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Abstract

Left atrial (LA) enlargement and dysfunction increase the risk of atrial fibrillation (AF). Traditional echocardiographic evaluation of
the left atrium has been limited to dimensional and semi-quantification measurement of the atrial component of ventricular filling, with
routine measurement of LA function not yet implemented. However, functional parameters, such as LA emptying fraction (LAEF), may
be more sensitive markers for detecting AF-related changes than LA enlargement. Speckle-tracking echocardiography has proven to be
a feasible and reproducible technology for the direct evaluation of LA function. The clinical application, advantages, and limitations
of LA strain and strain rate need to be fully understood. Furthermore, the prognostic value and utility of this technique in making
therapeutic decisions for patients with AF need further elucidation. Deep learning neural networks have been successfully adapted to
specific tasks in echocardiographic image analysis, and fully automated measurements based on artificial intelligence could facilitate the
clinical diagnostic use of LA speckle-tracking images for classification of AF ablation outcome. This review describes the fundamental
concepts and a brief overview of the prognostic utility of LA size, LAEF, LA strain and strain rate analyses, and the clinical implications
of the use of these measures.
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1. Introduction
Atrial fibrillation (AF) is the most prevalent symp-

tomatic cardiac arrhythmia in clinical practice worldwide.
AF increases the risk of ischemic stroke, heart failure, car-
diovascular events, and mortality [1–4]. Atrial fibrosis
has been increasing recognized as a contributing abnor-
mality in the development of AF [5–7]. Atrial fibrosis in-
creases local conduction heterogeneity in the atria and pro-
vides a AF-sustaining re-entry substrate [7,8], which can be
identified by delay-enhancement cardiac MRI and intracar-
diac electroanatomic mapping [9,10]. However, their time-
consuming and invasive nature limit the routine applica-
tion of these tools in daily practice. Echocardiography pro-
vides a real-time and noninvasive method to assess cardiac
anatomy and function. Because of its widespread availabil-
ity and feasibility, echocardiography has been the imaging
technique of choice for evaluating the left atrium. Several
echocardiographic parameters of left atrial (LA) anatomy,
function, and deformation have been used to evaluate atrial
fibrosis and the risk of AF [1,11,12].

Catheter ablation (CA) is a common treatment strat-
egy in symptomatic AF patients resistant to antiarrhythmic
medications, but the long-term success rate is only around
50–80% [13–15]. LA remodeling is among the most impor-

tant factors related to the recurrence of AF post CA. Previ-
ous studies have investigated the clinical predictors of AF
recurrence after CA [16–18]. P-wave duration can serve as
a low cost and widely available predictor of long-term out-
come in AF patients undergoing CA [19–22]; nevertheless,
the predictive power of P-wave duration is weaker than that
of LA emptying fraction (LAEF) [21]. Echocardiography
has the advantages of availability, efficacy, and providing
real-time high temporal and spatial resolution images, and
thus is best suited for evaluating the possibility of AF re-
currence [23–26].

In this review, we provide a comprehensive overview
of the LA echocardiographic parameters associated with
new-onset AF and AF recurrence after CA.

2. Review of Parameters
2.1 Left Atrial (LA) Size Assessment

Left atrial dimension (LAD) in M-mode measurement
is the traditional method used to assess LA size. LA dilata-
tion reflects the cumulative effects of left ventricular (LV)
filling pressure over time and the severity of diastolic dys-
function, and can be used as a quantifiable surrogate of the
arrhythmogenic substrate in the development of AF. Previ-
ous studies have shown that dilated LAD is a predictor of
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AF occurrence in general [27] and in elderly populations
[1], and that the risk of developing AF is proportionate to
the extent of LA dilatation [28]. The Cardiovascular Health
Study revealed that patients with LAD>50 mm had a four-
fold higher risk of new-onset AF during surveillance [29].
For this unidimensional measurement of LAD to accurately
represent the true LA size, it must be assumed to have a con-
sistent relation with other LA dimensions [30]. However,
the left atrium is not a spherical cavity and LA enlargement
may occur asymmetrically [31], which results in underes-
timation of the LA size when using the anterior-posterior
diameter acquired from M-mode images [30]. The Amer-
ican Society of Echocardiography and the European Asso-
ciation of Cardiovascular Imaging recommend using a bi-
plane method to measure LA volume (LAV), using either
the area-length technique or Simpson’s method [32]. Bi-
plane LAV has been reported to predict AF occurrence in el-
derly population [1], in patients with cardiomyopathy [33],
and in those with stroke of undetermined source [34]. Tsang
et al. [35] also found that LAV is more powerful than LAD
in predicting AF occurrence in the elderly population.

2.2 LA Function Assessment, Atrial Myopathy, and Atrial
Fibrillation (AF) Genesis

In normal subjects, LA function can be divided into
three phases: reservoir, conduit, and booster pump, which
account for around 40%, 35%, and 25%of the entire LV fill-
ing, respectively [11]. To assess LA function, LA volumes
are measured at the mitral valve opening (LAVmax), clo-
sure (LAVmin), and at the onset of the electrocardiographic
P wave (LAVpreA, only available in sinus rhythm); the LA
functions are derived from the following volumetric mea-
surements [36,37]:

LAEF = (LAVmax − LAVmin) /LAVmax (1)

LA conduit function =
(
LAVmax − LAVpreA

)
/LAVmax (2)

LA booster pump function =
(
LAVpreA − LAVmin

)
/LAVpreA (3)

Clinically LAEF is a significant echocardiographic
parameter for predicting AF occurrence. Cauwenberghs et
al. [38] demonstrated that LAEF is a significant predictor
of cardiac events and of new-onset AF. The area under the
curve (AUC) of the receiver operating characteristic curve
was 0.80 (95% confidence interval [CI] 0.73–0.88) for new-
onset AF at 8 years of follow-up. A 55.5% cutoff value
of LAEF had a sensitivity of 0.77 and specificity of 0.72
for predicting new-onset AF. The Copenhagen City Study
also reported that not only enlarged LAVmax and LAVmin
but also impaired LAEF were associated with an increased
risk of AF in the general population; in individuals with-
out hypertension, only LAEF was an independent predic-

tor in all regression models; indeed, LAEF could even pre-
dict AF in individuals with a structurally normal left atrium
(LAVmax <34 mL/m2) [39]. Abhayaratna et al. [40] re-
ported that LAEF ≤49% was associated with risk for first
AF independent of LAVmax, LV function, and clinical fac-
tors in elder persons after a mean follow-up period of 1.9
± 1.2 years. A subsequent analysis in the same cohort re-
vealed that LAVmin may be a slightly more robust predictor
of the development of AF [41]. Because a reduced LAEF is
determined by an increased LAVmin for any given LAVmax,
LAVmin could be a better predictor of AF occurrence than
LAVmax.

Several reports have highlighted the role of atrial fi-
brosis in AF pathogenesis [7,8,42]. The development of
fibrosis results in atrial myopathy [6], which is associated
with atrial dysfunction and conduction disturbance [43].
Sung et al. [44] reported that LAVmax and LAVmin were
significantly correlated with the percentage of low volt-
age area (LVA) in the left atrium and that LAEF was in-
versely correlated with the percentage of LVA. LA dysfunc-
tion caused by the effects of inflammation, oxidative stress,
and atrial fibrosis plays an important role in AF develop-
ment and progression [45,46]. Once AF develops, rapid
atrial depolarization leads to changes in ion channel func-
tion and electrical conduction, which shorten the atrial re-
fractory period and further promote AF. A substudy of the
ENGAGE-TIMI 48 trial evaluated LA size and function ac-
cording to the electrical burden of AF as well as the stroke
risk and reported that increasing abnormalities in LA struc-
ture and function were associated with a greater AF burden
and greater risk of stroke [47]. Seewoster et al. [48] also re-
ported that patients with persistent AF had larger LAV and
worse LAEF than those with paroxysmal AF (PAF).

2.3 LA Anatomical and Functional Parameters in
Predicting AF Ablation Outcomes

LA size may be a predictor of AF recurrence after CA.
A meta-analysis of 22 studies revealed that dilated LAD in-
creases the risk of AF recurrence after CA regardless of the
follow-up duration [49]. Moreover, McCready et al. [23]
demonstrated that a LAD cutoff value of 43 mm predicted
long-term success following CA for those with persistent
AF, with a sensitivity of 92% and a specificity of 52%.
Similar results have been reported for LAV. In the meta-
analysis by Njoku et al. [25] large LAV and LAV index
(LAVI) increased the odds (odds ratio [OR] 1.032, 95% CI
1.012–1.052) and were independent predictors of AF recur-
rence post CA. Shin et al. [50] reported that LAV was the
only predictor of AF recurrence after CA in multivariate
analysis, and a LAVI cutoff value of 34 mL/m2 showed a
sensitivity of 70% and a specificity of 91% to predict AF
recurrence. Kohari et al. [51] studied 125 patients with
non-PAF undergoing pulmonary vein antral isolation and
revealed that LAVmin index of 26 mL/m2 and LAVmax in-
dex of 42 mL/m2 were the best single parameters of AF
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recurrence after CA; but only LAVmin index and AF dura-
tion were the independent parameters for AF recurrence in
multivariate analysis.

Several studies have demonstrated that LAEF is use-
ful in predicting themaintenance of sinus rhythm in patients
with AF post CA [52–54]. Our group demonstrated that
LAEF, but not LAD or LAV, provides optimal prognostic
information for risk stratification in 483 AF patients un-
dergoing CA, which implies that LA dysfunction is an ear-
lier indicator of atrial remodeling than LA dilatation [55].
Oka et al. [56] demonstrated the superiority of pre-ablation
baseline LAEF over LAVI in predicting AF recurrence after
CA in 292 patients with PAF undergoing single or multiple
procedures. Charitakis et al. [54] investigated the associa-
tion of the risk of AF recurrence with echocardiographic
parameters (LAVmax and LAEF), markers of cardiac en-
docrine function, as well as proteins related to inflamma-
tion, fibrosis, and apoptosis in 189 patients undergoing CA
for AF. They found that patients with high concentrations
of MR-proANP, CASP8, and NT3, and low LAEF (instead
of LAVmax) were at higher risk for recurrence, which im-
plies that the LAEF and inflammation, fibrosis, and apop-
tosis related protein levels are better markers of AF-related
changes than LAVmax.

2.4 Left Ventricular (LV) Diastolic Function

The LV diastolic phase could be divided into early
rapid filling, diastasis, and atrial systole. There is a close
interaction between the left atrium and LV diastolic func-
tion. Increased LV filling pressure reduces passive empty-
ing volume from the left atrium to the left ventricle, trig-
gering a compensatory mechanism that increases the active
emptying volume by enhancing active LA contraction in the
late diastole period [28]. Therefore, structural and func-
tional LA remodeling is often the consequence of LV dias-
tolic dysfunction [57]. Several echocardiographic parame-
ters have been suggested as useful in evaluating LV dias-
tolic function, such as LAVI, transmitral E/A ratio, isovo-
lumic relaxation time, decelerating time of mitral early ve-
locity, e’ on tissue Doppler imaging, and E/e’ and tricuspid
regurgitation velocity [57,58]. Although both LAVmax and
LAVmin gradually increase with the progression of LV dias-
tolic dysfunction, LAVmin may be a more sensitive marker
of LV diastolic dysfunction than LAVmax [59]. Further-
more, recent studies have shown that LA strain changes pro-
gressively with the severity of LV diastolic dysfunction, and
this parameter could reflect LA changes earlier than LAVI
in patients with LV diastolic dysfunction [58,60].

LV diastolic dysfunction adversely affects LA struc-
tural, functional, and electrical remodeling [61]; therefore,
patients with the diagnosis of LV diastolic dysfunction have
an increased risk of AF [62]. Tsang et al. [63] demonstrated
that the risk of incident AF was proportionate to the sever-
ity of LV diastolic dysfunction, and LAVI was the strongest
predictor of AF in the 840 elderly patients studied. Rosen-

berg et al. [64] used data from the Cardiovascular Health
Study to analyze the influence of echocardiographic dias-
tolic parameters on the risk of AF. They found that early
mitral inflow velocity (peak E velocity), late mitral inflow
(A-wave) velocity-time integral, and LAD were the predic-
tors of incident AF. Vasan et al. [65] examined the diastolic
parameters in patients in the longitudinally followed Fram-
ingham Heart Study and found that an E/e’ ratio greater
than the median (1.23) increased the rate of incident AF.
Arai et al. [66] revealed that an E/e’ ≥11.0 was associ-
ated with new-onset AF when adjusted for the coexistence
of atherothrombotic risk factors, but the association was at-
tenuated after adjustment for LAD.

Heart failure with preserved ejection fraction (HFpEF)
is characterized by elevated LV filling pressures with clin-
ical signs and symptoms of heart failure, LV diastolic dys-
function and a LV ejection fraction ≥50% [67]. HFpEF
is associated with AF because of sharing similar risk fac-
tors and close link to diastolic dysfunction. Santhanakrish-
nan et al. [68] examined that temporal association of AF
with HFpEF and heart failure with reduced ejection frac-
tion (HFrEF) in the Framingham Heart Study participants
with new-onset AF or heart failure. They found that AF
was more likely to antedate rather than to follow heart fail-
ure, and prevalent AF preceded HFpEF in a higher propor-
tion than HFrEF, possibly due to the similar pathophysiol-
ogy that causes AF and HFpEF and reduced tolerance of
individuals predisposed to HFpEF to AF during exertion to
trigger clinical recognition of heart failure [69]. The persis-
tence of elevated LV filling pressure causes LA remodeling
and dysfunction [70], but LA remodeling may differ be-
tween HFpEF and HFrEF. By combining invasive pressure
and noninvasive echocardiographic studies, Melenovsky et
al. [71] revealed that patients with HFrEF had larger LAV
and more depressed LA contractile function than HFpEF;
but patients with HFpEF were characterized by larger LA
pressure pulsatility, higher LA stiffness, and greater LA
wall stress variation, which may contribute to a higher per-
centage of AF in the HFpEF group than in the HFrEF group
(42% vs. 26%, p = 0.02). Note that using echocardiogra-
phy to diagnose HFpEF in the setting of AF is challenging
because of overlapping changes in echocardiographic pa-
rameters. For example, a dilated and impaired left atrium
in sinus rhythm as a cardinal feature to reach the diagnosis
of HFpEF may be pre-existing in PAF [72].

Parameters of LV diastolic dysfunction may serve as
surrogate markers for AF recurrence post CA. Cha et al.
[73] demonstrated an increased relative risk of AF recur-
rence of 1.8 (95% CI 1.1–3.1) in systolic dysfunction and
1.7 (95% CI 1.0–2.7) in isolated diastolic dysfunction com-
pared with normal function at 1 year after CA. Kumar et al.
[74] in a study of 124 patients undergoing CA for AF, found
that high-grade LV diastolic dysfunction, defined by e’ on
tissue doppler imaging and deceleration time, was an inde-
pendent predictor of AF recurrence after adjustment for AF
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type and LAV (Hazard Ratio [HR] 2.6, p = 0.009). How-
ever, Kosiuk et al. [75] demonstrated that the E/A ratio and
decelerating time could predict AF recurrence during the
first week after CA, but that long-term results were not in-
fluenced by pre-procedural echocardiographic parameters
that indicate LV diastolic dysfunction. A possible explana-
tion for this finding is that LV diastolic function may dete-
riorate after AF ablation, mediated by longer ablation time,
with a subsequent impact on LA and LV hemodynamics
[76]. In addition, Nedios et al. [31] revealed that LA asym-
metry was associated with LA dilatation and LV diastolic
dysfunction and correlated with reduced success after AF
ablation, but the presence or the grade of LV diastolic dys-
function was not associated with procedural success. Fur-
ther investigations are needed into the definition and precise
cutoff values to identify LV diastolic dysfunction and into
the influence of LV diastolic dysfunction on AF recurrence
after CA.

2.5 Total Atrial Conduction Time Measured by Tissue
Doppler Imaging

Total atrial conduction time (TACT) is an atrial con-
duction parameter affected by atrial conduction velocity
and anatomy [77]. The gold standard method of TACT
measurement is intracardiac measurement using invasive
electrophysiologic study [78]. Alternatively, TACT can be
estimated noninvasively by PA-TDI interval, which is de-
fined as the time interval between the onset of P wave on
the surface electrocardiogram and the peak of A’ wave on
tissue Doppler imaging [79]. Erdem at al. [78] revealed
that TACT measured by PA-TDI correlated with that mea-
sured via invasive electrophysiologic study. Prolonged PA-
TDI interval reflecting atrial remodeling [80,81] has been
shown to increase the risk of AF in various cohorts [82–85].
Vos et al. [86] reported that a prolonged PA-TDI interval is
vulnerable to new-onset AF in patients with various cardio-
vascular diseases with a HR of 1.375 per 10 ms increase in
PA-TDI interval. Muller et al. [84] revealed that patients
with prolonged PA-TDI intervals in the cryptogenic stroke
cohort had higher incidences of AF detection. The AUC of
the receiver operating characteristic curve was 0.94 for oc-
cult AF detection, and a PA-TDI interval cutoff value of 145
ms had a sensitivity of 93.8% and a specificity of 90.5% for
identifying occult AF at 1-year follow-up. Leung et al. [81]
investigated the relation between echocardiographic mark-
ers of LA fibrosis and AF progression in patients with new-
onset AF (620 subjects) and controls (342 subjects). They
found that PA-TDI interval and LA reservoir strain were
correlated negatively, and patients with persistent AF had
a longer PA-TDI interval and smaller LA reservoir strain
than those with PAF. In predicting AF recurrence after suc-
cessful electrical cardioversion or CA, Mueller et al. [87]
demonstrated that PA-TDI interval at a cutoff value of 152
ms had a sensitivity of 87% and a specificity of 100% for
predicting early AF recurrence after successful cardiover-

sion in patients with non-PAF; Uijl et al. [88] demon-
strated that PA-TDI interval had a better discriminative per-
formance than LAVmax index (AUC 0.765 vs. 0.561, re-
spectively) in predicting AF recurrence after CA. Karan-
toumanis et al. [89] also revealed that measurement of PA-
TDI interval at different walls of the left atrium provides
good performance (AUC ranging from 0.975–0.994) with
a sensitivity of 98% and a specificity of 100% at a mean
PA-TDI interval cutoff value of 125.8 ms for predicting AF
recurrence after CA.

2.6 Speckle-Tracking Echocardiography

Speckle-tracking echocardiography (STE) is a novel,
non-Doppler echocardiographic method to measure the
magnitude and rate of atrial myocardial deformation by cal-
culating the longitudinal strain and strain rate independent
of cardiac rotational motion and the tethering effect [90,91].
Strain is a dimensionless index that reflects total deforma-
tion of the myocardium relative to its initial length during
the cardiac cycle [92], expressed as a positive value for
lengthening or a negative value for shortening. STE tracks
the natural acoustic markers within a region of interest (ker-
nel) frame-by-frame, evaluating the geometric shift of each
kernel throughout the cardiac cycle [36]. Fig. 1A shows an
example of LA strain via the apical 4-chamber view. LA
strain reaches its maximal value just before the mitral valve
opening, and LA strain during the reservoir phase (LASr)
is measured as the strain value at the mitral valve opening
minus that at the ventricular end-diastole (a positive wave
occurring during the ventricular systole) [90]. When the LA
conduit phase begins, LA volume gradually decreases to a
plateau until the 2nd late peak, just before the onset of the
active atrial contractile phase. The strain value at the onset
of atrial contractionminus that during themitral valve open-
ing is a surrogate of LA strain at the conduit phase (LAScd).
The strain value at the ventricular end diastole minus that
during the onset of atrial contraction is a surrogate of LA
strain at the contraction phase (LASct). Strain rate is the
rate by which the deformation occurs. Fig. 1B shows an ex-
ample of LA strain rate. There is one positive peak during
the reservoir phase (pLASRr) and two consecutive negative
peaks during the LV diastolic phase. The first peak repre-
sents passive myocardium shortening (pLASRcd) and the
second peak is the minimal value after the LA active pump
phase (pLASRct). The assessment of LA strain and strain
rate can use a 4-chamber view or both 4- and 2-chamber
views to report the average values from 6 or 12 segments,
respectively [90].

STE can be used to assess atrial fibrosis [12,93] and
LV diastolic dysfunction [58], and serve as a surrogate
marker of LA remodeling to detect early LA dysfunction
even prior to structural changes of the left atrium [94,95].
Kuppahally et al. [96] described an inverse relationship
between the degree of atrial fibrosis detected by delay-
enhancement cardiac MRI and the LA strain and strain rate
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Fig. 1. Transthoracic echocardiography in the apical four-chamber view showing left atrial (LA) longitudinal strain and strain
rate. (A) LA strain in a paroxysmal atrial fibrillation (PAF) patient 1-day post ablation. Taking the R wave as the starting point, the
first positive peak corresponds to the LA reservoir phase (LASr) (red arrow), the second peak corresponds to the LA contractile phase
(LASct) (orange arrow), and the difference between the two peaks corresponds to the conduit phase (LAScd) (blue arrow). The traces are
time–displacement displays, with the x-axis representing time and the y-axis showing myocardial shortening as negative and lengthening
as positive (%). The depicted LA wall is divided into six segments marked by different colors. (B) The LA longitudinal strain rate in the
same patient as in panel (A). The traces are time-velocity displays, with the x-axis representing time and the y-axis representing velocity
(s−1). The LA strain rate curve is composed of a positive peak at the left ventricular systole (pLASRr) (pink arrow), followed by two
negative peaks: one in the early diastole phase (pLASRcd), corresponding to passive early LV filling (yellow arrow), and one in the late
diastole phase (pLASRct), corresponding to atrial booster pump function (green arrow). (C) and (D) The curved M-mode color images
of LA strain (upper) and strain rate (middle), and LA emptying fraction (LAEF) (bottom) in patients with PAF and non-PAF 1-day post
ablation, respectively. Blue indicates positive values and red indicates negative values. Images in panel (C) show deeper blue in the
strain and strain rate images during the reservoir phase, deeper red in the strain rate images, and more homogeneous patterns of color
distribution than those in panel (D), indicating better LAmechanical deformation and synchrony in PAF than non-PAF. In addition, LAEF
is larger in panel (C) than that in panel (D) (53% vs. 15%), implying a good correlation between LA deformation and LAEF.

as shown by STE. Eichenlaub et al. [97] reported that LASr,
LAScd, and LASct were correlated with LVA, as measured
by intracardiac voltage mapping, in patients with persis-
tent AF undergoing CA; among the three strain parame-
ters, LASrwas themost powerful predictor of atrial fibrosis.
Laish-Farkash et al. [98] demonstrated good correlation be-
tween LASr and LA LVA as assessed by invasive intrac-
ardiac electroanatomic mapping. The LASr cutoff value
of 19.7% had a sensitivity of 85.2% and a specificity of
73.3% in predicting the presence of LVA. Therefore, a re-
duced LA deformation during the reservoir phase may be
an early marker of the extent of LA fibrosis [99], which is
associated with the incidence of AF [100]. Park et al. [101]

demonstrated that LASr was a significant predictor of new-
onset AF in heart failure patients (397 of 4312 patients) re-
gardless of the LA size.

Most cutoff values of LA strain are based on studies
involving a small number of subjects and depend on age,
sex, ultrasound manufacturer, and post-processing software
package [102]. To establish age- and sex-based normative
values of LA strain in the general population and to assess
the prognostic yield of lower limits of normal LA strain in
relation to future AF, a substudy of the fifth Copenhagen
City Heart Study evaluated 1641 healthy participants and
reported the median values (and the corresponding limits of
normality) for LASr, LAScd, and LASct were 39.4% (23.0–
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67.6%), 23.7% (8.8–44.8%), and 15.5% (6.4–28.0%), re-
spectively [103]. These values were similar to the results of
the meta-analysis by Pathan et al. [104], which showed cut-
off values of 39% for LASr, 23% for LAScd, and 17% for
LASct in healthy adults. To investigate whether LA strain
can be used to predict new-onset AF in the general popula-
tion, Hauser et al. [105] conducted a prospective longitudi-
nal study including 3590 participants from the fifth Copen-
hagen City Heart Study. Compared to the reference group
(patients with LASr≥23%), the HRs of new-onset AFwere
4.16, 6.58, and 22.14 for the subgroups of patients with
LASr between 23% and 19%, 19% and 15%, and <15%,
respectively. Moreover, for the 2701 participants with nor-
mal LA size and preserved LV ejection fraction and with-
out previous ischemic heart disease, LASr (HR 1.06, 95%
CI 1.03–1.09) and LASct (HR 1.08, 95% CI 1.04–1.12) re-
mained independent predictors of AF development in mul-
tivariable Cox regression analysis. Similarly, Petre et al.
[106] revealed that LASr≤19% and LASct≤8.7% identify
patients with new-onset AF in a population with hyperten-
sion.

In addition to enabling the identification of patients
with a history of AF, STE provides prognostic information
for the risk stratification of AF patients undergoing CA.
Hammerstingl et al. [107] demonstrated that LASr was sig-
nificantly reduced in patients with recurrent AF compared
to those without AF recurrence. Motoki et al. [108] demon-
strated that a low LASr at a cutoff value of 23.2% could pre-
dict the status of sinus rhythm maintenance after CA with a
sensitivity of 76% and a specificity of 66%. Parwani et al.
[109] demonstrated that a LASr cutoff value of 10% pre-
dicted post-CA AF recurrence with a sensitivity of 97.9%
(95% CI 88.9–99.6%) and a specificity of 78.2% (95% CI
65.6–87.1%). Onemeta-analysis study including 12 studies
and a total 1025 AF patients revealed that LASr was a sig-
nificant predictor of post-CA AF recurrence by multivari-
able pooled analysis (OR 1.16, 95% CI 1.09–1.24) [110].
In addition to LASr, LASct is also reported to be associ-
ated with the outcome of AF ablation. Wen et al. [111]
demonstrated that LASct is an independent risk factor for
AF recurrence; the 5-year cumulative recurrence probabil-
ity was much higher in patients with LASct ≥–12% than
in those with LASct <–12% (87.6% vs. 52.9%, log rank p
< 0.0001). Eichenlaub et al. [97] reported that LASr and
LASct were both predictors of AF recurrence after CA in
patients with persistent AF. Thus, LA deformation abnor-
malities consistently predict recurrence of AF after CA al-
though the cutoff values of deformational parameters vary
among studies.

Even if those with LAD >50 mm have a four-fold
higher risk of developing AF [29], some patients with se-
vere LA dilatation do not have AF. A recent systemic re-
view and meta-analysis by Bajraktari et al. [26] revealed
that the strongest LA predictor of AF recurrence after CA
was LASr <20%, followed by LAD ≥50 mm and LAVmax

>150 mL. This result suggests that LA dysfunction plays
a more pivotal role than LA enlargement in the develop-
ment of AF. Recently, our group demonstrated that LAEF,
LAVmin, LASr, pLASRr, and pLASRct were associated
with the occurrence of AF, andmultivariate regression anal-
ysis revealed that pLASRct was the only independent fac-
tor associated with the absence of AF in those with LAD
≥50 mm [112]. Atrial booster pump function represents
the inherent contractility of the LA myocardium. Previ-
ous studies have revealed that LV diastolic dysfunction is
associated with impaired LA reservoir and conduit func-
tions in the presence of an increased LA contractile func-
tion [113,114]. When LA reservoir function is impaired,
LA booster pump function would be enhanced to compen-
sate for the reduced LA emptying volume. Thus, a reduced
pLASRct indicates a more advanced stage of diseased atrial
myocardium because pLASRr and pLASRcd have been re-
duced at a earlier stage. Furthermore, because LA reservoir
and conduit functions represent intrinsic LA relaxation and
are partly affected by LV systolic performance, LA booster
pump function may be the most sensitive predictor of AF
occurrence [115] and is effective in predicting AF genesis
and recurrence [41,116].

Even if STE provides a feasible and reproducible as-
sessment of LA function, STE is dependent on the qual-
ity of echocardiographic images and frame rates, and re-
quires time-consuming offline analysis. Therefore, it may
not suitable for all clinical settings [117]. In addition, in-
tervendor discordance of LA strain assessed by STE re-
mains a problem to be solved. For example, LA reser-
voir strains differ significantly by using different speckling
tracking analysis systems (GE vs. Siemens) [108]. The
intervendor/intersoftware variability should be considered
when discussing published LA strain values.

2.7 LA Mechanical Dispersion

LA electrical and mechanical dysfunction coexist in
the early phase before LA enlargement [118]. Sarvari et
al. [119] demonstrated that inhomogeneous contraction of
the left atrium potentially predicted AF recurrence after ab-
lation. Because STE is angle-independent and can assess
regional myocardial function and timing accurately, the re-
gional differences in 2-dimensional (2D) STE-derived LA
strain and strain rate potentially could be used to measure
heterogeneous LA fibrosis and dysfunction indirectly. LA
mechanical dispersion is calculated as the standard devia-
tion in time to peak strain of the LA segments [119]. It
is greater in AF patients than in healthy individuals, in-
creases proportionately to the duration of AF [116], and
provides prognostic information on the risk of AF recur-
rence in patients after ablation [116,119]. In a case-control
study, patients with new-onset AF had significantly worse
LASr and LASct, andmore pronounced LAmechanical dis-
persion, than those without AF [120]. However, it is time-
consuming to calculate the standard deviation for param-
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eters of LA mechanical dispersion because sophisticated
mathematics is needed for averaging the 2–3 instances of
six segmental values per apical 4-chamber and 2-chamber
views (3 peaks of LA strain rate curve in sinus rhythm). Al-
ternatively, the curved M-mode color images of LA strain
and strain rate provide detailed spatial and temporal infor-
mation on LA deformation mechanics. These images pro-
vide a unidimensional view of LA strain and strain rate, il-
lustrating the changes in length and in strain/sec of the de-
picted LA wall along the time axis, respectively. As shown
in Fig. 1C–D, the spatial and temporal information of LA
deformation can be displayed in these images, on which
blue or red color, deep or light hue, and pattern of color
distribution indicate the direction, strength, and homogene-
ity of LA deformation, respectively. However, it is chal-
lenging to use visual estimation to precisely differentiate
these images. Recently our group demonstrated that a deep
convolutional neural network (CNN) analysis can success-
fully incorporate spatial and temporal features from these
STE images into an overall assessment of LA deformation
mechanics; indeed, the STE image-based CNN model out-
performed the logistic regression model using LAD, LAEF,
LA strain, and strain rate in predicting AF recurrence after
CA [121]. This study demonstrated the potential advan-
tages of supervised deep learning with CNNs to classify
images to provide prognostic information for AF interven-
tion. Note that this retrospective study included only 606
patients, and large prospective studies are needed to opti-
mize CNN model performance. Recently, manufacturers
have begun developing dedicated software packages for LA
strain measurement after publication of the common stan-
dards to assess LA strain [90]. Newly-available softwares,
such as AutoStrain (TomTec) or LA Automated Function
Imaging (Echo-Pac), allow for a quick assessment of LA
strain. Future goals would be to achieve fully automatic
generation and interpretation of LA STE images, provide
fast and reproducible assessment of LA deformation prop-
erties, and validate and enhance the performance of CNN
models in this domain.

2.8 Reverse Remodeling after Cardiac Ablation for AF

LA substrate modification in addition to pulmonary
vein isolation improves AF ablation outcome [122–124].
Maintenance of sinus rhythm leads to histological reverse
remodeling and functional recovery, shown by reduced LA
size, improved LA function, and increased LA conduction
velocity [55,125]. However, LA ablation itself impairs LA
function, a result related to the extent of scarring [126]. As
a result of the different degrees of myocardial damage as-
sociated with the different ablation strategies and AF pop-
ulations, a discrepancy exists in the literature regarding LA
functional reverse remodeling after successful AF ablation.
Tops et al. [127] found that LA structural reverse remod-
eling was associated with a concomitant improvement in
LA strain. Spethmann et al. [128] demonstrated that LASr

and LASct normalized within 6 months after CA in PAF
patients with no AF recurrence. Perea et al. [129] used
cardiac MRI to reveal that extensive LA linear lesions re-
duced LA volume and preserved or even increased LAEF in
most patients after successful CA. However, Lemola et al.
[130] found that LA linear ablation restored sinus rhythm
but compromised LA systolic function in patients with PAF.
A meta-analysis by Jeevanantham et al. [131] revealed that
successful CA significantly decreased LAD and LAV with-
out significant influences on LAEF. To evaluate the influ-
ence of CA outcome on LA reverse remodeling in the same
patients, Yang et al. [132] studied 38 patients undergoing
a repeat CA for AF recurrence after a 1st circumferential
pulmonary vein isolation. The absence of LA size reduc-
tion after a 1st unsuccessful CA and the presence of signif-
icant LA size reduction after a successful second CA in the
same patients imply that procedural success was associated
with LA structural reverse remodeling. However, LAEF,
LA strain, and LA strain rate were not concomitantly im-
proved. Another meta-analysis by Xiong et al. [133] (25
studies, 2040 patients) revealed that LAEF is significantly
decreased in PAF but insignificantly changed in persistent
AF after CA. It is likely that differences in the extent of scar-
ring associated with different ablation strategies, preexist-
ing LA fibrosis, and clinical outcome contribute to variable
changes in LAEF after CA between PAF and persistent AF
patients. Recently, we noted significant LA reverse remod-
eling, evidenced by reduced LA size and improved LAEF,
in non-PAF patients undergoing a successful LVA-guided
LA linear ablation [123]. LA functional reverse remodeling
was noted even in patients undergoing extensive LA linear
ablation. Possibly, the LA linear ablation strategy targeting
LVA to avoid damage to otherwise healthy LAmyocardium
could help preserve the effect of LA functional reverse re-
modeling.

Although the results are variable regarding LA func-
tional change after successful AF ablation, LA structural re-
verse remodeling has been consistently observed after suc-
cessful AF ablation and might be considered as a marker
of freedom from AF recurrence. By using different vari-
ables and definitions, Kagawa et al. [134] demonstrated
that a reduction of ≥5% in LAD at 6 months post CA was
associated with freedom from late AF recurrence in pa-
tients with persistent AF (AUC 0.653, p < 0.05); Maille
et al. [130] demonstrated that patients with a ≥15% reduc-
tion in LAVmax after CA had markedly less AF recurrence;
Kawakami et al. [135] demonstrated that LAV normaliza-
tion (defined as LAVI of≤34 mL/m2) at follow-up was sig-
nificantly associated with a better long-term outcome of AF
ablation compared to patients who did not meet this stan-
dard. It seems necessary to clearly define LA structural
reverse remodeling in order to evaluate the impact of LA
reverse remodeling on the long-term outcome of AF abla-
tion.
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Compared with cross-sectional observational studies,
longitudinal studies can avoid time-invariant unobserved
individual differences, detect changes in parameters beyond
a single moment in time, and establish sequences of events
to suggest cause-and-effect relationships. Our group con-
ducted a three-year longitudinal study to evaluate the long-
term prognostic influence of LAD remodeling on the out-
come of AF ablation. We found that a longitudinal linear
mixed model-based two stage model outperformed a logis-
tic model using the baseline LAD in classifying outcome
status after AF ablation [136]. In addition, LAD was short-
ened over the first 3 months and remained stable up to 36
months after CA. Similarly, Reant et al. [137] also found a
reduction in LAD during the first 3 months after CA, which
then remained stable up to 12 months post CA. The degree
of LAD reduction was significantly influenced by the base-
line LAD [136]. Interestingly, LAD was reduced in both
the success and failure groups. Because the ablation le-
sions themselves also decrease LA size [138], the prognos-
tic value of LAD reduction in predicting the outcomes of
AF ablation remains a matter that needs clarification. In
addition, further longitudinal studies of LA functional re-
modeling may unveil the long-term prognostic influence of
the extent of reversibility of LA deformation parameters on
AF ablation outcome.

2.9 Three-Dimensional Echocardiography

Three-dimensional (3D) echocardiography is a novel
approach providing a non-invasive method to analyze car-
diac anatomy and function. The measurement of LAV by
2D echocardiography is based on geometric assumptions,
which often results in underestimation of LAV compared
with that measured using cardiac MRI. 3D echocardiog-
raphy provides a more accurate measure of LAV because
of automated border detection, the acquisition of 3D data
sets at different phases of the cardiac cycle, and more accu-
rate assessment of asymmetric remodeling of the left atrium
[139–141]. Badano et al. [142] revealed that LAD and area
measurements significantly underestimated actual LA size
and misclassified the grade of severity of LA dilatation in
43–70% of patients if 3D LAV was used as the gold stan-
dard. In addition, 3D echocardiography provides unique
measurement of phasic changes of LAV during the cardiac
cycle and detailed information of the different LA functions
[143]. Marsan et al. [144] demonstrated that a significant
reduction of LAVmax and improvement in LA active con-
traction and reservoir function were noted in the success
CA group but not in the AF recurrence group three months
after CA. Schaff et al. [145] revealed that LAVI and LA
function assessed by 3D echocardiography had higher dis-
criminating power than 2D echocardiography in identifying
PAF.

LA myocardial fibers are arranged not only in the
longitudinal direction, and LA fibrosis may occur hetero-
geneously in patients with AF [98]. Studies have shown

that 3D-STE-derived circumferential, longitudinal, radial,
as well as area strain are significantly reduced in patients
with AF compared to matched controls [146,147]. Because
2D-STE only provides longitudinal deformation informa-
tion, some LA dysfunctionsmay be overlooked by 2D-STE.

3D-STE has the advantage of combining longitudi-
nal and circumferential strain information [147], and a few
studies have demonstrated the superiority of 3D-STE over
2D-STE in predicting AF occurrence or recurrence after
CA [145,147,148]. Moreover, 3D-STE can be used to de-
tect LA functional reverse remodeling by showing improve-
ment of global strain and LA dyssynchrony [149]. The-
oretically, 3D-STE also has the advantage of overcoming
the out-of-plane motion that may occur with 2D-STE, as
the advent of 3D acquisition allows tracking of speckles
in the myocardium in the 3D space [150]. However, 3D
echocardiography is limited by the slow temporal resolution
and motion artifacts, and evaluation of the clinical utility of
3D-STE remains insufficient. Further studies are needed to
clarify whether the diagnostic and prognostic value of 3D-
STE is superior to that of 2D-STE [151].

3. Conclusions
Echocardiography is a safe and non-invasive tech-

nique providing quantitative analyses of cardiac chamber
size and function, but clinical measurement of the left
atrium has so far been limited to evaluation of LAD and
LAV. Considerable data support the use of LAEF to predict
incident AF and AF recurrence after CA. STE enables early
detection of LA dysfunction before anatomical changes
and also helps identify patients with a severely dilated left
atrium at risk for AF. The studies discussed in this review
support the contention that LAEF and LA strain provide op-
timal diagnostic and prognostic information for assessing
AF patients. It is likely that future guidelines for patient
evaluation and guidance of AF ablation will include evalu-
ation of not only LA chamber size but also LA function pa-
rameters. Compared with cardiac MRI, echocardiography
provides a real-time and feasible method to assess LA func-
tion (LAVImin, LAEF and LA strain). Improvements in tem-
poral and spatial resolution, automation and standardization
among platforms and vendors will enhance the utility of LA
strain indices in the near future. Histological and functional
reverse remodeling after resuming sinus rhythm may bring
anatomical and functional recovery of the left atrium. How-
ever, discrepancies regarding LA functional reverse remod-
eling after successful AF ablation persist, and a clear defi-
nition of LA structural reverse remodeling is still lacking.
A longitudinal study of the long-term prognostic impact of
LAD remodeling on the outcome of AF ablation revealed
that LAD was reduced regardless of the outcome of AF ab-
lation, and the degree of LAD reduction was significantly
affected by the baseline LAD. Definitely, robust clinical
outcomes data from large perspective trials using longitu-
dinal studies are needed to understand the natural history of
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LA structural and functional reverse remodeling as well as
the impact of such changes on the outcome of AF ablation.
LA mechanical dispersion provides prognostic information
on AF risk, and the curved M-mode color images of LA
strain and strain rate provide detailed spatial and temporal
information on LA deformation mechanics. Deep CNNs
overcome subjective visual assessment to aid image-based
outcome classification. Therefore, it is promising that the
development of fully automated generation and interpre-
tation of LA STE images with well-trained deep learning
classifiers will provide more rapid and reproducible assess-
ment of LA deformation properties. 3D echocardiography
provides valuable information on LA size, phasic functions
andmyocardial mechanics. New developments in hardware
technology will overcome the limitations of lower spatial
and temporal resolution of 3D echocardiography.
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