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Abstract

Objective: To evaluate the prognostic value of cardiac magnetic resonance (CMR) imaging in assessing right ventricular strain via meta-
analysis of current literature. Background: Right ventricular strain recorded with CMR serves as a novel indicator to quantify myocardial
deformation. Although several studies have reported the predictive value of right ventricular strain determined using CMR, their validity
is limited by small sample size and low event number. Methods: Embase, Medline and Web of Science were searched for studies
assessing the prognostic value of myocardial strain. The primary endpoint was a composite of all-cause mortality, cardiovascular death,
aborted sudden cardiac death, heart transplantation and heart failure admissions. Results: A total of 14 studies met the selection criteria
and were included in the analysis (n = 3239 adults). The random-effects model showed the association of parameters of right ventricular
strain with major adverse cardiac events. Absolute value of right ventricular global longitudinal strain was negatively correlated with right
ventricular ejection fraction (hazard ratio: 1.07, 95% confidence interval: 1.05-1.08; p = 0.013). Despite the small number of studies,
right ventricular radial strain, right ventricular circumferential strain and right ventricular long-axis strain displayed potential prognostic

value. Conclusions: Right ventricular strain measured with CMR is an effective prognostic indicator for cardiovascular disease.
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1. Introduction

Right ventricular function has emerged as a crucial pa-
rameter in the early diagnosis and prognostic assessment of
cardiovascular disease [1]. For example, this function has
a potential predictive role in pulmonary hypertension (PH)
with right ventricular involvement, advanced heart failure
(HF) with biventricular involvement [2] and global heart
involvement, such as myocardial amyloidosis, as well as in
patients surgically treated for tetralogy of Fallot (TOF).

Cardiac magnetic resonance (CMR) is currently the
gold standard for assessing right ventricular function [3].
Moreover, right ventricular strain analysis using CMR is
one of the several methods for assessing right ventricle (RV)
systolic function and detects both myocardial deformability
and early abnormalities to provide independent prognostic
information. Studies have demonstrated the significance of
left ventricular strain in predicting the prognosis of cardio-
vascular disease [4,5]. Recently, certain studies have es-
tablished that RV strain is an independent prognostic factor
for several cardiovascular diseases [1,2]; however, its clin-
ical significance is limited because of the small sample size
and the small number of endpoint events. Hence, a system-
atic review and meta-analysis was conducted to evaluate the

prognostic value of right ventricular strain in cardiovascular
disease.

2. Materials and Methods
2.1 Search Strategy

This systematic review and meta-analysis was de-
signed and conducted according to the PRISMA statement
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) [6] and the Cochrane Handbook for Sys-
tematic Reviews of Interventions [7]. Two reviewers (BKR
and ZZ) systematically searched Embase, Medline and Web
of Science databases for eligible studies on CMR strain
in patients with cardiovascular diseases. This search was
performed using three sets of keywords in combination.
The first set included the terms ‘prognostic’ OR ‘progno-
sis” OR ‘predictor’ OR ‘outcome’ OR ‘outcomes’. The
second set included the terms ‘tissue tracking’ OR “fea-
ture tracking’ OR ‘strain’ OR ‘CMR-FT’. The third set in-
cluded the terms ‘cardiac magnetic resonance’ OR ‘CMR’.
The complete search strategy is presented in Supplemen-
tary Table 1. The results of randomized controlled trials,
cohort studies and studies published in peer-reviewed jour-
nals were included, and the reference lists of these articles
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were carefully examined. This study was prospectively reg-
istered with the PROSPERO database of systematic reviews
(Cardiac magnetic resonance right ventricular strain in pre-
dicting prognosis of patients with cardiovascular disease: A
systematic review and meta-analysis CRD42021245484).

2.2 Inclusion and Exclusion Criteria and Endpoint

Those studies in which patients with cardiovascular
disease underwent CMR to assess myocardial strain were
included. At least one of the following outcome measures
was used to assess prognosis: all-cause mortality, cardio-
vascular death, aborted sudden cardiac death, heart trans-
plantation and HF admissions. Studies in which patients
had undergone surgery or intervention, those that only in-
vestigated left heart or right atrial strain and those involving
only ultrasound or nuclear medicine were excluded. Con-
ference abstracts, case reports, editorials and commentaries
were also excluded.

2.3 Study Selection and Quality Evaluation

Studies included in the meta-analysis were indepen-
dently assessed by two reviewers. They independently re-
viewed all titles and abstracts and selected eligible articles
based on the inclusion and exclusion criteria. Any disagree-
ment was resolved via discussion and submission of the
study report to a third reviewer (GYF). Full texts of eligible
articles were reviewed.

The Newcastle-Ottawa scale (NOS) [8] was used to
systematically evaluate the quality of studies. This scale
assesses study quality based on three aspects: selection and
definition of included populations (0—4 points), compara-
bility of controlled studies (0-2 points) and determination
of results (0-3 points).

2.4 Data Extraction

The same two researchers performed independent ex-
traction and review; all disagreements were mutually dis-
cussed and resolved by consensus. The following informa-
tion was extracted from each study: title; authors; publi-
cation year; study design type; number of patients; type of
disease; clinical information; software used for strain anal-
ysis; key CMR results pertaining to the strain, namely, left
ventricular ejection fraction (LVEF) and right ventricular
ejection fraction (RVEF); and effect size estimation. Cat-
egorical data were expressed as percentages, and continu-
ous variables were expressed as mean with standard devi-
ation or median with interquartile range. Effect size esti-
mates were used to extract hazard ratios (HRs) and their
95% confidence intervals (Cls), if available. For grouped
data, mean and standard deviation of the groups were com-
bined according to the formula specified by the Cochrane
Collaboration.

By convention, negative strain values represent short-
ening; thus, a higher absolute value (more negative) for
global longitudinal strain (GLS) is referred to as ‘better’

and a lower absolute value (less negative or closer to zero)
as ‘worse’ [9]. To avoid variability in reporting and inter-
preting studies in this review, the percentage of GLS was
used to indicate a negative sign. Similarly, the percentage
of global circumferential strain (GCS) referred to a nega-
tive sign, and the percentage of global radial strain (GRS)
referred to a positive sign.

2.5 Data Analysis

Pooled HRs and their 95% Cls were calculated for the
parameters of RV longitudinal strain (RVGLS), RV circum-
ferential strain (RVGCS), RV radial strain (RVGRS), LVEF
and RVEF using the random-effects model to ensure consis-
tency. Heterogeneity was assessed using the Cochrane test
and discordance factor (I?). Sensitivity analyses were per-
formed to assess the robustness of results by re-running the
analysis, excluding one study at a time. Simultaneously, a
meta-regression was performed for each risk factor to de-
termine the possible factors associated with heterogeneity.
STATA (version 16, ICI Stata Corporation, College Station,
TX, USA) was used for statistical analysis with two-tailed
p-values. A p-value of <0.05 was considered significant.
Correlation analysis among RVGLS, RVEF and RVEDVi
(end-diastolic volume index) was performed using STATA.

2.6 Patient and Public Involvement in the Study

It was not possible to involve either patients or the
public in the design, conduct, reporting or dissemination
plans of our research.

3. Results
3.1 Selection of Eligible Studies

A total of 2617 relevant abstracts of full-text articles
were retrieved. These abstracts included 1005 duplicate ar-
ticles; 680 articles that only involved left heart and right
atrial strain and 180 articles in which prognosis was not
covered were excluded. In addition, 205 reviews, abstracts,
cases and editorials were excluded. Another 524 records
were excluded as these involved animal experiments or
comprised only ultrasound, nuclear medicine and surgical
and interventional medical history. The remaining 23 arti-
cles were full-text reviews, of which 9 were excluded ow-
ing to the lack of our pre-specified results, thus leaving 14
articles for detailed analysis [2,10-22]. The corresponding
author of two studies [ 11,13] was same; however, both were
included because of differences in parameters, time of data
collection and number of patients. The detailed flowchart
of the search strategy is shown in Fig. 1.

3.2 Patient Characteristics

The study and patient characteristics are listed in Ta-
ble 1 (Ref. [2,10-22]). The information obtained from
CMR is presented in Table 2 (Ref. [2,10-22]). Our
study included ten prospective studies [2,10—12,14,15,18—
21] and four retrospective studies [13,16,17,22]. Strain val-
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Fig. 1. Search strategy to identify eligible studies by searching databases.

ues were calculated using CMR-FT post-processing soft-
ware; however, the software used in each study varied. Of
these, QStrain software (five studies [10,11,15,18,19]) and
CVI42 software (six studies [2,12,13,20-22]) were com-
monly used. The total number of subjects included in
these 14 studies [2,10-22] was 3239; their mean age was
58.9 years, and 67.5% were men. Of these, 37.5% had is-
chemic cardiomyopathy, 23.5% had dilated cardiomyopa-
thy (DCM) or HF, 9.5% had hypertrophic cardiomyopathy,
8.6% had amyloidosis, 6.4% had PH, 4.0% had arrhythmo-
genic right ventricular cardiomyopathy (ARVC) and 10.5%
had other heart diseases.

3.3 Outcomes

The cut-off values of RVGLS obtained in five studies
[2,13,17,19,20] were —8.5%, —17%, —15%, —19.1% and —
22.5%. Univariable analysis was performed in twelve stud-
ies [2,10-14,16,18-22] and multivariable analysis in five
studies [2,11-14] on the prognostic value of RVGLS after
adjusting for significant factors. In the univariate analy-
sis, the pooled risk (HR) of RVGLS calculated using the
random-effects model was 1.07 (95% CI: 1.05-1.08; p =
0.013). In other words, for each 1% decrease in RVGLS,
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the risk of major adverse cardiovascular event (MACE) oc-
currence increased by 7% (Fig. 2). Moderate heterogene-
ity was detected (I> = 54%). In the multivariate analy-
sis, the pooled risk (HR) of RVGLS estimated using the
random-effects model was 1.07 (95% CI: 1.04-1.10; p =
0.48) (Fig. 2). There were three univariate analysis studies
for RVGRS [12,13,16] and four [2,13,16,18] for RVGCS.
The relationship among RVGRS, RVGCS and MACE was
analysed separately. The pooled risk (HR) of RVGRS was
0.93 (95% CI: 0.90-0.95; p = 0.479) and that of RVGCS
was 1.05 (95% CI: 0.99-1.11; p = 0.595) in the random-
effects model, with no heterogeneity (Fig. 2). Furthermore,
the prognostic value of ejection fraction was determined in
the included studies. The pooled risk (HR) was 0.98 (95%
CI: 0.97-0.99; p < 0.001; 12 = 85.4%) for LVEF and 0.99
(95% CI: 0.98-0.99; p = 0.075; 1? = 91.4%) for RVEF
(Fig. 3). Both were calculated using the random-effects
model. However, in univariate analysis, the heterogeneity
of LVEF and RVEF was clearly increased compared with
RVGLS. Pearson’s correlation analysis showed a signifi-
cantly negative correlation between RVEF and RVGLS (r
=-0.721, p=0.012; Fig. 4). However, there was no signif-
icant correlation between RVGLS and RVEDVi (r=-0.708,
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Study %
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T Liu (2020) - 2 o 1.14 (1.01, 1.28) 0.82
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Wan (2020) | - 1.10 (1.06, 1.14) 9.64
Li (2020) ! —_—— 1.18 (1.10, 1.26) 251
H Liu (2019) '——+— 1.12(1.03, 1.22) 1.62
Laura Houard (2019) —— 1.06 (1.01, 1.11) 5.19
Vos (2022) — < > 1.18 (1.04, 1.34) 0.72
Cittar (2021) — 1.06 (1.02, 1.10) 8.12
Stiermaier (2020) —— 1.07 (1.04, 1.10) 14.71
Yang (2016) —— 1.03 (0.98, 1.09) 4.09
Bourfiss (2022) ——— 1.05 (1.00, 1.11) 425
Mahmod (2022) —— 1.03 (1.00, 1.06) 13.63
Subtotal (l-squared = 54.0%, p =0.013) ) 1.07 (1.05, 1.08) 65.99
I
RVCLS multivariate |
T Liu (2020) -4- 1.17 (1.04, 1.32) 0.81
Wan (2020) —_— 1.07 (1.03, 1.11) 8.43
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Subtotal (l-squared = 0.0%, p = 0.479) I<> 1.07 (1.04, 1.10) 15.35
RVCRS univariate :
Li (2020) : 0.95 (0.90, 1.00) 417
H Liu (2019) ' 0.92 (0.88, 0.96) 6.1
Yang (2016) 1 0.92 (0.87, 0.96) 478
Subtotal (l-squared = 0.0%, p = 0.597) : 0.93 (0.90, 0.95) 15.06
1
RVCCS univariate !
T Liu (2020) -4- 1.05(0.93, 1.19) 0.76
H Liu (2019) — 1.02 (0.89, 1.16) 0.66
Vos (2022) \ g : 1.01 (0.91, 1.13) 0.99
Yang (2016) T - 1.11 (1.01, 1.23) 1.19
Subtotal (I-squared = 0.0%, p = 0.595) <> 1.05(0.99, 1.11) 3.60
I
Heterogeneity between groups: p = 0.000 !
Overall (l-squared = 79.6%, p = 0.000) Q 1.04 (1.03, 1.06) 100.00
l
| |

.74%

1.34

Fig. 2. Relationship among RVGLS, RVGRS and RVGCS, as determined with univariable and multivariable analyses. RVGLS,
RV longitudinal strain; RVGRS, RV radial strain; RVGCS, RV circumferential strain.
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LVEF X
T Liu (2020) ——T 0.96 (0.91. 1.02) 0.72
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Kazimierczyk (2020) L 4 i 0.88 (0.78. 0.99) 0.17
Wan (2020) -~ 0.96 (0.95. 0.98) 10.43
Li (2020) —_— 0.96 (0.93. 0.99) 2.41
H Liu (2019) —— 0.99 (0.87. 1.01) 5.78
Laura Houard (2019) L J 0.98 (0.97. 0.99) 2265
Vos (2022) —— 0.96 (0.92. 1.01) 1.08
Cittar (2021) 1| —— 1.05 (1.03, 1.08) 4.20
Yang (2018) - : 0.94 (0.92, 0.97) 3.37
Mahmed (2022) | - 1.07 (1.05. 1.10) 4.36
Subtotal (l-squared = 91.4%, p = 0.000) q ’ 0.99 (0.98. 0.99) 57.01
1
RVCLS !
T Liu (2020) : g 1.14 (1.01. 1.28) 0.17
Kazimierczyk (2020) 1 . 1.11 (1.01, 1.31) 0.14
Wan (2020) : .o 1.10 (1.08. 1.14) 1.96
Li (2020) N —— 1.18 (1.10, 1.26) 0.51
H Liu (2019) | —— 1.12(1.03. 1.22) 0.33
Laura Houard (2019) : —— 1.08 (1.01. 1.11) 1.08
Vos (2022) I - + > 1.18(1.04. 1.34) 0.15
Cittar (2021) : — 1.08 (1.02. 1.10) 1.65
Stiermaier (2020) | —— 1.07 (1.04. 1.10) 3.00
Yang (2018) ——H—— 1.03 (0.98. 1.09) 0.83
Bourfiss (2022) : —— 1.05 (1.00. 1.11) 0.87
Mahmed (2022) \—— 1.03 (1.00. 1.08) 278
Subtotal (I-squared = 54.0%, p = 0.013) ! O 1.07 (1.05. 1.08) 13.45
1
Heterogeneity between groups: p = 0.000 !
Overall (I-squared = 20.6%, p = 0.000) ° 0.99 (0.89. 1.00) 100.00
I
1
[ |
748 1 1.24

Fig. 3. Comparison of the predictive values of RVGLS, LVEF and RVEF. RVGLS, RV longitudinal strain; LVEF, Left ventricular
ejection fraction; RVEF, right ventricular ejection fraction.
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Table 1. Characteristics of eligible studies in the meta-analysis.

First author Year Design Median  Population Population Endpoint Included in ~ Age, years Male, % BMI Comorbidities, Comorbidities, Comorbidities, Comorbidities, NOS
follow-  Available Analysis %Coronary artery  %Hyperten- %Diabetes %Dyslipi-
up, years disease sion demia
predictive value T Liu [2] 2020 prospective 1.6 192 DCM MACEs 53+ 14 729 26+£5 NA 41.3 14.8 NA 8
for right ventric-  Kazimierczyk [10] 2020 prospective 1.4 28 PH MACEs 50 £ 16 83.0 NA NA NA NA NA 5
ular strain: Wan [11] 2020 prospective 3.1 129 AL Amyloidosis all-cause mortality 58 £ 11 612 2243 NA NA NA NA 6
Li[12] 2020 prospective 1.2 87 AL amyloidosis all-cause mortality 5749 64.4 NA NA NA NA NA 7
H Liu [13] 2019 retrospective 1.6 64 AL Amyloidosis all-cause mortality 58+ 13 56.3 NA 0.0 1.6 3.1 NA 5
Houard [14] 2019 prospective 4.7 266 HF Overall death, CV death 60 £ 14 71.0 26+£5 51.0 46.0 24.0 NA 8
Vos [18] 2022 prospective 8.0 33 PH MACEs 58 (46-72)  24.0 NA NA NA NA NA 7
Cittar [20] 2021 prospective 1.6 273 NIDCM MACEs 51(41-60)  66.0 NA NA 35.0 16.0 NA 6
Stiermaier [21] 2020 prospective 1.0 1235 STEMI/NSTEMI MACEs 64 (53-73) 749 NA 100.0 71.9 23.4 383 8
Yang [16] 2016 retrospective 1.2 364 Consecutive series MACEs 66 650 23+£3 28.0 58.0 22.0 0.4 6
Siqueira [17] 2016 retrospective 2.0 103 PH MACEs 52+£12 26.4 NA NA 21.8 10.9 15.5 7
No predictive Padervinskiené [15] 2019 prospective 2.5 43 PH MACEs 55 35.0 NA NA NA NA NA 7
value for right Bourfiss [19] 2022 prospective 43 132 ARVC the occurrence of 41+ 16 43.0 NA NA NA NA NA 8
ventricular strain: sustained VA following
CMR
Mahmod [22] 2022 retrospective 4.4 290 HCM MACEs 52415 74% 2845 NA 30 78 NA 7

PH, Pulmonary hypertension; HF, heart failure; AL, amyloid light-chain; STEMI, ST-elevation myocardial infarction; NSTEMI, Non-ST-elevation myocardial infarction; DCM, Dilated cardiomyopathy; NIDCM, Non-ischemic dilated cardiomy-
opathy; ARVC, Arrhythmogenic right ventricular cardiomyopathy; HCM, Hypertrophic cardiomyopathy; CV, Cardiovascular; MACE, Major Adverse Cardiovascular Events; BMI, Body Mass Index; NOS, Newcastle-Ottawa Scale for quality
assessment of non-randomized studies; values are mean + SD (%).
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< Table 2. Information obtained from CMR in the studies.
~ First Author Vendor Software LVEF  Univariable RVEF Univarable RVEDV Univariable RVEDVi Univariable Strain RVGLS Univariable Multivariable RVGRS Univariable RVGCS Univariable
: (%) analysis: (%) analysis: analysis: analysis: analysis: analysis: analysis: analysis:
o HR, CI p HR, CL p HR, CL p HR, CI p HR,CLp HR,CLp HR, CL p HR, CI p
& value value value value value value value value
predictive TLiu[2] Siemens GE CVI42 224+ 0.96 304 + 0.99 133+ 1.01 NA NA L/C -105+52 1.14 1.17 NA NA -7.7+3.8 1.05
value for right software 9.8 (0.91-1.02), 14.1  (0.96-1.02) 44 (1-1.02)p= (1.01-1.28)  (1.04-1.32) (0.93-1.19)
ventricular p=0.169 p=10.686 0.01 p=0.035 p=0.01 p=0.456
strain
Kazimierczyk Siemens Qstrain 60.3 + 1.05 258 £ 0.88 NA NA 118.2 1.01 L -16.2 + 8.1 1.11 NA NA NA NA NA
[10] software 9.9 (0.96-1.15), 13.6  (0.78-0.99) +21.7 (0.98-1.03) (1.01-1.31)
p=0.23 p=0.03 p=0.48 p=0.04
Wan [11] Siemens Qstrain 47.0 + 0.98 47.0 + 0.96 NA NA 68 + 1.004 L -142 4+ 7.0 1.10 1.07 NA NA NA NA
software 15.0 (0.96-0.99), 14.0 (0.95-0.98) 23 (0.995— (1.06-1.14) (1.03-1.11)
p < 0.001 p < 0.001 1.013)p= p <0001 p=0.001
0.362
Li[12] Siemens CVI42 58.4 + 0.94 572+ 0.96 NA NA 63.3 £+ NA L/R/IC -19.1 £6.3 1.18 1.10 224+ 7.1 0.95 -13.3+ 44 NA
software 10.7 (0.91-0.97), 102 (0.93-0.99) 14.5 (1.10-1.26)  (1.00-1.21) (0.90-1.00)
p < 0.001 p=0.005 p < 0.001 p=0.047 p=10.048
H Liu [13] Siemens CVI142 522+ 0.97 415+ 0.99 NA NA 61.1 £ NA L/R/C NA 1.12 1.02 NA 0.92 NA 1.02
software 12.6 (0.95-0.99), 99  (0.97-1.01) 20.5 (1.03-1.22) (0.89-1.16) (0.88-0.96) (0.89-1.16)
p=0.001 p=0.097 »=10.006 p=0.776 p < 0.001 p=0.776
Houard [14] Philips Segment 23+7 0.98 42.0 + 0.98 NA NA 86 + NA L -11.8 £ 4.3 1.06 1.05 NA NA NA NA
version 2.2 (0.90-1.01), 15.0 (0.97-0.99) 33 (1.01-1.11)  (0.99-1.10)
p=0.16 p=0.03 p=0.015 p=0.05
Vos [18] Siemens Qstrain 58.0 £ NA 46.0 0.96 NA NA 101 1.01 L/C -20.0+6.0 1.18 NA NA NA -12.0 £ 5.0 1.01
Philips, GE  software 9.0 (38.0- (0.92-1.01) 86— (1-1.02)p= (1.04-1.34) (0.91-1.13)
53.0) p=0.14 138) 0.01 p=0.01 p=0.80
Cittar [20] Siemens CVI42 34.0 1.08 51.0 1.05 NA NA NA 1.02 L/C/R -19.1(-15.4 1.06 NA 17.6 NA 10.5 (-7.5 to NA
Philips software (25.0-  (1.04-1.11), (40.0—- (1.03-1.08), (1.1-1.03) p to -23.0)  (1.02-1.10) (12.0-23.7) -13.2)
43.0) p <0.001 59.00 p<0.001 < 0.001 p=0.001
Stiermaier NA CVI42 50.6 NA 61.3 NA NA NA NA NA L -21.3(-16.3 1.07 NA NA NA NA NA
[21] software (43.5— (54.2— to 26.1) (1.04-1.10)
57.5) 67.8) p < 0.001
Yang [16]  GE, Philips 2D Cardiac  48.0 &+ 0.96 449 + 0.94 NA NA 66.4 1 L/R/IC -183 %69 1.03 NA 21.0 £ 8.0 0.92 -12.2 £ 3.8 1.11
Performance  20.0 (0.94-0.98), 11.3  (0.92-0.97) (56.1-  (0.99-1.01) (0.98-1.09) (0.87-0.96) (1.01-1.23)
Analysis » < 0.0001 p < 0.0001 80.5) p=0.085 p=0.1708 p=0.0010 p=0.0253
Siqueira [17] ~ Simens 2D CPAMR 589 + NA,p< 422+ p<0.001 NA NA 98.8 NA L/C/ -159+64 NA NA NA p=0.001 -112+49 p=0.007
Philips 9.8 0.001 13.7 (75.3—
127)
no predictive Padervinskien¢ Siemens Qstrain 56.0 £ NA 382+ NA NA NA NA NA L NA NA NA NA NA NA NA
value for right [15] software 13.2 12.9
ventricular
strain:
Bourfiss [19]  Siemens Qstrain 56.0 £ NA NA NA NA 102 + NA L -22.54+84 1.05 NA NA NA NA NA
Philips,GE software 8.0 30 (1.00-1.11)
p=0.053
Mahmod  Avanto and cvid2 70.0 £ NA 63.0 £ 1.07 52+ NA NA NA L -21.0£5.0 1.03 NA 17.0 £ 7.0 NA -10.0 £ 4.0 NA
[22] TIMTrio, 6.0 7.0  (1.05-1.10) 42 (1.00-1.06)
Siemens GE p < 0.001 p=0.096

Values are mean & SD (%); HR, Hazard ratio; CI, Confidence interval; LVEF, Left ventricular ejection fraction; RVEF, Right Ventricular Ejection Fraction; EDV, end-diastolic volume indexed; EDVi, end-diastolic volume indexed; RVGLS, right ventricle longitudinal
strain; RVGCS, right ventricle circumferential strain; RVGRS, right ventricle radial strain.
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Fig. 4. Significant negative correlation of RVEF with RVGLS.
RVEF, right ventricular ejection fraction; RVGLS, RV longitudi-
nal strain.

In addition, two articles on the prognostic value of
right ventricular long axis strain (RV-LAS) were retrieved
to investigate its ability to assess prognosis in patients with
hypertrophic cardiomyopathy (HCM) and non-ischemic di-
lated cardiomyopathy (NIDCM) [23,24]. Because the num-
ber of articles was too small, the corresponding meta-
analysis was not performed.

3.4 Publication Bias and Heterogeneity

Because of the small number of articles included in
the meta-analysis, corresponding publication bias analy-
sis was not performed. In the meta-regression analysis,
14 of the hypothesized confounding factors, such as pub-
lication year, follow-up time, age, sample size and gen-
der, were observed to be associated with the variability of
RVGLS (Supplementary Table 2). In addition, no con-
founding factors could significantly explain the heterogene-
ity of RVGLS. In sensitivity analysis, the articles were ex-
cluded one by one, which revealed that Yang et al.’s [16]
and Mahmod et al.’s [22] studies exerted an immense neg-
ative impact on the combined HR results (Supplementary
Fig. 1). A possible reason could be that Yang included
consecutive patients in their CMR examinations. More-
over, specific diseases were not studied and distinguished,
which resulted in a large heterogeneity. Mahmod et al. [22]
defined composite cardiovascular events as non-sustained
ventricular tachycardia (NSVT), stroke, HF hospitalisation
and cardiovascular death. This definition might have af-
fected the final conclusion because there were multiple out-
come events. Furthermore, Mahmod et al. [22] demon-
strated that strain in the right ventricle is of great value in
predicting the development of NSVT. However, these stud-
ies [16,22] were included in the meta-analysis because of
the predictive value of right ventricular strain in its find-

ings.

4. Discussion

This meta-analysis confirmed that RV strain is an
important independent predictor of adverse outcomes in
many cardiovascular diseases and that RVGLS assessed
with CMR has significant prognostic significance in pa-
tients with various underlying cardiac abnormalities. In
addition, RVGLS values decreased with decreasing RVEF
values, which indicates a significant correlation between
the two. Also, RVGRS and RVGCS appear to have good
predictive value although the number of studies in this anal-
ysis is too small to confirm this finding. Finally, RV-LAS
was observed to be a powerful predictor of cardiovascular
disease development.

CMR has high temporal and spatial resolution, can
perform gracilis imaging well and is the gold standard for
right ventricular structural evaluation in clinical studies
[3]. Two-dimensional echocardiography is the most widely
used imaging modality in RV assessment; however, its main
limitation is that the image quality depends on operator ex-
perience and subject characteristics. EF is the most com-
monly used and key index that shows systolic function in
clinical practice. Nevertheless, EF reflects only global vol-
ume changes and cannot reflect alterations in myocardial
regional motion or impaired early diastolic function. My-
ocardial strain technique is a non-invasive quantitative anal-
ysis of global and regional myocardial systolic and diastolic
functions. Speckle tracking echocardiography (STE) is an
accurate and simple method to assess myocardial strain.
Park et al. [25] showed that RVGLS obtained via two-
dimensional STE correlates well with RVEF and longitu-
dinal strain obtained with CMR. Although STE is primar-
ily a post-processing method, it requires a specific frame
rate (50-70 frames/s) and high image quality during image
acquisition [26]. Moreover, its wide applicability may be
hindered by poor acoustic windows. CMR plays an impor-
tant role in assessing myocardial strain processes; for ex-
ample, GCS exhibits better repeatability when calculated
using CMR [27].

Several methods are available for obtaining informa-
tion on myocardial deformation using CMR, which are
broadly divided into two categories. The first category
requires additional scans and includes CMR tagging, dis-
placement encoding with stimulated echoes (DENSE) and
strain-encoded imaging (SENC). The second category is
CMR Feature tracking (CMR-FT), which records myocar-
dial strain by acquiring retrospective CMR cine images
[27]. CMR tagging, a gold standard for measuring my-
ocardial strain, works on the principle of superimposing
magnetic tags (black lines and tags) orthogonally onto the
myocardium at the beginning of the cine sequence. The
deformation of these lines throughout the cardiac cycle is
subsequently analysed [28]. Although it is the most effec-
tive CMR technique for assessing myocardial strain [29],
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Fig. 5. Three-dimensional FT global longitudinal strain (GLS), global radial strain (GRS) and global circumferential strain

(GCS) of RV obtained using CVI42.

its use is limited owing to label fading and low spatial res-
olution, which reduce its accuracy [28]. CMR tagging re-
quires certain additional sequences, prolonged image acqui-
sition and breath-hold time. Furthermore, it is insensitive to
through-plane motion [30]. DENSE for displacement cod-
ing was first introduced in 1999 [31], and it is a technique
for encoding tissue displacement into the phase of an im-
age. DENSE possesses high temporal and spatial resolu-
tion as well as superior strain accuracy and reproducibility
[32]. However, additional sequences cause prolonged scan-
ning times, thereby limiting its clinical application. SENC
was developed based on the concept of CMR tagging [33],
thus enabling the quantification of local deformation of tis-
sues. To calculate myocardial strain, SENC uses magne-
tized tags parallel to the image plane (rather than being or-
thogonal as in CMR tagging), which allows higher spatial
resolution and, hence, better right ventricular endocardial
delineation. Therefore, this technique is effective in quanti-
fying the strain in the through-plane. Because T1 relaxation
time leads to fading of the tag, SENC cannot be used to
assess myocardial deformation throughout the cardiac cy-
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cle. CMR-FT is a simple and convenient new technique
for determining myocardial deformation, which can quan-
titatively analyse the systolic and diastolic functions of the
global and regional myocardium in a non-invasive manner.
This technology uses post-processing software to delineate
the relative motion and displacement of voxels on the endo-
cardial and epicardial boundaries of the right ventricle dur-
ing the cardiac cycle. Moreover, local or global strain and
strain rate of the right ventricle are obtained in radial, cir-
cumferential and longitudinal directions. Currently, CMR-
FT post-processing analysis can be accomplished with sev-
eral commonly used commercial software, such as TomTec,
Circle, Medis and Medviso. In the case of CVI42, RV my-
ocardial strain is estimated by loading images from four-
chamber and short-axis slices into the strain analysis mod-
ule. In all series, endocardial and epicardial contours are
manually delineated per slice at end-diastole. Global my-
ocardial strain parameters are obtained automatically [34],
while Fig. 5 shows the specific measurement method. How-
ever, because the strain is not derived from the full thick-
ness of the myocardial tissue, CMR-FT may be associated
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with low accuracy and measurement variability. As addi-
tional breath-hold scanning sequences are not required and
the reduced scanning time improves the imaging efficiency,
CMR-FT is an attractive clinical method. Therefore, all
our included studies utilized this method for strain analy-
sis. Additionally, RV-LAS refers to the percentage change
in length between the LV apical adventitial border and the
midpoint of the line between tricuspid annulus at the end
of systole and that at diastole. Long-axis strain (LAS) is a
rapidly derived new parameter in CMR cine images, which
can be evaluated online without additional software tools
and has good clinical application value.

Unlike left ventricular measurements, the assessment
of right ventricular function is challenging because right
ventricular trabecular muscles are significantly more in
number, right ventricular wall is significantly thinner and
arrangement and movement of cardiomyocytes are different
[35]. CMR can reveal the morphology and function of the
heart and is the gold standard for assessing the complex ge-
ometry of RV. Right ventricular strain obtained using CMR
is more sensitive than EF and has a high clinical value in
assessing right ventricular myocardial damage in patients
with subclinical myocardial damage. The method is also
useful in risk stratification and in determining the therapeu-
tic effect. Compared with conventional parameters of RV
systolic function, such as RVEF, RV strain can detect subtle
changes in RV function without significant wall motion ab-
normalities or reduced global RV systolic function. Such
changes have significantly higher predictive values than
conventional parameters. For example, Mahmod ef al. [22]
found that both RV and LV strain were impaired in patients
with HCM despite normal LVEFd. A small decrease was
observed in RVEF, but it was within the acceptable normal
range. Moreover, Henning et al. [36] found that the per-
centage of normal myocardium in LV and RV detected us-
ing rapid SENC (normal LV and RV myocardial segmental
strain <—17%) better identifies asymptomatic patients with
subclinical LV dysfunction. This technique may be useful
in the early identification of healthy subjects who may be
at risk for HF as well as in the monitoring of LV and RV
deformation during pharmacological interventions in future
studies. RV strain can help in detecting the subclinical stage
of PH and in assessing the disease and the associated prog-
nosis [17]. In congenital heart diseases, such as TOF, CMR
can assess the efficacy and necessity of surgery. Moon et al.
[37] used CMR-FT and found that right ventricular strain
values were significantly lower in the TOF group than in the
normal group and that right ventricular longitudinal strain
was closely related to adverse outcomes in patients with
TOF. Early diagnosis and analysis of wall motion abnor-
malities are possible in patients with ARVC [38]. CMR-FT
strain analysis helps to objectively quantify global/regional
right ventricular dysfunction and dyssynchrony in patients
with ARVC and provides effective diagnostic information.

The cut-off values of RVGLS were obtained in five
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studies [2,13,17,19,20]. Although the strain decreased
compared with the normal group, the five values were sig-
nificantly different. This variation could be attributed to
the fact that the sources of patients differed in the five in-
cluded studies [2,13,17,19,20]. The study by Liu ef al. [2]
only included patients with HF in stages C and D of cardiac
function; hence, RVGLS was relatively worse.

RV fibres are primarily arranged along the longitudi-
nal axis under the epicardium. In healthy individuals, lon-
gitudinal shortening largely leads to RV shortening [39].
Twelve studies [2,10-14,16,18-22] on RVGLS were in-
cluded in our meta-analysis, and despite the presence of
moderate heterogeneity, the pooled effect values demon-
strated the prognostic value of RVGLS. Of these, three ar-
ticles concluded that right ventricular strain did not have
a statistically significant prognostic value in cardiovascular
disease. The following could be the reasons for this conclu-
sion: Yang ef al. [16] consecutively included patients with
CMR findings and did not classify the disease specifically;
hence the heterogeneity was relatively high. Bourfiss et al.
[19] found that RV and LV strain were no longer signifi-
cant predictors of persistent ventricular arrhythmias (VA)
after adjusting for risk factors, such as RVEF and LVEF.
The reason could be that most patients who developed VA
already had advanced structural disease, but decreased RV
longitudinal and LV circumferential strain were observed in
other patients with ARVC and persistent VA during follow-
up, thus indicating that strain can reflect changes in ven-
tricular function. Although Mahmod ef al. [22] noted that
the decrease in RVGLS was not associated with cardiovas-
cular composite events, it had a significant predictive value
for the occurrence of non-sustained ventricular tachycardia.
Several patients in the included studies had right heart in-
volvement and global involvement, but a certain bias ex-
isted. Hence, the additional independent prognostic value
of right ventricular strain must be carefully studied while
considering conventional cardiac function. In four other
studies [2,13,16,18] that included RVGCS, it was shown
to have good prognostic ability. However, more research
on RVGRS and RVGCS is required because of the small
number of available studies. In three studies [12,16,20],
RVGRS exhibited good predictive power, possibly because
strict motion of the basal RV and the thin atrioventricular
free wall hindered adequate endocardial tracking on long-
axis views [16]. The contribution of circumferential strain
is important in patients with PH. Unfortunately, data on
RVGCS were not included in the three studies [12,16,20]
on PH, and thus, the results could not be validated. Yang et
al. [23] showed that the predictive ability of RV-LAS was
better than that of RVEF and TAPSE for the poor progno-
sis of patients with HCM. Arenja et al. [24] showed that
RV-LAS had the highest diagnostic accuracy in the cohort
of patients with NIDCM. Moreover, RV-LAS was an inde-
pendent marker of MACESs in multivariate analysis. The
above studies assert the important role of RV-LAS in prog-
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nosis prediction. RV-LAS is defined as the change in length
from the LV apex to the tricuspid annulus rather than the RV
apex; therefore, it may incorporate both LV and RV longi-
tudinal functions. With the increase in studies on RV-LAS,
in the future, the predictive value of RV-LAS can be proved
using a meta-analysis.

This systematic review and meta-analysis has certain
limitations. First, because studies on right ventricular strain
are currently in the developmental stage, the number of
studies included in this meta-analysis is relatively small (n
= 14). Therefore, publication bias could not be explored.
Moreover, only five studies [2,13,17,19,20] included cut-
off values and they dealt with different diseases; hence,
a pooled effect size and cut-off value could not be calcu-
lated for a specific disease. We are hopeful that with the
increase in the number of in-depth studies in this field, we
would be able to update and include more studies in the fu-
ture to provide robust evidence. Furthermore, we believe
that we would have a better understanding of the prognos-
tic value of RVGRS and RVGCS. Second, as with meta-
analyses of several observational studies, moderate hetero-
geneity exists among the articles because of differences in
the study design, inclusion criteria, follow-up time and ven-
dor software. Although we performed a correlative meta-
regression analysis for some measures, we were unable to
perform a meta-regression analysis due to the diverse vari-
ety of software vendors for the articles we included. it is
not well understood whether differences in software sup-
pliers are the source of heterogeneity. Our study demon-
strated a significant negative correlation between RVGLS
and RVEF. These conclusions have been confirmed in sev-
eral studies [40,41]. We understand that strain values may
be affected by factors such as magnetic fields and post-
processing software. With the increase in the studies on
right ventricular strain, in the future, we can analyse the
above factors in subgroups. Finally, to reduce the hetero-
geneity of articles, we excluded studies involving patients
with a history of cardiac surgery. Strain is a valuable prog-
nostic indicator for patients with congenital heart disease
[42]. With continued technological advancements, a meta-
analysis of these patients can be performed in the future.

5. Conclusions

This systematic review and meta-analysis establishes
the prognostic value of right ventricular strain determined
using CMR in cardiovascular disease. RVGLS assessed
with CMR has significant prognostic implications in pa-
tients with different underlying cardiac abnormalities. RV-
GRS, RVGCS and RV-LAS appear to show good prognostic
value, and although the number of studies on these strains
is small, they can pave way for future studies and thus vali-
date our conclusions. In the future, the prognostic value of
right ventricular strain in different diseases can be investi-
gated to obtain cut-off values that correspond to different
diseases, thereby guiding treatment decisions and prognos-
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tic stratification.
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