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Abstract

Perioperative myocardial injury is a common complication caused by major surgery. Many pharmacological and nonpharmacological
studies have investigated perioperative cardioprotection. However, the methods are insufficient to meet the increasing clinical needs for
cardioprotection. The application of Mesenchymal Stem Cell-Derived Exosomes (MSC-Exos) is a novel cell-free therapeutic strategy
and has significantly benefitted patients suffering from various diseases. In this review, we comprehensively analyzed the application
of MSC-Exos to prevent myocardial infarction/injury by regulating inflammatory reactions, inhibiting cardiomyocyte apoptosis and
autophagy, promoting angiogenesis, and mediating cardiac remodeling. Finally, we assessed the therapeutic effects and the challenges
associated with the application of MSC-Exos from a clinical perspective.
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1. Introduction
In an aging population, many perioperative patients

suffer from cerebro-cardiovascular diseases, which result in
high morbidity and mortality due to perioperative myocar-
dial infarction (PMI) during anesthesia and surgery. PMI
is a severe cardiovascular complication and contributes to
non-fatal myocardial infarction, non-fatal cardiac arrest,
and perioperative cardiac death in around 500,000~900,000
individuals, and also increases the risk of death due to car-
diovascular complications every year in the first six months
after major non-cardiac surgery [1,2]. Irreversible short-
term and long-term adverse outcomes caused by PMI in-
crease the clinical need for perioperative cardioprotection
during major surgery.

Perioperative cardioprotection has been applied for
many years in cardiac and non-cardiac surgery and consists
of pharmacological treatments, including beta-blockers,
statins, alpha-2 agonists, aspirin, inhalation anesthetics, no-
ble gases, and opioids [3], and nonpharmacological treat-
ments, such as ischemic preconditioning (IPC), remote is-
chemic preconditioning (RIPC), and remote ischemic post-
conditioning (RIPostC) [4]. However, perioperative car-
dioprotection in cardiac and non-cardiac surgery remains
a debated topic. Recently, mesenchymal stem cell therapy,
which depends on the ability of self-renewal and secretion
of regenerative cytokines, has been incorporated into the
main therapeutic approaches in the regenerative medicine
of cardiovascular diseases [5]. However, the problem of
storage and transportation, and the risks of inducing tumori-
genesis and deformity need to be addressed [6]. Exosomes

primarily contribute to the efficacy of stem cells and are
stable, easily stored, and not rejected by the immune sys-
tem [7]. Mesenchymal stem cell-derived exosomes (MSC-
Exos) were developed as a kind of novel cell-free therapy.
They preserve the main biological features and functions
of the parent cells and exhibit a strong cardioprotective ef-
fect [8]. We reviewed the studies related to MSC-Exos to
improve the treatment of myocardial ischemia and investi-
gated their ability to provide perioperative cardioprotection.

2. Mechanisms Underlying Perioperative
Myocardial Injury

PMI is a kind of myocardial ischemia that mainly oc-
curs during or a few days after surgery and might occur due
to the usage of intense analgesia. Nearly 80% of patients
sustaining PMI only show symptoms based on cardiac tro-
ponin but lack other typical ischemic symptoms, such as
chest pain and changes in the ECG [9,10]. Few PMI pa-
tients present atherosclerotic plaque rupture with thrombus
formation and distal embolization. The flow-mediated hy-
poperfusion and supply-demand imbalance of oxygen pro-
mote PMI [11,12].

3. The Biological Characteristics of
Mesenchymal Stem Cell-Derived Exosomes

Mesenchymal stem cells are found in many tissues,
including adipose tissue, bone marrow, placenta, heart, pe-
ripheral blood, and umbilical cord [13]. They can regen-
erate by dividing and differentiating into several kinds of
cells [14]. The application of MSCs in cardiovascular dis-
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eases has advanced considerably [5]. Exosomes, contain-
ing RNA, DNA, proteins, and lipids, are nano-sized lipid
bilayer vesicles of endosomal compartments [15]. The bio-
genesis of exosomes is shown in Fig. 1. Besides hav-
ing various exosome biogenesis-related functional proteins,
MSC-derived exosomes contain surface markers, such as
CD9, CD44, CD63, CD73, CD81, and CD90, specific
markers of MSCs, proteins that act as signaling molecules
[16,17], and more than 850 unique gene products and miR-
NAs [18,19]. Certain RNA cargos (mRNA andmicroRNA)
that are sorted into MSC-derived exosomes are important
for angiogenesis, cell differentiation, cell proliferation, cell
survival, tissue remodeling, and immune system modula-
tion [20,21]. According to the results of RNA sequencing,
MSC-Exos, isolated from different tissues, were found to
have various species of tRNA [22] that affected the dif-
ferences in the clinical efficacy of MSC-Exos. The five
most abundantmiRNAs in adipose-derivedMSC (ASC) ex-
osomes are miR-486–5p, miR-10a-5p, miR-10b-5p, miR-
191–5p, and miR-222–3p. In bone marrow-derived MSCs
(BMSCs), exosomes contain miR-143–3p, miR-10b-5p,
miR-486–5p, miR-22–3p, andmiR-21–5p. ThemiRNA se-
quencing data showed that the cardioprotection provided by
endometrial MSCs was better than that provided by BM-
SCs and adipose-derived MSCs [23]; the cardioprotection-
related miRNAs were upregulated (miR-29 and miR-24),
while the cardiac-damage related miRNAs were downreg-
ulated (miR-21 and miR-15) [8,24,25].

Fig. 1. The biogenesis of MSC-Exos. First, the fusion of endo-
cytic vesicles forms the early endosome. Then, early endosomes
transform into multivesicular bodies. Finally, multivesicular bod-
ies fuse with the plasma membrane to release exosomes via mem-
brane budding. The MVBs might be transported to the Golgi for
recycling endosomes and delivered to lysosomes for degradation.

4. Cardioprotection of Mesenchymal Stem
Cell-Derived Exosomes
4.1 MSC-Exos Regulate Inflammatory Reactions

The inflammatory cascade plays a pivotal role in the
myocardial ischemia-reperfusion (I/R) process [26]. The
local inflammation induces pro-inflammatory cytokines
and promotes cell proliferation and apoptosis [27,28]. In
turn, monocytes and macrophages secrete angiogenic cy-
tokines and anti-inflammatory cytokines to promote injury
repair [29]. MSC-Exo, the main efficient component of
MSCs, participates in immune regulation [30]. Based on
the myocardial I/R mouse model, Zhao and Fatih Arslan
discovered that bone marrow-derived MSC-Exos could at-
tenuate neutrophil infiltration [31–33], increase the concen-
tration of the anti-inflammatory cytokine IL-10, and de-
crease the concentration of the pro-inflammatory cytokine
IL-6 in the heart tissues of mice. More importantly, MSC-
Exos promote the polarization of macrophages from the MI
phenotype to the M2 phenotype by exchanging miR-182 to
downregulate TLR4 and inhibit the relevant downstream
signaling pathway (TLR4/NF-kB), while as the sequence
of signaling cascade PI3K/Akt signaling pathway was acti-
vated, in vivo and in vitro [31]. MSC-Exos can increase the
proportion of M2 macrophages by upregulating IL-10 and
downregulating IL-6 via miR-21–5p, which reduces the in-
flammatory reaction in heart tissues [34]. MSC-Exos can
deliver miR-182–5p and downregulate Gasdermin D to re-
duce the inflammatory cytokines (e.g., IL-1β and IL-18) re-
leased in the inflammasome of NLRP3 [35]. MSC-Exos en-
riched with miRNA-181a can attenuate inflammatory cell
infiltration by targeting c-Fos, along with the upregulation
of IL-10 and Treg cells and the downregulation of TNF-
ɑ and IL-6 [36]. The basic mechanism is summarized in
Fig. 2.

Fig. 2. MSC-Exos regulate inflammatory reactions in recep-
tor cells. The MSC-Exos enter the receptor cells and mediate the
PI3K/AKT and TLR4/NF-kB signaling pathways, and the release
of IL-1β, IL-6, IL-10, and IL-18 by transferring related microR-
NAs.
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4.2 MSC-Exos Inhibit Cardiomyocyte Apoptosis and
Autophagy

Inappropriate apoptosis in ischemia strongly influ-
ences myocardial injury [37–39]. The phosphatidylinosi-
tol 3-kinase (PI3K)/protein kinase B (AKT) signaling path-
way plays a pivotal role in myocardial cell apoptosis,
which can be reversed by enhancer of zeste homolog 2
(EZH2) [40]. In hypoxia, bone marrow-derived MSC-
Exos can ameliorate cardiomyocyte apoptosis [41]. Phos-
phatase and tensin homolog deleted on chromosome ten
(PTEN), the target mRNA of miR-144, miR21, and miR-
141, is downregulated in a hypoxic environment, which
is reversed by bone marrow-derived MSC-Exos in a dose-
dependent manner, and activates the downstream PTEN/p-
AKT and PTEN/β-catenin signaling pathways [33,42,43].
In the mouse myocardial injury model induced by sepsis,
a significant abundance of miR-141 was found in bone
marrow-derived MSC-Exo-treated mouse myocardial tis-
sues. Exosomal miR-141 targeted PTEN and activated
β-catenin to alleviate myocardial injury. MiR-144 en-
riched in the bone marrow-derived MSC-Exo decreased
PTEN expression, increased p-AKT expression, and pre-
vented the apoptosis of H9C2 cells [42]. In turn, exo-
somes secreted from MSCs in a hypoxic environment en-
hanced the function of anti-apoptotic effects. MiR-125b
increased the expression of the p53 and BAK1 mRNA
[41]. Upregulating miR-221–3p and miR-146a-5p also in-
hibited the apoptosis of cardiomyocytes [44,45]. MSC-
Exos pretreated with macrophage migration inhibitory fac-
tor showed a strong cardioprotective effect. The transfer of
lncRNA-NEAT1 between MSC-Exos and cardiomyocytes
directly targeted miR-142–3p and regulated the expression
of Forkhead Box O1 (FOXO1). Additionally, exosomal
miR-183–5p could also target FOXO1, which can protect
cardiomyocytes from apoptosis and cellular senescence ef-
fectively [46–48]. H9c2 cells treated with human umbili-
cal cord MSC-Exo (hMSC-Exo) showed higher cell viabil-
ity and inhibition of apoptosis and autophagy. High levels
of Bcl-2 facilitate cardioprotection [49–52]. In the studies
conducted by Gu, et al. [50] and Zou, et al. [53] a high
concentration of MSC-Exo enhanced the BCL-2/BAX ra-
tio; thus, preventing the apoptosis of cardiomyocytes, in-
creased the expression of Beclin-1, pAMPK, LC3II/I, and
ATG13 and decreased the expression of P62 and Apaf1, ac-
tivating the AMPK/mTOR-mediated autophagy flux path-
way. However, according to a study by Li, et al. [54] ex-
osomal miR-29c from bone marrow MSCs downregulated
the LC3II/I ratio and the level of P62. Additionally, tar-
geting PTEN activated the downstream AKT/mTOR sig-
naling pathway, which prevented excessive autophagy in
the myocardium. Activation of the CHK2-Beclin2 pathway
regulated autophagy and attenuated the apoptosis of car-
diomyocytes, which is targeted by exosomal miR-143–3p
[55]. Additionally, the miR-143/Bcl-2/Beclin-1 axis is an-
other pathway for decreasing cell apoptosis and inhibiting

autophagy that is competitively bound by lncRNA UCA1
derived from hMSC-Exo [52]. In another Doxorubicin-
induced myocardial injury model, miR-199a-3p enriched
in MSC-Exo activated Akt; thus, inducing the expression
of Sp1 and inhibiting the activation of p53, along with the
overexpression of survivin to reduce apoptosis [51]. The
main signaling pathways are shown in Fig. 3.

Fig. 3. MSC-Exos inhibit the apoptosis and autophagy of car-
diomyocytes. MSC-Exos enter the receptor cells that mediate the
mTOR signaling pathway and increase the BCL-2/BAX ratio, thus
regulating the expression of FOXO1 and p53.

4.3 MSC-Exos Promote Angiogenesis

Myocardial injuries occur due to the dysfunction of
angiogenesis and restriction of blood supply [56]. MSC-
Exo has a robust proangiogenic ability, both in vivo and in
vitro [57]. The GO analysis and the Panther pathway anal-
ysis aimed at the MSC-Exo proteome revealed canonical
angiogenesis-related pathways, such as Fibroblast Growth
Factor (FGF), Epidermal growth factor receptor (EGFR),
Platelet-derived Growth Factor (PDGF), and cadherin [58].
In a study, Sun showed that MSC-Exo with abundant HIF-
1a can increase the mRNA and protein levels of proangio-
genic factors (e.g., VEGF and PDGF) and enhance neoves-
sel formation to provide cardioprotection [59]. Hypoxic
conditions can enhance this function [60]. Wang et al. [44]
found that these proangiogenic effects were induced by the
upregulation of miRNA-221–3p. In vivo, MSC-Exos were
administered to ischemic limbs via intramuscular injection.
Laser Doppler Perfusion Imaging showed that blood perfu-
sion in limb ischemia was restored by nearly 85%, and the
bioinformatics analysis suggested that proangiogenic ef-
fects might be induced by miR-7116–5p [61]. In the human
umbilical vein endothelial cell model, MSC-Exo influenced
capillary tube formation and promoted angiogenesis [60].
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Although the mechanism is unclear, MSC-Exo can treat
mouse hearts with a higher capillary density, which can pro-
tect the myocardium from ischemic injury [62,63]. Intrigu-
ingly, Hemin (a potent heme oxygenase-1 inducer)-treated
MSC-Exo had a superior effect in enhancing the capillary
density compared to MSC-Exo [48]. Hemin pretreatment
can upregulate miR-183–5p in MSC-Exo. Exosomal miR-
183–5p can partially regulate the HMGB1/ERK pathway
and inhibit ischemia-induced cardiomyocyte senescence to
enhance the cardioprotective effects by regulating mito-
chondrial fission. Several experiments have confirmed that
MSC-Exo can deliver miR-543 to reduce the expression of
COL4A1 and lead to the proliferation, migration, invasion,
and angiogenesis of cardiac microvascular endothelial cells
[64].

4.4 MSC-Exo Participates in Cardiac Remodeling by
Mediating Fibrosis

Reactive fibrosis, followed by the loss of cardiomy-
ocytes, occurs in most myocardial injuries and contributes
to the remodeling of post-myocardial injury [65,66]. Col-
lagen I promoted myocardial fibrosis in myocardial injury
[67]. MSC-Exo can alleviate myocardial fibrosis and im-
prove cardiac functionmore effectively thanMSC [8,40,68,
69]. In the epithelial-mesenchymal transition (EMT) pro-
cess, epithelial cells are gradually transformed into mes-
enchymal cells. EMT facilitates the pathogenesis of fibro-
sis [70]. MSC-Exo can downregulate EZH2 and upregulate
High Mobility Group AT-Hook 2 (HMGA2); thus, activat-
ing the PI3K/AKT pathway that can delay EMT and fibro-
sis in myocardial tissues, increase the left ventricular end-
diastolic internal diameter (Dd), and end-systolic internal
diameter (Sd), and increase the cardiac function [40]. In di-
abetic patients, MSC-Exo can reduce fibrosis and damage
to the myocardial tissue by inhibiting the TGF-β1/Smad2
signaling pathway to decrease the expression of Smad2 and
TGF-β1 proteins. Moreover, MSC-Exo can increase the
level of fatty acid transporters and fatty acid beta oxidase
[71]. Arslan, et al. [32] found that MSC-Exo can also pre-
serve the structure and function of the left ventricle by ac-
tivating the PI3K/Akt pathway, elevating the level of ATP
and NADH, and attenuating oxidative stress. Additionally,
the renin-angiotensin (RAS) system helps to improve the
index of cardiac function and cardiac remodeling. MSC-
Exo maintains the balance of the RAS system, promotes the
translation from Ang II to Ang 1–7, and provides constant
myocardial protection [72]. The mechanism of cardiac re-
modeling facilitated by MSC-Exos is shown in Fig. 4. The
characteristics and molecular mechanisms of all the related
studies mentioned above are shown in Table 1 (Ref. [31–
36,40–47,54,55,61,64,71,72]).

5. Discussion
Exosomes are endocytic vesicles that play a key role

in communication between cells. The biogenesis, up-

Fig. 4. The mechanism of cardiac remodeling is mediated by
MSC-Exos. MSC-Exos help to regulate the PI3K/Akt signaling
pathway, the conversion of Ang II to Ang 1–7, and the expression
of EZH2 and HMGA2.

take, composition, and physiological features have been
discussed in previous reviews [73–75]. Although the ex-
act mechanism is unknown, exosomes are extracellular
nanovesicles mainly involved in cardioprotection. In a
prospective clinical study executed in Policlinico Hospital
of Bari and “G. Monasterio” Foundation of Massa showed
that distinct exosomal proteins playing their roles of car-
dioprotection in older cardiac surgery patients regardless
of surgery type [76]. Lucio Barile proved cardiac pro-
genitor cells (CPC) derived exosome possessed the capac-
ity to reduce cardiomyocyte apoptosis, enhance angiogen-
esis, and improve LV ejection fraction in the rat myocar-
dial infarction model [77]. In-depth study revealed that
pregnancy-associated plasma protein-A existed in CPC de-
rived exosomes played a significant role in reducing scar
size and improving ventricular function in rats’ perma-
nent coronary occlusion model [78]. The data of Valentina
Casieri’s research indicated ticagrelor can be leveraged
to modulate release of anti-hypoxic exosomes from resi-
dent human cardiac-derived mesenchymal progenitor cells
(hCPCs) [79]. It is remarkable that, recently, MSC-Exos
were also shown to provide effective cardioprotection as a
cell-free treatment [80]. In our review, we comprehensively
analyzed the feasibility of the application of MSC-Exos in
perioperative cardioprotection, as it can regulate inflamma-
tory reaction [30], mediate cardiomyocyte apoptosis and
autophagy [81], promote angiogenesis [57,58,60,82], and
improve cardiac remodeling [32].

Some clinical research organizations conducted a se-
ries of exosome-related clinical trials. In a study, Dai, et al.
[83] reported that ascites-derived exosomes (Aex) were
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Table 1. The characteristics and molecular mechanisms of the related studies.
Study Design Myocardial injury model Intervention Result Mediator Signalling pathways

Zhao J 2019 [31] mice Ligating LCA bone marrow-derived MSC-Exo Converting macrophages to M2 phenotype and
alleviating cardiac inflammation

miR-182 TLR4/NF-κB/PI3K/Akt

Arslan F 2013 [32] mice Ligating LCA huES9.E1 derived MSC-Exo reducing WBC count activate
adenosine
receptors

PI3K/Akt

Pei Y 2021 [33] mice cecalligation puncture induced
myocardial impairment

bone marrow-derived MSC-Exo reducing the inflammatory infiltration and cell
apoptosis

miR-141 PTEN/β-catenin

Shen D 2021 [34] mice Ligating LCA C57BL/6 mouse derived
MSC-Exo

promote the polarization of macrophages to the
M2 phenotype

miR-21-5p Not given

Yue R 2022 [35] mice Ligating LAD bone marrow-derived MSC-Exo Reducing GSDMD-dependent cell pyroptosis and
inflammation

miR-182-5p Not given

Wei Z 2019 [36] mice Ligating LAD human umbilical cord
blood-derived MSC-Exo

Reducing inflammatory cell infiltration miRNA-181a TNF-α and IL-6

Jiao W 2022 [40] rat Ligating LAD bone marrow-derived MSC-Exo Reducing fibrosis EZH2 PI3K/AKT
Zhu LP 2018 [41] mice Ligating LAD bone marrow-derived MSC-Exo ameliorating cardiomyocyte apoptosis miR-125b p53 and BAK1
Wen Z 2020 [42] H9C2 CMCs of rat

cardiac origin
Cells were incubated in the hypoxic
container for 48 h at 37 ◦C in a CO2

incubator

bone marrow-derived MSC-Exo protect H9C2 cells from apoptosis MiRNA144 PTEN/AKT

Shi B 2018 [43] cardiac stem cells of the
rat

CSCs are treated with 100 µM H2O2 for
2 h

bone marrow-derived MSC-Exo protection against oxidative stress-triggered cell
death

miR-21 PTEN/PI3K/Akt

Wang Q 2021 [44] rat Ligating LAD human umbilical cord
blood-derived MSC-Exo

Promoting the survival and angiogenesis in
cardiomyocytes

miR-221-3p Not given

Liu C 2021 [45] mice Cecal Ligation and Puncture bone marrow-derived MSC-Exo protect cardiomyocytes of inflammation model miR-146a-5p MYBL1
Chen H 2020 [46] cells Human-induced pluripotent stem cell

(hiPSC)-derived cardiomyocytes
human adipose-derived

MSC-Exo
protecting cardiomyocytes from apoptosis miR-142-3p LncRNA-NEAT1/miR-

142-3p/FOXO1
Mao S 2022 [47] rat Ligating LAD bone marrow-derived MSC-Exo protecting cardiomyocytes from apoptosis miR-183-5p FOXO1
Li T 2020 [54] mice Ligating LAD bone marrow-derived MSC-Exo regulating autophagy under cardiac injury miRNA-29c PTEN/AKT/mTOR
Chen G 2021 [55] rat H9c2 cells were administrated to

established the cellular
hypoxia-reoxygenation model

bone marrow-derived MSC-Exo Reducing cell apoptosis miR-143-3p CHK2-Beclin2

Ju C 2018 [61] mice Ligating LAD cardiac derived MSC-Exo Promoting cardiomyocyte proliferation, and
preserves heart function

Not given Not given

Yang M 2021 [64] rat Ligating LAD Human mesenchymal stem cells
derived exosome

Promoting cardiac microvascular endothelial cell
angiogenesis

miR-543 COL4A1

Lin Y 2019 [71] rat diabetes mellitus-induced myocardial
injury myocardial injury

bone marrow-derived MSC-Exo Reducing myocardial injury and fibrosis Not given TGF-β1/Smad2

Xiao M 2021 [72] rat H9c2 cells bone marrow-derived MSC-Exo Improving cardiac remodeling and cardiac
function

Not given renin-angiotensin system

Note: left anterior descending coronary artery LCA; left anterior descending LAD.
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administered in the immunotherapy of colorectal cancer in
phase I clinical trials. Aex combined with Granulocyte-
macrophage Colony Stimulating Factor (GM-CSF) was
shown to have strong antitumor effects. Subsequent clin-
ical trials showed that Dendritic cell-derived exosomes
(Dex) have strong antitumor effects in melanoma and non-
small cell lung cancer [84–86]. From a clinical perspec-
tive, MSCs have beneficial curative effects in some non-
neoplastic diseases. The phase II/III clinical pilot studies in
Sahel Teaching Hospital showed that MSC-Exos applied to
grade III-IV chronic kidney diseases can inhibit inflamma-
tory immune reactions and improve kidney function [87].
Moreover, clinical trials on bronchopulmonary dysplasia,
macular holes, type 1 diabetes, and acute ischemic stroke
are underway. Due to large inter-individual variability and
technological limitations, MSC-Exos have not been widely
applied in clinical treatment. Fortunately, other applica-
tions of exosomes in oncologic therapy have verified the
safety and effectiveness of MSC exosomal therapy.

The bioactive cargoes in MSC-Exos are also being in-
vestigated. Several studies have shown that exosomal miR-
NAs and proteins are responsible for the cardiovascular pro-
tection and repair of MSC-Exos [21]. Exosomal miRNA
is an important bioactive cargo in MSC-Exo and is trans-
ferred to the recipient cells and specifically combined with
the complementary mRNA target; thus, it can regulate the
expression of related genes. The result of miRNA analy-
sis based on the NanoString platform showed that the pre-
dictable top 23 miRNAs of human bone marrow-derived
MSC-Exo targeting 5481 genes enriched in the PDGF,
TGF-β, and Wnt signaling pathways were associated with
angiogenesis and tissue remodeling [88–90]. Determining
the exact mechanism of action and the specific target genes
of these miRNAs is important for the clinical application of
exosomes. Many well-constructed models have shown that
modified exosomes can provide perioperative cardioprotec-
tion efficiently [82]. Because of unresolved confounding
factors (e.g., complex exosomal component, complicated
isolation process, elaborate exosome-loading mechanism,
etc.), modification of the MSC-Exo based on bioengineer-
ing has not been performed. According to the identity of
the specific bioactive cargo and research on the mecha-
nism of biogenesis of exosomes, enhancing the function
of MSC-Exo via genetic manipulation needs to be investi-
gated in future studies for clinical application. Some studies
have shown that lentiviral transfection and virus-free elec-
troporation can be used to develop bioengineered exosomes
[21,91] with higher efficacy. Through this method, a low
dose of exosomes can be used to achieve superior effects,
thus compensating for the limitations of exosome isolation.
To summarize, optimal ways for harvesting, modifying, and
applying exosomes need to be investigated to reduce pe-
rioperative myocardial injuries in cardiac and non-cardiac
surgeries.

6. Conclusions
MSC-Exos regulate inflammatory reactions, inhibit

cardiomyocyte apoptosis and autophagy, promote angio-
genesis, and mediate cardiac remodeling to prevent my-
ocardial injury. MSC-Exos show therapeutic potential
for ischemic cardiac injury and have a good application
prospect in Cardioprotection. However, exosomes alone
are not enough to reverse cardiac dysfunction after myocar-
dial injury. Further study of the molecular mechanism can
better guide the clinical transformation.
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