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Abstract

Background: Heart failure remains a considerable burden to healthcare in Asia. Early intervention, mainly using echocardiography,
to assess cardiac function is crucial. However, due to limited resources and time, the procedure has become more challenging during
the COVID-19 pandemic. On the other hand, studies have shown that artificial intelligence (AI) is highly potential in complementing
the work of clinicians to diagnose heart failure accurately and rapidly. Methods: We systematically searched Europe PMC, ProQuest,
Science Direct, PubMed, and IEEE following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and our inclusion and exclusion criteria. The 14 selected works of literature were then assessed for their quality and risk
of bias using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies). Results: A total of 2105 studies were retrieved,
and 14 were included in the analysis. Five studies posed risks of bias. Nearly all studies included datasets in the form of 3D (three
dimensional) or 2D (two dimensional) images, along with apical four-chamber (A4C) and apical two-chamber (A2C) being the most
common echocardiography views used. The machine learning algorithm for each study differs, with the convolutional neural network as
the most common method used. The accuracy varies from 57% to 99.3%. Conclusions: To conclude, current evidence suggests that the
application of AI leads to a better and faster diagnosis of left heart failure through echocardiography. However, the presence of clinicians
is still irreplaceable during diagnostic processes and overall clinical care; thus, AI only serves as complementary assistance for clinicians.
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1. Introduction

Heart failure (HF) remains a significant global health
problem leading to high hospitalization and mortality rate
despite advances in therapy [1]. The burden of the disease
in Asia is particularly more pronounced, considering that it
affects a younger population than in Europe and America
[2,3]. Early detection and treatment of possible cases are
mandatory to prevent disease progression and reduce health
care costs.

Echocardiography is a widely recommended imag-
ing modality for assessing cardiac function in HF patients
[4,5]. Although echocardiography is non-invasive, harm-
less, and relatively inexpensive, some severe issues have
arisen regarding its implementation. Echocardiography test
is largely dependent on the user’s skill, creating challenges
for interpretation [6]. Furthermore, the terminology of left
HF comprises a wide range of phenotypes, from those with
systolic dysfunction or reduced ejection fraction (HFrEF)
[EF <40%], diastolic dysfunction or preserved ejection

fraction (HFpEF) [EF ≥50%], and the ‘grey area’ cases
with mid-range ejection fraction (HFmrEF) [EF 40–49%]
[5]. DiagnosingHFpEF from echocardiography alone is not
a simple task as the European Society of Cardiology guide-
lines recommends combining with other diagnostic tests,
including natriuretic peptides level and electrocardiogram
(ECG) [5,7].

The most potential solution to the limitation of
echocardiography interpretation lies in the application of
automated methods, which have vastly evolved through
computer technology. Artificial intelligence leverages
computers and machines to mimic the human mind in
problem-solving capacities. It enables training of large
databases of various echocardiographic videos and im-
ages which have been previously confirmed by experts to
achieve knowledge which is then used to identify endocar-
dial pathologies in other cases [8].
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The Role of Machine Learning
Machine learning (ML)—a domain of artificial intel-

ligence (AI) described as a computer for learning from ex-
periences to perform prearranged tasks without preceding
knowledge—has recently been used to improve diagnostic
analysis in the medical field, notably in imaging modalities
[9]. The development of ML has made a considerable leap
to help with multiple tasks, including pattern identification,
classification, and calculation [10].

There are two main types of the algorithm within the
field of ML: supervised and unsupervised ML. Supervised
ML aims to train models capable of predicting the output
of labeled data, whereas unsupervised ML refers to anal-
yses that learn from unlabelled data to find hidden pat-
terns and practical insights. Supervised ML encompasses
classification and regression functions. In echocardiogra-
phy, the classification function is beneficial for determin-
ing the presence or absence of a disease, while the regres-
sion function is widely used to calculate exact values, such
as left atrial pressure. Unsupervised ML application in
echocardiography is mainly implemented in clustering and
dimensionality reduction problems. The clustering algo-
rithm operates by grouping cases based on their similarity.
The dimensionality reduction ameliorates data complexity,
thereby increasing visualization and interpretability, creat-
ing a better dataset version for subsequentML processes. In
some cases, the subtypes ofML can be combined to produce
an even more robust algorithm, such as deep reinforcement
learning [9,11].

Studies related to ML for diagnosing systolic and di-
astolic dysfunction have proliferated. Various algorithms
were trained and tested, resulting in diverse diagnostic ac-
curacy. Nevertheless, no study systematically reviews the
available works of literature on this issue. Thus, in this sys-
tematic review, we aim to investigate the best practice of
ML for echocardiography dataset analysis in the diagnosis
of heart failure.

2. Materials and Methods
2.1 Search Strategy, Selection Criteria, and Study
Selection

We systematically searched Europe PMC, ProQuest,
Science Direct, PubMed, and IEEE with the search terms
(“artificial intelligence” OR “machine learning” OR “deep
learning”) AND “echocardiography” AND (“ejection frac-
tion” OR “left heart failure” OR “systolic” OR “dias-
tolic”) AND (“sensitivity” OR “specificity” OR “accu-
racy”). Other pieces of literature are found through hand
searching. The study was conducted following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. We used the following in-
clusion criteria: (1) original studies (e.g., cohort, cross-
sectional, diagnostic study) conducted in normal and heart
failure patients, (2) available in full text and English lan-
guage, (3) published in the last ten years, (4) has out-

comes of accuracy measures, e.g., sensitivity, specificity,
and area under the curve (AUC), (5) contains echocardiog-
raphy video/image data as their training and testing dataset,
and (6) has specified the ML technique used in the study.

We excluded articles that do notmatch our PICO (Pop-
ulation, Intervention, Comparison, Outcome) and those
which were non-original research, not available in full-
text, non-English language articles, and those that integrate
echocardiography with other parameters. The incorporation
of other clinical parameters into the machine would intro-
duce bias and hinder the machine to learn to distinguish HF
and non-HF patients based on echocardiographic images
alone. Based on the above inclusion and exclusion criteria,
two reviewers independently screened article titles and ab-
stracts of the identified eligible articles. Full-text screening,
retrieved through institutional access, was done to ensure
the relevance of the articles. Experts resolved any discrep-
ancies during this process in the related field. The search
was finalized on February 25th, 2022.

2.2 Data Extraction, Data Synthesis, and Quality
Assessment

Data extraction was done independently by two re-
viewers after verification by two senior authors. We ex-
tracted each study’s data items in a tabulated format: author
(year), study objective, population, data type, echocardio-
graphy view, machine learning algorithm, machine learn-
ing scenario, and results. The quality and risk of bias of
the included studies were assessed using the QUADAS-2
(Quality Assessment of Diagnostic Accuracy Studies), an
assessment tool to determine the quality of diagnostic ac-
curacy study. It includes the risk of bias and applicability
concerns in patient selection, index test, reference standard,
flow, and timing. The QUADAS-2 tool is implemented in
4 phases: summarizing the review questions, adapting the
tool and generating review-specific guidelines, compiling a
flowchart for the main study, and assessing bias and appli-
cability [12].

3. Results
A total of 2105 citations were retrieved by the method

aforementioned. After reading titles and abstracts and as-
sessing these articles for eligibility, 2066 citations were ex-
cluded. Full-text articles were assessed, and 25 articles
were excluded as these literatures did not match our PICO
or were duplicate articles. As a result, 14 articles remained
and included in this systematic review [6,13–27]. The de-
tailed elaboration of PRISMA flow is described in Fig. 1.

Only a few studies pose unclear risk of bias in terms
of patient selection, including Dong et al., Ghorbani et al.,
Behnami et al., and Liu et al. These risk of bias was caused
by unclear inclusion and exclusion criteria and an unspec-
ified randomization process. Studies with unclear risk of
bias in their index test, including Dong et al., Ghorbani et
al., Bhenami et al., Chiou et al., Kusunose et al., Liu et al.,
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Fig. 1. PRISMA flow diagram of study selection process.

Table 1. Quality assessment of the included literatures.

No Author
Risk of bias Applicability Concerns

Patient
selection

Index test Reference
standard

Flow and timing Patient
selection

Index test Reference
standard

1 Dong, et al. (2016) [13] Unclear Unclear Low Low Low Low Low
2 Raghavendra, et al. (2017) [14] Low Low Low Low Low Low Low
3 Sanchez-Martinez, et al. (2018) [15] Low Low Low Low Low Low Low
4 Tabassian, et al. (2018) [17] Low Low Low Low Low Low Low
5 Silva, et al. (2018) [16] Low Low Low Low Low Low Low
6 Ouyang, et al. (2020) [19] Low Low Low Low Low Low Low
7 Ghorbani, et al. (2020) [20] Unclear Unclear Low Low Low Low Low
8 Behnami, et al. (2019) [22] Unclear Unclear Low Low Low Low Low
9 Chiou, et al. (2021) [23] Low Unclear Low Low Low Low Low
10 Kusunose, et al. (2021) [24] Low Unclear Low Low Low Low Low
11 Liu, et al. (2021) [25] Unclear Unclear Low Low Low Low Low
12 Pandey, et al. (2021) [26] Low Low Low Low Low Low Low
13 Chen, et al. (2021) [27] Low Unclear Low Low Low Low Low
14 Tromp, et al. (2022) [6] Low Low Low Low Low Low Low

and Chen et al., demonstrated ambiguity of blinding pro-
cess. Other studies exhibit low risk of bias and low applica-
bility concern in all of the QUADAS-2 variables. Complete
QUADAS-2 assessment of these literatures are explained in
Table 1 [6,13–17,19,20,22–27].

The characteristics and results of these 14 studies are
summarised in Table 2 [6,13–17,19,20,22–27]. Nearly all

datasets are in 3D or 2D images, and the most common
echocardiography views used in training are apical four-
chamber (A4C) and apical two-chamber (A2C). Supervised
ML is frequently used as the algorithm’s core, notably con-
volutional neural network, to classify and differentiate in-
dividuals with and without the disease.
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Table 2. Machine learning utilization in evaluation of left heart failure.
Author (year) Objectives Population Data type View/variables Machine learning task/algorithm Result

Dong, et al. (2016) [13]
Automated LVEF mea-
surement compared to
manual measurement

Internal dataset

3D image Not reported

Feature extraction
Good correlation between both methods for L-
VEDV (r = 0.85), LVESV (r = 0.871), & LVE-
F (r = 0.863)

60 cases for unsupervisedML&
120 cases for supervised ML

Multi-scale convolutional deep
network (unsupervised)

External dataset Volume estimation
120 cases of various LVEF Random forest (supervised)

Raghavendra, et al. (2017) [14]
CHF diagnosis deter-
mination compared to
clinical judgement

50 CHF cases & 50 normal sa-
mples

2D image A4C

Feature extraction

High diagnostic value, including 99.33% accu-
racy, 98.66% sensitivity, 100% specificity and
100% PPV

Variational Mode Decomposition
Feature selection
Particle Swarm Optimization
Classification
SVM

Sanchez-Martinez, et al. (2018)
[15]

HFpEF diagnosis det-
ermination compared
to clinical judgement

Internal dataset
2D image & Do-
ppler modalities

A4C /total 24
variables

Reduction Internal dataset
72 HFpEF cases & 33 healthy
controls

Multiple kernel learning (unsu-
pervised)

Moderate agreement between ML and clinical
diagnosis (κ, 72.6%; 95% CI, 58.1–87.0)

External dataset Clustering External dataset
27 breathless & 24 hypertensive
patients

Agglomerative hierarchical clus-
tering (unsupervised)

Misclassification of 33% hypertensive & 67%
breathless cases as mild-HFpEF

Tabassian, et al. (2018) [17]
HFpEF diagnosis det-
ermination compared
to clinical judgement

33 HFpEF cases, 67 controls (
healthy, breathless, hypertensiv-
e group) during rest & exercise

Doppler modali-
ties

Velocity (4 var-
iables), strain (
3 variables), &
strain rate (5 va-
riables)

Missing data imputation - The overall accuracy of patient classification
was the highest using strain rate (57%), comp-
ared to velocity (50%) and strain data (31%)

KNNimpute (supervised)
Pattern learning
PCA (unsupervised) - The highest HFpEF diagnostic accuracy (81%)

was achieved by strain rate measurementClassification
DWKNN (supervised)

Silva, et al. (2018) [16]
Automated EF classi-
fication compared to
manual measurement

Internal dataset

2D image of TEE A4C 3D-CNN (supervised)

- High accuracy of 78%
4000 cases for training - F1 score of 71.3% for unhealthy EF (below

45%), 63.3% for intermediate EF (45–55%),
72.3% for healthy EF (55–75%) and 54.6% f-
or abnormally high EF (above 75%)

External dataset
1600 cases for testing

Ouyang, et al. (2020) [19]
Cardiac segmentation
& LVEF measurement
accuracy

Internal dataset

2D image A4C EchoNet (CNN/supervised)

Internal dataset
10,030 echo-indicated cases - High correlation in LV segmentation of ESV

(Dice coefficient 0.903) & EDV (Dice coeffi-
cient 0.927)
- High diagnostic value (AUC 0.97) to predict
LVEF <50% (cardiomyopathy)

External dataset External dataset
2895 echo-indicated cases High diagnostic value (AUC 0.96) to predict

LVEF <50% (cardiomyopathy)
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Table 2. Continued.
Author (year) Objectives Population Data type View/variables Machine learning task/algorithm Result

Ghorbani, et al. (2020) [20] Diagnosing anatomic feat-
ures and cardiac function

3312 cases of wide variety of
cardiac diseases

2D image A4C EchoNet (CNN/supervised)
- High accuracy in predicting anatomical con-
dition, including pacemaker ((AUC of 0.89,
F1 score of 0.73), severely dilated left atrium
(AUC of 0.85, F1 score of 0.68), and left ven-
tricular hypertrophy (AUC of 0.75, F1 score of
0.57)
- Good accuracy in predicting LVESV (R2 =
0.74), LVEDV (R2 = 0.7), and LVEF (R2 =
0.5)

Behnami, et al. (2020) [22]
Automated EF classificat-
ion compared to manual
measurement

645 cases with moderate EF &
541 cases with reduced EF

2D image A2C & A4C

Feature extraction
High overall accuracy of 83.15%, precision of
82.6% and recall of 81.1%

DenseNet (CNN/supervised)
Sequence processing
bi-GRU (RNN/supervised)

Chiou, et al. (2021) [23]
HFpEF diagnosis determin-
ation compared to clinical
judgement

Internal dataset

2D image A4C

Image segmentation Internal dataset
1041 HFpEF cases & 1263 con-
trols

U-Net (supervised) LA area calculation showed high accuracy
(91%), sensitivity (96%), specificity (85%),
and AUC (0.95) for HFpEF classification

External dataset Classification External dataset
150 COPD & 315 HFpEF cases 1D CNN (supervised) LV area calculation showed high accuracy

(87%), sensitivity (84%), specificity (88%),
and AUC (0.93) for HFpEF classification

Kusunose, et al. (2021) [24]
Echo-view classification &
accuracy of EF measureme-
nt

Internal dataset

2D image
A2C, A3C, A4C,
PLAX, PSAX

View classification External dataset
340 patients with various LVEF CNN (supervised) - 98.1% accuracy for echo-view classification
External dataset EF Classification - Good correlation between reference & estim-

ated EF (r = 0.8 to 0.82)189 patients 3D-CNN (supervised)

Liu, et al. (2021) [25]
Echo-view classification,
accuracy & consistency o-
f EF measurement

Version 1 (Internal dataset)

2D image

Version 1 DPS-Net v1 Version 1
100 echo-indicated cases A2C, A3C, A4C CNN based on a modified U-net

(supervised)
- Good performance of echo view classifica-
tion (Dice coefficient A2C = 0.931; A3C =
0.931; A4C = 0.933)

Version 1 (external data set)
240 echo indicated-cases

- High accuracy (90%), sensitivity (91%),
specificity (89%), PPV (86%), NPV (93%) of
LVEF measurement
- High consistency (ICC = 0.998, MAE 1.2%)
of LVEF measurement

Version 2 Version 2 DPS-Net v2 Version 2
10,530 echo-indicated cases Additional A2C,

A4C
CNN based on a modified U-net
(supervised)

- Better performance of LV segmentation and
echo-view classification (Dice coefficient =
0.935)
- Good agreement of LVEF measurement with
means ± SD of 1.70% ± 4.13% with 95% CI
(9.79, 6.39).
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Table 2. Continued.
Author (year) Objectives Population Data type View/variables Machine learning task/algorithm Result

Pandey, et al. (2021) [26]

Detection of HFpEF compar-
ed to 2016 ASE guideline (g-
old standard: elevated LV fi-
lling pressure during cardiac
catheterization)

Internal dataset

2D image & Do-
ppler modalities

EF, LV mass ind-
ex, E, A, E/A rat-
io, e’, E/e’ ratio,
LA volume index,
tricuspid regurgit-
ation peak

Clustering Internal dataset
1242 cases with various systolic
& diastolic function

TDA network (unsupervised) High diagnostic accuracy in predicting low
risk and high risk group (AUC 0.997. accu-
racy 96%)

External dataset Classification External dataset
83 cases for detection of ele-
vated LV filling pressure

DeepNN (supervised) - High risk group correlated with higher LV
filling pressure (r = 0.76; p < 0.0001)
- Higher diagnostic value than 2016 guide-
line for predicting elevated LV filling pressure
(AUC 0.88 vs 0.67)

Chen, et al. (2021) [27]
ALHF diagnosis determinat-
ion compared to clinical jud-
gement (echo
& ML vs echo only)

80 cases of various grade of A-
LHF

2D image Not reported
Deep CNN (supervised)

Diagnostic coincidence rate of patients from th-
e echo & ML vs echo only group was 93.94%
vs 74.29%

Doppler modali-
ties

E, A, E/A

Tromp, et al. (2022) [6]
Echo-view classification &
LV systolic - diastolic funct-
ion measurement

Internal dataset 2D video A2C, A4C,
PLAX

View classification Internal dataset
1145 cases Doppler modali-

ties PWTDI, M-mode,
pulse wave, conti-
nuous wave

CNN (supervised) & auto enco-
der (unsupervised)

- High accuracy of echo-view classification,
ranging from 91.1% for PWTDI to 98.9% for
PLAX.
- High correlation of the measurement of
LVEF (r = 0.89, MAE 5.5%)
- High diagnostic value of identifying sys-
tolic dysfunction (LVEF < 40%, AUC 0.96)
& diastolic dysfunction (E/e’ ratio≥ 13, AUC
0.96)

External dataset External dataset
3 multicentre data of total
42,300 cases

High diagnostic value for identifying systolic
dysfunction (AUC range 0.90-0.92) & dias-
tolic dysfunction (AUC range 0.91-0.91)

ASE, American Society of Echocardiography; ALHF, acute left heart failure; CHF, congestive heart failure; HFpEF, heart failure with preserved ejection fraction; 2D, 2-dimensional; A4C, apical four chamber; A3C,
apical three chamber; A2C, apical two chamber; PLAX, parasternal long axis; PSAX, parasternal short axis; PWTDI, pulse wave tissue Doppler imaging; LA, left atrium; LV, left ventricle; RV, right ventricle; EF,
ejection fraction; ES, end systolic; ED, end diastolic; LVESV, left ventricle end systolic volume; LVEDV, left ventricle end diastolic volume; LAESV, left atrium end systolic volume; E, early diastolic transmitral
flow velocity; A, late diastolic transmitral flow velocity; e’, early diastolic relaxation velocity; CNN, convolutional neural networks; RNN, recurrent neural networks; SVM, support vector machine; PCA, principal-
component analysis; DWKNN, distance-weighted k-nearest-neighbor; STRE, spatiotemporal-rest-exercise; TDA, topological data analysis; PPV, positive predictive value; NPV, negative predictive value; MAE, mean
absolute error; ICC, interclass correlation coefficient; TTE, transthoracic echocardiograms.
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Dong et al. [13] proposed a method incorporating
unsupervised multi-scale convolutional deep networks and
random forests to predict LV volume and calculate LVEF.
The multi-scale convolution deep network extracted fea-
tures of unlabelled end-diastolic and end-systolic 3DE vol-
umes (EDV and ESV). Afterward, the left ventricular vol-
ume was formulated as a regression problem; thus, random
forests were used to estimate the efficient volume.

Raghavendra et al. [14] developed a framework of
ML techniques to classify CHF due to dilated cardiomyopa-
thy and normal controls. The 2-D images were decomposed
to generate specific structural patterns of each group using
variational image decomposition (VMD). After the texture
feature is extracted and enhanced using particle swarm op-
timization (PSO), the support vector machine (SVM) sepa-
rates the class members into two groups.

Sanchez-Martinez et al. [15] combined unsupervised
ML algorithms to investigate left ventricular long-axis my-
ocardial velocity patterns that ordered subjects according
to their similarities, allowing further analysis of the main
trends in velocity patterns. The clustering system identified
a continuum from normal to HF, including a transition zone
of uncertain diagnosis. This method was subsequently in-
dependently validated in two additional cohorts, breathless
and hypertensive patients. These resulted in limited accu-
racy and misclassification into the HFpEF group.

Almost all recent studies adopted CNN (convolutional
neural networks) as the principal classifier, but each has
modifications to elevate diagnostic power. Silva et al. [16]
demonstrated custom 3D-CNN ability to integrate tempo-
ral knowledge from transthoracic echocardiography (TTE)
cine loops to calculate LVEF and classified it into four
classes. Ouyang et al. [19] and Ghorbani et al. [20] pre-
sented a novel CNN-based ML called Echo-Net. The algo-
rithm performed several tasks, from left ventricle segmen-
tation during systole and diastole, beat-to-beat prediction of
the ejection fraction, and presence of heart failure conclu-
sion. The ML was also able to identify the local cardiac
structures and anomalies, measure volumetric parameters
andmetrics of cardiac function, and predict systemic human
phenotypes that modify cardiovascular risk. Behnami et al.
[22] built combined supervised ML for binary EF classifi-
cation without segmentation. What is evenmore interesting
is that two image views, A4C and A2C, were concatenated
for temporal embedding. Kusunose et al. [24] compared
two types of input method averaged images and ten selected
images from 5 standard views and tested them using 3D-
CNN to recognize the view type and estimate LVEF. The
group with selected images improved the overall accuracy
of echo-view classification and LVEF estimation.

Several studies carried out diagnostic classification af-
ter image segmentation using U-net. Chiou et al. [23]
used U-net for left atrium and left ventricle segmentation
to measure their length, width, area, and volume. The in-
terbeat dynamic changes were then recorded as linear wave-

form signals, trained and classified by a 1D CNN. Liu et al.
[25] presented a DPS-Net model, a constructed CNN based
on modified U-net, and tested the ML on a local dataset
of A2C, A3C, and A4C images. After that, the algorithm
was retrained using a sizeable multicenter dataset to gener-
ate better accuracy in view classification, end-systolic and
end-diastolic frame detection, and by all means, LVEFmea-
surement.

ML analyses using datasets of the Doppler modal-
ity have recently become more promising. Tabassian et
al. [17] investigated spatiotemporal characteristics of ve-
locity, strain, and strain rate traces during rest and exer-
cise from tissue Doppler using a supervised and unsuper-
vised algorithm. Each parameter of the rest and exercise
tests was concatenated, and the pattern was analyzed using
principal component analysis (PCA). Further, automatic
classification using distance-weighted ĸ-nearest-neighbor
(DWKNN) was applied to differentiate HFpEF cases and
multi-phenotype controls. Pandey et al. [26] developed a
combination of unsupervised and supervised learning and
trained the algorithm using the dataset of routinely mea-
suredDoppler indexes. Themodel was also implemented in
the hemodynamic external validation cohort to identify two
phenogroups (high-risk vs. low-risk) patients and demon-
strated a strong diagnostic value. Chen et al. [27] tested
the performance of DeepCNN,whichwas predicted to have
better application recognition performance due to more lay-
ers in theML architecture and simplified connection. Aside
from 2D images data, Doppler indexes, including atrial sys-
tolic velocity (A), early mitral valve diastolic maximum
velocity (E), were also processed to enhance the diagnos-
tic accuracy. The latest study is from Tromp et al. [6],
which presented a new ML approach of 2D videos and
Doppler parameters that allows fully automated classifica-
tion and annotation of echocardiographic videos. These 2D
videos were classified into views by two different classi-
fiers, a supervised CNN or an unsupervised deep clustering
CNN. Meanwhile, the Doppler modalities view classifier
consisted of integrated CNN models trained with the echo
or velocity trace images and the categorical ground truth
labels.

4. Discussion
Our systematic review represents the model’s cur-

rent state for diagnosing heart failure more rapidly through
echocardiography images. The literature included in this
study has shown that AI has comparable performance in
characterizing heart failure through echocardiography im-
ages, compared with the conventional method by medical
practitioners, with an accuracy rate ranging from 57% to
99.3%. Supervised ML, particularly CNN, was the most
utilized algorithm, and few of them optimized external
datasets.

Current evidence has shown that upon using sufficient
training datasets, various AI approaches can bring astound-
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ing performance in many tasks, such as object-identifying
tasks, the main application in medical diagnosis across the
reviewed literature [28]. The assistance of AI technology
can make rapid detection of clinical symptoms based on
the image features, like tone and rim. Computer-assisted
technology is also capable of producing consistent outputs,
that will lead to increasing the efficiency of healthcare ser-
vice, saving vast amounts of time in clinical practice, com-
plementing cognitive fatigue, and markedly reducing the
workload of clinical practitioners. Nevertheless, the appli-
cation of AI cannot be isolated from its clinical significance.

Each algorithm has its advantages and disadvantages.
The conventional ones such as random forest and support
vector machines might have better interpretability and be
cheaper in computation cost than the deep learning-based
algorithm. With that said, having expertise to decide how
the features are extracted from the data is necessary. They
heavily rely on such well-defined features; hence their per-
formance is dependent on successful feature extraction.
Manual feature extraction is a tedious task; therefore, many
believe it is time-consuming, labor-intensive, and inflexi-
ble [29]. On the other hand, the deep learning-based al-
gorithm can extract the feature independently. Therefore,
it does not require expertise to perform the feature extrac-
tion task manually. The feature extraction and classifier are
often end-to-end connected and learn together through op-
timization algorithms such as gradient descent. It results
in a fully automated feature extraction and model training
process. Therefore, it is considered the antidote to the con-
ventional AI algorithm drawback.

In computer vision, a convolutional neural network
(CNN) is a very well-known deep learning-based algorithm
designed to work with grid-structured inputs, which have
solid spatial dependencies in local regions of the grid such
as image and video [30]. It consists of a convolution layer
and pooling layer used to extract features, like edges, cor-
ners, shapes, from the input image and feed-forward it to the
next layer. Each convolution layer has its parameters that
can be learned during the gradient descent process; there-
fore, this model does not require human expertise for fea-
ture extraction since it can do the task on its own. Moreover,
the shared parameters of the filter across the entire convo-
lution make this model be equivariance to translation. In
other words, if we shift an object in an image, it does not
alter the representation of the data in the deeper layer of
CNN. Therefore, this model often gives a promising per-
formance.

The drawback of a deep learning-based algorithm lies
in its interpretability since the model seems to learn thor-
oughly on its own that it is hard to explain what the model
is trying to see from the data. Moreover, it is popularly
known as computationally expensive that it often requires
a graphical processing unit (GPU) to run the deep learning-
based algorithm since it often has millions of parameters to
compute. Deep learning is tough to train; even if the model

managed to have 100% accuracy on the training data, it does
not guarantee that the model has the same performance for
unseen data. This phenomenon is called overfitting, where
the model is suitable only for the training data. The sim-
plest solution to this problem is to collect more data. With
increased training data, the training accuracy will be de-
creased due to more diversity in the data. However, that
will make the model more general, resulting in good pre-
dictions for the unseen data. The number of samples ap-
pearing for each class must be considered to avoid imbal-
anced class problems. An imbalanced class problem occurs
when samples from a specific class occur more frequently
than others. For example, if the collected data is 1000 with
700 of which are normal while 300 of which are heart fail-
ure, the model trained with this kind of imbalanced class
will be biased toward the normal class, resulting in predic-
tion attempt more frequent to the normal class than the heart
failure class. This kind of model will likely have a low re-
call score. That is why the number of samples from each
class must be considered when collecting the data.

While the advancement of AI technology might be
promising, a medical evaluation by the experts still plays
a vital role. The final diagnosis of the disease shall have a
real-world impact to improve patients’ health; thus, AI can-
not be separated from human engagement; they must work
together in harmony [31]. However, AI also poses some
limitations: (1) It needs high-quality datasets for training
and validation; (2) There could be ethical and safety issues,
e.g., using AI after obtaining the patient’s consent and de-
termining who is liable for a misdiagnosis or incorrect treat-
ment; and (3) it cannot determine causal relationships; thus
it still need evaluation and interpretation by medical practi-
tioners [32].

Despite having particular challenges, the future of AI
in cardiology is promising in the era of precision medicine,
especially in diagnosing heart failure. Heart failure has
complex pathophysiology with various clinical features;
thus, its diagnosis can be challenging even for cardiologists
[33]. Patients with HF can have a poor prognosis and high
readmission rates. The use of AI can be beneficial to rapidly
detect the disease in early stages, thus improving the pa-
tient’s prognosis and saving lives. Consequently, misdiag-
nosis of HF can hinder the chance of improving a patient’s
outcome. AI models have the potential to make better med-
ical decisions, reduce clinical errors, and improve quality
of life [34].

Even thoughwe have covered variousmajor databases
of scientific articles, this systematic review still has the po-
tential weakness of only including studies from the pub-
lished literature and eliminating other studies, such as con-
ference abstracts. These conference abstracts were primar-
ily recent studies published in 2020–2022. Unfortunately,
the information in these kinds of literature did not have the
full study details. We might have missed some articles, es-
pecially those published in languages other than English.
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This systematic review highlights the need for additional
research regarding the use of AI in heart failure diagnosis.
Our study is the first to review the current literature on heart
failure diagnosis through echocardiography and AI.

5. Conclusions
Cardiovascular imaging, particularly echocardiogra-

phy, is an essential tool for medical practitioners, especially
to detect left heart failure patients as early as possible. Stud-
ies have shown that artificial intelligence has a high po-
tential to serve as practical auxiliary assistance for medi-
cal practitioners to differentiate normal and left heart failure
patients through echocardiography. It is unlikely that artifi-
cial intelligence will completely replace cardiologists in in-
terpreting echocardiography images, diagnostic processes,
and overall clinical care. Despite limitations, AI remains
a vital concept in the future of cardiology, and additional
research is needed.
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