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Abstract

Artificial Intelligence (AI) has impacted every aspect of clinical medicine, and is predicted to revolutionise diagnosis, treatment and
patient care. Through novel machine learning (ML) and deep learning (DL) techniques, AI has made significant grounds in cardiology
and cardiac investigations, including echocardiography. Echocardiography is a ubiquitous tool that remains first-line for the evaluation
of many cardiovascular diseases, with large data sets, objective parameters, widespread availability and an excellent safety profile, it
represents the perfect candidate for AI advancement. As such, AI has firmly made its stamp on echocardiography, showing great promise
in training, image acquisition, interpretation and analysis, diagnostics, prognostication and phenotype development. However, there
remain significant barriers in real-world clinical application and uptake of AI derived algorithms in echocardiography, most importantly
being the lack of clinical outcome studies. While AI has been shown to match or even best its human counterparts, an improvement
in real world outcomes remains to be established. There are also legal and ethical concerns that hinder its progress. Large outcome
focused trials and a collaborative multi-disciplinary effort will be necessary to push AI into the clinical workspace. Despite this, current
and emerging trials suggest that these systems will undoubtedly transform echocardiography, improving clinical utility, efficiency and
training.
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1. Introduction
Echocardiography stands at the pinnacle of cardiac in-

vestigations. It provides a rapid, non-invasive and accu-
rate assessment of biventricular structure and function, pul-
monary pressures, valvular function and intracardiac shunts
[1]. Its widespread availability, low cost and safety profile
have pushed it beyond the confines of specialist cardiolo-
gists, and is now a crucial instrument for all clinicians [2,3].
With the ongoing rise in prevalence of cardiovascular dis-
ease, the utilisation of echocardiography is expected to in-
crease worldwide, with US trend data already showing an
annual growth of 3.41% [4,5].

Echocardiography isn’t without its pitfalls. This in-
cludes subjective interpretation of data points, resulting in
poor inter and intra-observer correlation and a reliance on
operator dependant acquisition of images and key mea-
surements that dictate results [6]. Additionally, intensive
training is required to develop expert skills to perform and
interpret echocardiography [7]. Reporting echocardiogra-
phy studies can also be demanding, limiting workflow in
smaller centres with fewer trained staff. Lastly, a range
of significant pathologies up to now have been better as-

sessed with other modalities, such as infiltrative cardiomy-
opathies with cardiovascular magnetic resonance (CMR)
imaging, or coronary artery disease with coronary com-
puted tomographic angiography (CCTA) [8]. Artificial in-
telligence (AI) based technology has emerged to meet these
challenges. Echocardiography is uniquely positioned to
lend itself to AI, with huge data sets, large volumes of pa-
tients and well-established objective parameters for disease
pathology. It will inevitably be incorporated into all forms
of cardiac imaging with a significant impact on guiding di-
agnosis and clinical decision making [9,10].

AI has made its first foray into echocardiography with
notable results, from acquisition to interpretation. AI has
been shown to be of benefit in educating and training health
care staff in image acquisition [11,12]. Studies involving
AI models that assist with echocardiography interpretation
have demonstrated a significant reduction in inter-observer
variability and improved reproducibility [13]. Whilst other
studies have used AI algorithms to improve the diagnostic
utility of echocardiography in pathologies that currently re-
quire CMR for diagnosis [14].

The purpose of this review is to summarize the recent
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discoveries and advances of AI in echocardiography, its fu-
ture prospects and the current pitfalls and limitations of its
use.

2. Artificial Intelligence
AI is defined as the theory and development of com-

puter systems able to perform tasks normally requiring hu-
man intelligence. Machine learning (ML) is a subfield of
AI which allows for the analysis of vast quantities of data
through computing and statistical algorithms [15]. This sys-
tem infers relationships between data to assess which data
points have the highest predictive power [15]. Through
these techniques, ML models are able to provide predic-
tions based on unseen data [15].

ML can be classified into three categories, supervised,
unsupervised and reinforcement learning (see Fig. 1) [16].
Firstly, in supervised learning the machine is ‘taught’ to
classify data by providing it with a dataset of labelled data
[17]. This is then tested with a new unlabelled dataset, al-
lowing an assessment of the accuracy of the model [17].
Unsupervised learning focuses on discovering new pat-
terns and associations between variables using unlabelled
datasets [10]. Allowing data exploration and the generation
of novel hypotheses, including the development of refined
and individualised disease phenotypes [10,15]. Finally,
reinforcement learning algorithms are learned behaviours
through trial and error, given only input data and an out-
come to optimize [15]. A popular culture breakthrough ex-
ample of this was when a learning model was used to beat
the high score on 49 Atari video games provided with only
video input and the game’s final score [18].

Fig. 1. A diagram depicting the common types of machine
learning along with a brief explanation of each type.

Deep learning (DL) is a subset of ML consisting of
networks of nodes thatmimic the brain, called artificial neu-
ral networks [10,15]. These nodes interconnect; the first
level of “input” nodes point into another layer of nodes in
the network called “hidden layers”, these then connect to
an “output layer” of nodes [10,15]. Two of the most com-
mon forms of DL include convolutional neural networks
(CNN) and recurrent neural networks [15]. CNN can be
used to process two-dimensional (2D) image based data
into multiple layers, proving invaluable in echocardiogra-

phy, radiology, pathology and dermatology [10,17,19,20].
Conversely, recurrent neural networks are well suited for
sequential data such as speech and language and thus is
used in machine interpretation of text and speech recogni-
tion [15,21]. DL methods have also been used in drug de-
velopment, withwork by Jamshidi et al. [22] demonstrating
a conceptual framework for COVID-19 drug discovery.

3. Artificial Intelligence in
Echocardiography
3.1 Image Acquisition and Recognition of Views

A transthoracic echocardiography study requires ac-
curate image acquisition of the standard windows, paraster-
nal long and short axis views, apical views and subcostal
views [1]. These views and key measurements are cap-
tured, with varying echocardiographic assessments applied,
such as M-mode, colour Doppler, tissue Doppler, pulse-
wave Doppler and continuous-wave Doppler [1]. Com-
bining these assessments allows for precise evaluation of
the three-dimensional (3D) structures of the heart to be ex-
tracted from 2D cross-sectional images [10]. All of this is
predicated on accurate image acquisition, a limiting fac-
tor of echocardiography. A number of factors affect im-
age quality such as the extensive training required to pro-
duce a high quality transthoracic echocardiographic study,
and common conditions such as obesity and chronic airway
disease that frequently limit echocardiographic views [7].
Additionally, while the general approach to an echocardio-
graphic study is standardised, no two patients are identical
in terms of image acquisition, the natural variability of hu-
man anatomy demands adaptive approaches for high quality
images, necessitating experienced hands [7].

AI has already entered the clinical workspace with
commercially available software for echocardiographic im-
age acquisition and interpretation [23,24]. These AI de-
rived models provide user guidance on image acquisition,
with clear instructions on probe positioning and alerting the
user of poor image quality, thereby providing a degree of
training and self-improvement [23,24].

Narang et al. [11] recently demonstrated the use of
a DL algorithm in guiding eight nurses with no prior ul-
trasonography experience in the acquisition of echocardio-
grams for limited diagnostic use. In this study, expert
echocardiographers blindly reviewed the scans and felt they
were of diagnostic quality for key parameters including left
ventricular (LV) size and function, right ventricular (RV)
size and function and the presence of a pericardial effusion
[11]. Another study by Schneider et al. [12] used a ML
algorithm to train 19 echo-naïve first-year medical students
to acquire diagnostic echocardiography images, the AI al-
gorithm then obtained LV ejection fraction (LVEF) values
from these images. These were compared with images ob-
tained by three experts, the novices were able to attain at
least one of three views 91% of the time and an excellent
agreement between the novice LVEF and the expert derived
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LVEF was found (correlation coefficient of 0.92) [12].
AI has also made advancements in accurately recog-

nising and fitting echocardiographic views, Madani et al.
[25] used CNN to develop a model to classify 15 standard
views based on 267 labelled studies with real-world clini-
cal variation. Their model was able to classify the views
with a 97.8% overall test accuracy for video views [25].
Furthermore, on still images an overall accuracy of 91.7%
was achieved, significantly (p = 0.003) better than the result
for board-certified echocardiographers at 79.4% [25]. More
importantly, recognition of these views occurred very fast
at an average of 21 milliseconds per view, highlighting the
unmatched efficiency that AI offers [25].

Zhang et al. [26] trained and evaluated CNN network
models for multiple tasks in echocardiography including
image classification of 23 standard views and segmentation.
This ten year study used 14,035 echocardiograms to train
the models that had the capacity for interpretation and di-
agnosis of pathology, a truly comprehensive application of
AI in echocardiography [26]. With regards to image identi-
fication, the models were able to achieve accuracies of 84%
at an individual image level, with accuracies of up to 96%
in certain views [26]. Although less accurate than other
models, this group was able to incorporate it effectively into
an echocardiographic workflow from image acquisition and
interpretation to diagnosis [26].

3.2 Image Analysis and Interpretation
3.2.1 LV Systolic Function

LV function comprises one of themost important com-
ponents of an echocardiogram study and carries significant
prognostic value [1,10]. LV systolic and diastolic function
underpin the diagnosis of heart failure, current assessments
are subject to significant inter-observer variability and poor
reproducibility [6,10]. LVEF is the most used metric in as-
sessing LV function [1]. A multitude of techniques exist
for LVEF assessment, the modified Simpson’s biplane is
one such frequently used method, requiring manual tracing
of end-systolic and end-diastolic perimeters of the LV in
the apical four and two chamber views to calculate LVEF
[1,27]. This technique can be challenging due to the re-
liance on good quality apical views and the time taken to
trace the LV which itself is an error prone process [28]. De-
spite the modified Simpson’s biplane being a more robust
assessment of LVEF when compared to other techniques, it
is still based on the assumption that the LV is comprised of
cylindrical disks and does not take into account variability
in structure and shape which can lead to poor correlation
with gold standard CMR [1,27,28].

Leclerc et al. [29] used an encoder-decoder-based
CNN DL model to segment and analyse 500 echocardio-
gram studies with apical four and two chamber views, mea-
suring end-diastolic, end-systolic LV volumes and LVEF.
Their model was able to outperform non-DL methods and
accurately reproduced expert analysis data, with a mean

correlation of 0.95 [29]. The reproducibility of this model
was also superior to inter-observer scores for conventional
methods [29].

Another group designed a video-based DL algorithm,
EchoNet-Dynamic, to rapidly and accurately assess LVEF
using only apical four chamber views and in one cardiac
cycle [30]. Ouyang et al. [30] trained the CNN model
with 10030 apical four chamber echocardiogram videos and
was able to predict ejection fraction (EF) with a mean ab-
solute error of 4.1%, reliably classifying heart failure with
reduced EF with an area under the curve of 0.97. This was
done in real time, taking approximately 1.6 seconds per car-
diac cycle, much more rapid than human assessment [30].
Moreover, the model was shown to have minimal variation
of assessing LVEF on repeat testing as compared with two
trained sonographers in a cohort of 55 patients, with a me-
dian difference of 2.6% vs. 5.2%, p< 0.001 [30]. Notably,
they did not exclude studies with poor image quality [30].

Jafari et al. [31] took this one step further, by design-
ing a real-team mobile point-of-care ultrasound software to
assess LVEF. This DL based system operates on android
based mobile devices and simultaneously recognises, seg-
ments and analyses LV function in real time using both api-
cal four and two chamber views [31]. This was tested on
427 patients, resulting in accurate results for LVEF, with a
median absolute error of 6.2% compared to expert cardiol-
ogist annotations and measurements [31]. This shows the
untapped potential of AI in accurate and rapid assessment
of LVEF in mobile point-of care ultrasounds.

3.2.2 LV Strain

Systolic strain is the deformation that occurs as a con-
sequence of myocardial contraction [32]. It provides novel
information on the movement of the myocardium that es-
capes conventional echocardiography, including the “twist-
ing” and “wringing” motion of the myocardium [32]. This
offers more objective measures of LV myocardial dynam-
ics, can help to identify pathological disease patterns and al-
lows for early detection of subclinical ventricular dysfunc-
tion. Subsequently, LV strain now has a pivotal role in the
diagnosis of cardiac amyloidosis and the early detection of
cardiotoxicity secondary to chemotherapeutic agents [32].

Salte et al. [33] created a DL model to assess
global longitudinal strain using conventional 2D echocar-
diographic views. This was applied to 200 studies
and was compared to the conventional time intensive
speckle-tracking software [33]. The AI method suc-
cessfully performed automatic segmentation and measure-
ments of global longitudinal strain across a variety of car-
diac pathologies, showing minimal difference between the
methods, with a mean absolute difference of 1.8% [33].
There was also minimal variability in the DL method, and
the assessment was rapid, occurring in less than 15 seconds
per study with AI compared to 5–10 mins with the conven-
tional method [33]. This work highlights the value of AI
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Fig. 2. Pandey et al. [38] used unsupervised machine learning and deep learning techniques to develop a new grading of diastolic
dysfunction, which outperformed current guideline-based grading in clinical outcomes. Reproduced with permission from [38].

for more advanced echocardiographic parameters.

3.2.3 Diastology
The diastolic properties of the heart determine fill-

ing during diastole [1,34]. Diastolic dysfunction is com-
mon and thought to affect 5.5% of the general population.
Assessment is notoriously difficult, with guidelines rec-
ommending the measurement of six different echocardio-
graphic parameters, review of multiple complex flow charts
and correlation with a clear clinical picture [27,34]. Despite
these guidelines, the diagnosis can still be challenging and
much uncertainty still remains [34]. The risk factors for
diastolic dysfunction include obesity, hypertension and di-
abetes, conditions that are epidemic in our society, and have
unsurprisingly precipitated a rise in the prevalence of dias-
tolic dysfunction [35]. AI has provided novel approaches
to assessment of diastology (see Table 1, Ref. [36–39]).

Recent work has demonstrated the potential value of
AI in the evaluation of diastolic function. Choi et al. [36]
assessed the diagnostic accuracy of a ML model in heart
failure, using combined clinical, biochemical and echocar-
diographic data to derive an algorithm for diagnosis, they
found a 99.6% concordance in diagnosing diastolic heart
failure as compared to a heart failure specialist. Their al-
gorithm used only LVEF, left atrial volume index and tri-
cuspid regurgitation velocity, a notable improvement from
the six parameters normally used in assessing diastology
[36]. Using novel speckle tracking echocardiographic de-
rived measurements, Omar et al. [37] were able to develop
an AI model that accurately predicted increased LV filling
pressure, a key parameter of diastolic dysfunction, this was
validated with invasively measured raised pulmonary cap-

illary wedge pressure with an area under the curve of 0.88.
The AI derived 14 novel variables from speckle tracking
echocardiographic measurements of atrioventricular defor-
mation, chamber volume and volume expansion, a further
step towards automated diastolic function assessment [37].

There have also been endeavours to improve pheno-
typing of diastolic dysfunction to better predict outcomes;
Pandey et al. usedML to design a model to more accurately
identify patients with elevated LV filling pressure as com-
pared to the American Society of Echocardiography 2016
diastolic guidelines grading system, their work is illustrated
in Fig. 2 [38]. Promising work has also been done in devel-
oping rapid and accurate screening tools for diastolic dys-
function, Chiou et al. [39] developed a pre-screening tool
for diastolic heart failure by intra-beat dynamic changes in
the LV and left atrium. They used linear signals of LV and
left atrium length, area and volumewaveforms to determine
novel intra-beat dynamic patterns that accurately determine
diastolic function, demonstrating an accuracy, sensitivity
and specificity of 0.91, 0.96 and 0.85 respectively [39].

3.2.4 RV Function
The RV is challenging to assess but harbours signifi-

cant prognostic value and clinical relevance [40]. RV func-
tion can be affected by congenital heart disease, left-sided
heart failure, valvular heart disease, pulmonary hyperten-
sion and coronary artery disease [40]. Accurate and repro-
ducible quantification of RV function can be difficult due
to its irregular crescent shape, poor echocardiographic vi-
sualisation of the RV and inconsistencies in the analysis of
RV parameters [41]. AI has shown promise in rapid and
accurate assessment of RV function [42,43].
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Table 1. Key examples demonstrating the application of AI in the diagnosis of diastolic heart failure.
Author [Ref] Study aim N Mode of echocardiography Method of AI Results
Choi et al. [36] Evaluated diagnostic accuracy of AI assisted clinical

decision system for diagnosing diastolic heart failure.
97 2D-echocardiography Machine learning-driven rule generation

and expert driven knowledge acquisition.
Concordance rate for diagnosis of

diastolic heart failure compared to heart
failure specialists of 99.6%.

Omar et al. [37] Developed and validated an AI model for assessing left
ventricular filling pressures.

174 Speckle tracking echocardiography Machine learning model using random
forests, artificial neural networks and

support vector machines.

Area under the curve of 0.881 for
invasively measured elevated filling

pressures.
Pandey et al. [38] Developed and validated a deep learning model that

identified distinct patient subgroups with diastolic heart
failure.

1242 2D-echocardiography Unsupervised machine learning and deep
learning techniques.

Identified patient with elevated left
ventricular filling pressures better than
guideline methods, with area under the

curve of 0.88 vs. 0.67 (p = 0.01).
Chiou et al. [39] Established a rapid pre-screening tool for diastolic heart

failure by using AI techniques to detect abnormal patterns
in intra-beat dynamic changes.

315 2D-echocardiography Deep learning and conventional neural
network.

Accuracy of 0.91, sensitivity of 0.96 and
specificity of 0.85 for detecting diastolic

heart failure.
AI, Artificial intelligence.

Table 2. Key examples demonstrating the application of AI in echocardiographic diagnostics.
Author [Ref] Aim of study N Mode of echocardiography Method of AI Results
Zhang et al. [26] Used AI to build a pipeline for

echocardiogram interpretation
including disease detection of HCM, cardiac

amyloid and PAH.

HCM: 260 2D-echocardiography Deep learning with convolutional
neural networks.

HCM, cardiac amyloid and PAH detected
with C-statistics of 0.92, 0.87 and 0.85

respectively.

Cardiac amyloid: 81 Speckle tracking
PAH: 104

Ghorbani et al. [51] Used AI to identify local cardiac
structures, including pacemaker leads.

373 2D-echocardiography Deep learning with customized
convolutional neural network.

Accurately identified pacemaker leads
(AUC = 0.89), enlarged left atrium (AUC
= 0.86) and left ventricular hypertrophy

(AUC = 0.75).
Kusunose et al. [52] Investigated whether a convolutional

neural network could provide improved
detection of regional wall motion

abnormalities.

300 2D-echocardiography Deep learning with convolutional
neural network.

Similar accuracy to cardiologists (AUC
0.99 vs. 0.98, p = 0.15). Significantly
higher than that of residents (AUC 0.99

vs. 0.90, p = 0.002).
Sun et al. [53] Investigated whether TOE assisted with

an AI algorithm was superior to TOE
alone in diagnosing left atrial appendage

thrombi in patients with AF.

130 Transoesophageal echocardiography Deep learning with artificial
neural network.

Improved sensitivity and specificity with
AI assisted TOE, higher accuracy rate

(0.966 vs. 0.840, p < 0.01) and improved
AUC (0.932 vs. 0.834).

AI, artificial intelligence; HCM, hypertrophic cardiomyopathy; PAH, pulmonary arterial hypertension; AUC, area under the curve; TOE, transoesophageal echocardiography; AF, atrial fibrillation.
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Zhu et al. [42] recently used a novel AI algorithm to
assess RV function using 3D echocardiography. The study
included 51 participants and compared the results of their
AI derived RV function from 3D echocardiography to the
gold standard CMR [42]. The AI based 3D echocardiog-
raphy data showed statistically significant correlation with
the corresponding CMR analysis (p < 0.05 for all) [42].
The AI based 3D echocardiography RV analysis was com-
pleted rapidly at 100 ± 12 seconds in patients with good
quality images [42]. The AI algorithm also showed excel-
lent diagnostic performance in identifying RV dysfunction
as compared to CMR, with the cut-off RVEF of 43% show-
ing a sensitivity of 94% and specificity of 67% [42].

AI has also been used to develop predictive tools in
assessing RV failure post-implantation of a left ventricular
assist device (LVAD). A third of all LVAD implantations
are complicated by RV failure post-operatively, this is in
part due to increased RV preload from the device and ex-
cessive leftward shift of the interventricular septum, reduc-
ing its contribution to RV contraction [43,44]. RV failure
post LVAD implantation is difficult to predict and is cur-
rently based on pre-existing echocardiographic assessment,
biomarkers and clinical judgement [43]. Shad et al. [43]
used video-basedDL to predict the likelihood of developing
RV failure post device insertion using only 2D echocardio-
graphic data, significantly outperforming a team of human
experts at the same task (p = 0.016). Although these clin-
ical decisions are never performed with only echocardio-
graphic data, the algorithm clearly demonstrates its worth
as an adjunct tool in predicting RV dysfunction, allowing
appropriate measures to be taken pre-emptively.

3.2.5 Valvular Function

Echocardiographic assessment of valvular function is
a complex field requiring accurate images, precisemeasure-
ments and a multitude of parameters for assessment [1].
Conventional techniques to assess valvular function are ob-
jective, complex and time consuming, making them ideal
for AI advancement [1]. For example, work byMoghaddasi
et al. [45] used ML to develop a novel method for assess-
ing mitral regurgitation, based on image processing tech-
niques andmicro-patterns of 2D echocardiographic images.
Their technique was able to achieve an excellent sensitivity
of 99.38% and specificity of 99.63% for the detection of the
different severities of mitral regurgitation [45].

AI has also been used in aortic valve assessment prior
to transcatheter aortic valve replacement, Prihadi et al. [46]
utilised a new AI developed software for accurate mea-
surement of the aortic annulus and root using 3D transoe-
sophageal echocardiography. This is vitally important in
accurate sizing and placement of the replacement valve.
The results were comparable to assessments with computed
tomography, with excellent correlation and low inter and
intra-observer variability, paving the way for avoidance of
radiation exposure [46]. Queiros et al. [47] demonstrated

similar findings using a different software, confirming the
utility of AI in aortic valve assessment for transcatheter aor-
tic valve replacement [47,48].

The foray of AI into valvular heart disease remains in
its infancy, however significant advancements have already
been made, and are predictive of what may still be to come.

3.2.6 Stress Echocardiography
Stress echocardiography is a useful tool to assess for

the presence of coronary artery disease, however it suffers
from significant inter-observer variability, requires a high
level of expertise and has a significant qualitative element
in its assessment [6]. Omar et al. [49] demonstrated the
efficacy of a DL based algorithm that used strain analy-
sis for assessment of stress echocardiograms. This was as-
sessed on a 3D echocardiography dataset of stress echocar-
diograms, yielding comparable accuracies to standard ap-
proaches. This method is limited as it requires the acqui-
sition of strain imaging during stress testing, which can be
challenging, despite this it demonstrates the potential of AI
in this area [49].

Recently, Upton et al. [50] undertook a multi-centre,
multi-vendor trial that used a CNN to develop a model
that can identify patients with angiographically confirmed
prognostic coronary artery disease on stress echocardio-
grams. The model was then tested on a dataset of 154 stress
echocardiograms, showing a specificity of 92.7% and a sen-
sitivity of 84.4% [50]. The authors then put it into practice
as an “AI assistant” to be used by clinicians reporting the
studies, and it was found to increase the sensitivity for dis-
ease detection by 10%, achieving an area under the curve
of 0.93 [50]. This demonstrates a practical approach to AI
integration into clinical workflow.

3.2.7 Diagnostic Utility
DL methods have been shown to be effective in as-

sessing cardiac diseases and may improve the diagnosis of
diseases that are often challenging to diagnose on echocar-
diography alone (see Table 2, Ref. [26,51–53]). Zhang et
al. [26] used CNNs to develop a fully automated pipeline
of echocardiography from image recognition and segmenta-
tion to interpretation and disease diagnosis. They were able
to detect hypertrophic cardiomyopathy, cardiac amyloido-
sis and pulmonary arterial hypertension with C statistics of
0.93, 0.87 and 0.85 respectively [26]. Moreover, they were
able to successfully integrate this system into the clinical
workflow with success, unwrapping the immense potential
of AI in echocardiography [26].

Ghorbani et al. [51] developed a customized CNN
model to diagnose the presence of pacemaker leads, left
atrial enlargement and LV hypertrophy, with an area un-
der the curve of 0.89, 0.86 and 0.75 respectively. The same
group had previously used the same model to rapidly and
accurately assess LVEF and diagnose heart failure with re-
duced EF with an area under the curve of 0.97, an assess-
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ment done in real time, taking approximately 1.6 seconds
per cardiac cycle [30].

Omar et al. [49] were able to develop a CNN to
automatically assess regional wall motion abnormality by
quantifying a cardiac bull’s eye map derived from principal
strain analysis during dobutamine stress echocardiograms,
effectively diagnosing coronary artery disease. Kusunose et
al. [52] used a CNN to improve detection of regional wall
motion abnormality, demonstrating a similar area under the
curve to cardiologists and sonographers (0.99 vs. 0.98 re-
spectively; p = 0.15) and a significantly higher area under
the curve than junior medical doctors (0.97 vs. 0.83 respec-
tively; p = 0.003). ML was also used to develop automated
discrimination of hypertrophic cardiomyopathy from physi-
ological hypertrophy seen in athletes using speckle tracking
echocardiography, showing increased sensitivity and speci-
ficity than traditional markers such as early-to-late diastolic
trans-mitral velocity ratio, average early diastolic tissue ve-
locity and strain (p < 0.01, p < 0.01 and p = 0.04 respec-
tively) [13].

Assessment of intracardiac masses by echocardiog-
raphy is fraught with subjectivity and requires extensive
experience, an area ripe for advancement with AI. Strz-
elecki et al. [54] developed and tested an AI derived
method for automatic identification of different intracar-
diac tumour and thrombi with 2D echocardiography, they
were able to demonstrate better accuracies, sensitivities and
specificities than pre-existing software. Sun et al. [53]
focused primarily on left atrial and left atrial appendage
thrombi, developing a computer-aided diagnostic algorithm
to look at transoesophageal echocardiogram images and
assessing this in a prospective study. They assessed 130
patients with atrial fibrillation and found their algorithm
significantly improved the diagnostic accuracy of transoe-
sophageal echocardiogram for left atrial and left atrial ap-
pendage thrombi (p < 0.05) [53]. Zhou et al. [55] wrote
an excellent review highlighting the role of AI in disease
diagnosis with echocardiography.

4. Future Prospects
4.1 Prognostication and Phenotyping

Disease prognostication and personalised risk profil-
ing remains a growing field in cardiology, ML can provide
the driving force for the development of novel markers of
prognosis in echocardiography. LVEF remains the most
commonly used echocardiographic prognostic marker, de-
spite its limitations in this regard [56]. ML has been used
to develop more improved and specific prognostic mark-
ers, moreover its use has driven the development of new
disease phenotypes, delivering more individualised patient
care [26,57–59].

Samad et al. [57] used a non-linear ML model to ac-
curately predict survival using clinical data and echocardio-
graphy data, they were able to outperform common clini-
cal risk scores and linear logistical regression model scores

(p < 0.01). Moreover, they demonstrated that tricuspid re-
gurgitation velocity as a single echocardiographic variable
was more predictive of survival than LVEF [57]. Ernande
et al. [58] utilised unsupervised ML-based cluster analysis
of echocardiographic data to derive cardiac phenotypes in
patients with type 2 diabetes mellitus, demonstrating dif-
ferent risk profiles and outcomes for each cohort. Omar
et al. [59] also used unsupervised cluster analysis tech-
niques to assess diastolic dysfunction and derive two phe-
notypic grades of diastolic heart failure. They showed one
cluster as having significantly lower survival free of all-
cause mortality, lower cardiac mortality and lower cardiac
hospitalizations (p = 0.008, 0.026 and 0.09 respectively),
while no difference in survival was seen in guideline-based
classifications [59]. Zhang et al. [26] developed a com-
plete AI based echocardiographic pipeline and used this to
assess global longitudinal strain in patients receiving car-
diotoxic chemotherapy; they derived accurate patient tra-
jectories from this, providing improved prognostication as
compared to conventional methods.

4.2 AI operated Echocardiography
Although AI has made significant forays into training,

acquisition, interpretation and diagnostics of echocardiog-
raphy, there remains the issue of operating the machine and
probe. The solution likely lies in robotics. Arbeille et al.
[60] first demonstrated the efficacy of robotics with a tele-
operated motorized echocardiography probe controlled by
trained sonographers on a cohort of 41 patients. They were
able to generate similar measurements in 93–100%of cases,
with no statistically significant difference (p > 0.05) [60].
Further to this, Boman et al. [61], randomized patients in a
rural community in Sweden to a local robot-assisted remote
echocardiogram vs. an echocardiogram at the nearest spe-
cialty hospital. They assessed process time and time from
randomisation to specialist consultation and found these
metrics were significantly reduced with the robotic option,
they also found patient satisfaction to be improved in the
robotic arm [61]. This provides the perfect avenue for full
automation of the echocardiographic examination, and ML
is well suited for the development of a suitable software.

5. Challenges
Despite the massive progress of AI in echocardiog-

raphy, there remains various challenges in its widespread
clinical implementation. Firstly, the inner workings of DL
are poorly understood, it is often likened to a black box,
which creates a degree of hesitancy in its uptake by clini-
cians [62,63]. One could argue this is not entirely neces-
sary if patient outcomes are improved, software and ma-
chines are used daily despite little to-no understanding of
the complex mechanisms involved. Secondly all ML suf-
fers from overfitting if the training data is limited, this is
where the model is too specifically trained that it performs
poorly in predictive use in the field [63,64]. The solution to
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this problem is in providing larger training data sets, how-
ever this can be challenging and time consuming, requiring
labelling of imaging, appropriate training and adequate ex-
pertise [10,63].

Another limitation is the requirement for high qual-
ity training data, AI requires extensive data banks of high
quality images to train the algorithm [10,64]. When ap-
plied to sub-optimal real world imaging, this can often lead
to impaired analysis, with some studies citing error ranges
of 3–16% for view identification and quality control [65].
The solution for this requires ongoing training of algorithms
with real world data to ensure efficacy with sub-optimal
imaging.

The most important limitation of AI is the paucity of
studies with robust clinical outcomes. Studies continue to
compare AI derived measurements and findings to conven-
tional techniques; to the best of our knowledge there are
no clinical trials assessing the outcomes of AI application
to patient care. It has become clear that AI can match
(and in some cases out-perform) conventional techniques
in echocardiography interpretation and analysis, thus the
next step will be in assessing the outcomes of its applica-
tion on patients in real world clinical settings. Evidence of
improved outcomes would be required prior to integration
into routine clinical practice.

Finally, there are significant legal and ethical liabil-
ities associated with AI in echocardiography, as such any
integration of AI will require extensive validation prior to
regulatory approval [63,66]. Moreover, significant sonog-
rapher and cardiologist supervision will likely be required.
Resistance to AI due to fear of losing jobs should be put to
rest, as it is clear the role of AI is to assist clinicians by im-
proving accuracy, training, speed and workflow [10,26,65].
Undoubtedly, a collaborative multidisciplinary effort with
engineers, computer scientists, sonographers and cardiolo-
gists will be necessary for the successful implementation of
AI in echocardiography [63].

6. Conclusions
AI has the potential to transform echocardiography.

Studies have illustrated its efficacy in training sonogra-
phers, improving image acquisition and analysing and in-
terpreting scans. In this review we have highlighted that
ML algorithms are able to assess LV function, RV function,
quantify chamber and valvular measurements and improve
diagnostics. The main benefit of AI is the unmatched effi-
ciency and reproducibility it offers, a valuable tool to meet
the global rise in demand for echocardiography. The role
of DL is very encouraging, as it has the capacity to improve
prognostication and develop new classification models for
existing pathologies, a truly transformative feature.

There remain substantial barriers to the widespread
application and implementation of AI in the clinical
workspace. The most significant of these is the lack of data
on real clinical outcomes, the practical litmus test for all

novel clinical tools. The issues of ethics, poor understand-
ing of AI, and dataset limitations are also notable. Never-
theless, the future of AI in echocardiography shows great
promise, its clinical application is within reach, and it is
poised to revolutionise modern echocardiography.
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