0% 0.96% 2 3 3
Pulmonary art. stent 13 0 0% 1.17% 2 2 2
Pulmonary arterioplasty 251 8 3.19% 3.42% 2 2 2
Pulmonary valvotomy 200 3 1.50% 1.29% 2 2 2
Pulmonary valvotomy - hybrid 5 0 0% 1.43% 2 2 2
Subaortic septal patch (Konno) 15 0 0% 1.05% 2 4 3
Supravalve mitral ring resection 28 0 0% 0.79% 2 3 2
Systemic vein repair 14 0 0% 1.12% 2 2 3
TAPVD repair - intracardiac 184 2 1.09% 1.32% 2 2/4 4
TAPVD repair - mixed type 34 1 2.94% 2.67% 2 2/4 4
Tetralogy repair 2392 46 1.92% 1.95% 2 2 2
Tricuspid replacement (mech.) 13 0 0% 1.17% 2 3 2
VSD Hybrid repair (off pump) 171 1 0.58% 0.84% 2 2 2
VSD hybrid repair (CPB) 21 0 0% 0.99% 2 2 2
VSD multiple repair 127 2 1.57% 1.75% 2 2 2
12 &% IMR Press
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Table 2. Continued.

Procedure Cases (n) Death (n)  Mortality Mortality Risk stratifi- RACHS-1 STS-EACTS
(unadjusted) (model* based) cation Grade Grade

VSD muscular repair 105 1 0.95% 1.20% 2 2 1
VSD repair - minimal invasive & CPB 45 0 0% 0.71% 2 2 2
AVSD repair - two patches 269 15 5.58% 5.27% 3 3 3
Ao translocation operation 17 2 11.76% 4.60% 3 3 3
Aortic arch repair 70 5 7.14% 6.30% 3 4 4
Aortic valve replacement (mech.) 45 3 6.67% 4.46% 3 3 1
Cavopulmonary shunt - bilateral 102 6 5.88% 4.61% 3 2 2
DOLYV repair 4 0 0% 2.05% 3 3 4
Delayed sternal closure 891 51 5.72% 6.23% 3 1 1
Double switch (Senning + Rastelli) 3 0 0% 1.80% 3 4 5
Excision of cardiac diverticulum 4 0 0% 1.53% 3 2 2
Fontan operation - II stage 537 30 5.59% 5.77% 3 3 2
Kawashima procedure 4 0 0% 2.05% 3 3 1
Mitral replacement (mech.) 96 11 11.46% 7.86% 3 3 4
PA banding 101 12 11.88% 3.78% 3 3 4
Pulm. infundibulum resection & patch 78 4 5.13% 4.48% 3 2 1
Pulm. infundibulum resection, patch across 292 15 5.14% 6.09% 3 2 2
annulus

Pulm. vein stenosis repair 40 2 5% 5% 3 4 4
Pulmonary atresia/IVS repair 19 2 10.53% 4.87% 3 4 3
Pulmonary atresia/VSD repair 288 17 5.90% 6.24% 3 4 3
Pulmonary valvotomy (off pump) 18 1 5.56% 4.60% 3 2 2
Senning procedure 19 1 5.26% 4.34% 3 3 4
TAPVD repair - supracardiac 238 13 5.46% 5.77% 3 2/4 4
ALC-PA repair 58 10 17.24% 14.97% 4 3 2
Cavopulmonary shunt - left 83 11 13.25% 12.68% 4 2 1
Cavopulmonary shunt - right 359 35 9.75% 10.85% 4 2 1
Central shunt - with graft 38 8 21.05% 11.02% 4 3 4
Conduit RV - PA 72 13 18.06% 13.98% 4 2 3
Double Switch (Hemi-Mustard) 6 1 16.67% 9.32% 4 4 5
Interrupted aortic arch repair 77 11 14.29% 13.32% 4 5 4
Interruption of bronchial collaterals 8 1 12.50% 9.32% 4 1 2
Pacemaker - primary implant 17 2 11.76% 11.95% 4 1 1
R.E.V. RV - PA connection 7 1 14.29% 8.28% 4 4 3
Rastelli operation 50 6 12% 9.44% 4 4 3
Rt. or It. heart assist 8 3 37.50% 9.32% 4 2 1
TAPVD repair - infracardiac 43 6 13.95% 14.74% 4 2/4 4
Takedown previous shunt 11 1 9.09% 6.80% 4 2 3
Arterial switch repair 456 87 19.08% 19.20% 5 3 3
Atrial septectomy 12 4 33.33% 27.36% 5 4 4
Coronary artery repair 6 2 33.33% 24% 5 3 2
DKS connection 9 4 44.44% 30.71% 5 6 5
Double switch (Senning + ASO) 18 6 33.33% 18.03% 5 4 5
Fontan takedown 9 5 55.56% 41.71% 5 3 3
Norwood operation 3 75% 50.76% 5 6 5
PA debanding 3 1 33.33% 16.53% 5 3 4
PA unifocalization 61 11 18.03% 21% 5 4 4
Truncus repair 33 7 21.21% 20.44% 5 4 4

ASD, Atrial septal defect; AVSD, Atrioventricular septal defect; PAPVD, Partial anomalous pulmonary venous drainage; VSD, Ventricular septal
defect.

A-P window, Aorto-pulmonary window; A-V fistula, Arteriovenous fistula; DORV, Double outlet right ventricle; CPB, Cardiopulmonary bypass.
PDA, Patent ductus arteriosus; TAPVD, Total anomalous pulmonary venous drainage; ALC-PA, Anomalous left coronary artery from pulmonary
artery.

RV, Right ventricle; PA, Pulmonary artery; DKS connection, Damus—Kaye—Stansel (DKS) procedure; ASO, Arterial switch operation.

*: Bayesian random effect model.
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Table 3. Prediction value of the model based on the XGBoost model, STS-EACTS categories, and RACHS-1 categories in the
testing set.

Model AUC  AUC95%CI  p-value Sensitivity  Specificity
XGBoost model 0.874  (0.848,0.901) <0.001 0.751 0.879
STS-EACTS categories  0.748  (0.707,0.789)  <0.001 0.819 0.569
RACHS-1 categories 0.677  (0.627,0.728)  <0.001 0.570 0.801

Table 4. Importance of the top 10 risk factors in the
prediction of the XGBoost model.

Feature Weight coefficient
Saturation of pulse oxygen categories 0.106386
Risk categories 0.077593
Age 0.073032
Preoperative mechanical ventilation 0.070149
Atrial shunt 0.065226
Pulmonary insufficiency 0.057852
Ventricular shunt 0.057608
Left atrial dimension 0.052233
A history of cardiac surgery 0.051096
Number of defects 0.043759

Weight coefficient: Refer to the extent to which each indicator
contributes to the model.

ventilation before heart intervention and the larger RACHS-
1 category are independent risk factors for unplanned car-
diac re-intervention [45]. In this study, we also found that
risk categories and preoperative mechanical ventilation are
top influencing factors of the predictive performance in
XGBoost model. This reminds clinicians to pay more at-
tention to the prognosis of these patients whose surgery is at
greater risk category or who require preoperative mechani-
cal ventilation.

Age, as an important factor in the mortality rate of
children with CHD, has also been mentioned in several
studies. A study in Taiwan Province of China found that the
majority (i.e., more than 90%) of CHD deaths occur within
the first 5 years of life (mainly in infancy) [46]. The study
showed that the mortality rate of CHD patients has a down-
ward trend with the increase of age [47]. Our study also
found that age is an influencing factor of in-hospital mor-
tality in children with CHD and made a great contribution to
the model. Clinicians should pay more attention to younger
CHD patients in practice.

In addition to the above factors, the results of the ma-
chine learning model in this study also show that atrium
shunt and ventricular shunt may also be the factor of in-
hospital mortality. The reason may be that these factors
affect the occurrence of postoperative complications in pa-
tients. Low cardiac output syndrome (LCOS) is a common
life-threatening postoperative complication of heart disease
that may contributes to postoperative morbidity and mortal-
ity [48—51]. Atrial shunt and ventricular level shunt were all
independent risk predictors of LCOS [52]. Bangrong Song
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et al. [51] believed that more attention should be paid to
CHD patients age <4 years, preoperative oxygen satura-
tion <93%, CPB duration >60 minutes, two-way ventricu-
lar shunt, postoperative residual shunt to improve the prog-
nosis of these patients. In addition, study has found that left
atrium dimension is associated with long-term adverse out-
comes (hospitalization due to heart failure, all-cause mor-
tality, new-onset atrial fibrillation, and/or embolic stroke
during follow-up) of rheumatic heart disease [53].

In this study, we found that the number of defects in-
fluences in-hospital mortality in patients with CHD. The
reason may be that if the patient carries multiple CHD at
the same time, the prognosis is much worse than that of
the patient with a single type of CHD. Presently, the most
common types of CHDs include ventricular septal defect
(VSD), patent ductus arteriosus (PDA), secundum atrial
septal defect (ASDII), pulmonary stenosis (PS) and tetral-
ogy of Fallot (TOF), and the incidence of each CHD is dif-
ferent [54]. Several studies have further divided the CHD
population into simple and severe CHD groups [54,55], and
it is found that individuals with simple CHD (e.g., VSD or
ASD) have higher survival rates, almost similar to normal
populations [47]. However, the prognoses of patients with
severe CHD varies widely [47].

Clinicians should focus on the top variables in the
model to improve patient outcomes by dealing with vari-
ables that can be managed. For example, on the premise
of ensuring the treatment effect, surgery with low-risk cate-
gories should be selected to improve the postoperative sur-
vival rate of patients. For the CHD patients with abnormal-
ities in the above top indicators should be paid closer at-
tention to their postoperative recovery status, which is the
important significance of this study to propose this model.

This study has some limitations. First, this study is a
single-center retrospective study. However, this is the first
study to use a machine learning algorithm to predict mortal-
ity in pediatric CHD surgery in a large sample. In addition,
our center is the most famous treatment center for children
with congenital heart disease in China, with patients from
most provinces in China. Second, the in-hospital mortality
rates recorded in this study may not include all operation-
related deaths, and need to include data from patients after
discharge. This needs to be addressed in a more complete
data source. Third, there was an imbalance in the num-
ber of patients who died and survivors in this study, and
we did not perform a 1:N case-control match at the time of
patient enrollment. During model building, we try to deal
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with the imbalance of samples in the training set, we tried
to process the unbalanced classes and tuned the parame-
ter ‘scale pos weight’, a parameter adjusting the balance
of positive and negative weights in the XGBoost package.
However, this did not improve the predictive performance
of the model.

5. Conclusions

In conclusion, our single-center study of 24,685 pa-
tients demonstrated that using a combination of procedure
complexity categories and preoperative patient-level fac-
tors, the XGBoost model had higher accuracy in in-hospital
mortality prediction than both the RACHS-1 and STS-
EACTS categories. In clinical practice, machine learning
models can be established based on the surgical database
for risk prediction to improve cardiac surgical care.
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