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Abstract

Exercise intolerance, measured by peak oxygen consumption (VO2), is a hallmark feature of heart failure (HF). The effect is compounded
in the elderly HF patient by aging-associated changes such as a reduction in lean muscle mass, an increase in adiposity, and a reduction
in maximal heart rate and peripheral blood flow with exercise. There is a non-linear reduction in peak VO2 with age that accelerates
in the later decades of life. Peak VO2 is further reduced due to central and peripheral maladaptation from HF. Central mechanisms
include impaired peak heart rate, stroke volume, contractility, increased filling pressures, and a blunted vasodilatory response. Peripheral
mechanisms include endothelial dysfunction, reduced blood flow to muscles, and impaired skeletal muscle oxidative capacity. This

review presents a focused update on mechanisms leading to impaired aerobic capacity in older HF patients.

Keywords: elderly patient; heart failure; exercise intolerance; peak oxygen consumption

1. Background

Heart failure (HF) is prevalent in the elderly and ex-
ceeds 10% in those older than 85 years [1]. Over 75% of
HF cases involve older adults [2]. At least half of these
cases involve HF with preserved ejection fraction (HFpEF)
[3]. Regardless of left ventricular ejection fraction (LVEF),
a hallmark feature of HF is exercise intolerance, as demon-
strated by a reduction in peak oxygen consumption (VO2)
with exercise [4]. Elderly patients are also most vulnerable
to complications associated with HF. Patients with a low
peak VO?2 are at an increased risk for mortality.

This review presents a focused update of the cardio-
vascular and peripheral processes leading to exercise intol-
erance in older HF patients.

2. Peak VO2 as a Measure of Aerobic
Exercise Capacity

Peak oxygen consumption (VO2) is considered the
“gold standard” for measuring aerobic performance. It is a
product of cardiac output (CO), the central component, and
the arterio-venous oxygenation difference (A-VO2 diff),
the peripheral component, as described by the Fick equa-
tions below,

Equations:

VO2 =CO x AV O, diff,
VO2 =5V x HR x AV O, diff,
VO2=EDV x LVEF x HR x AVOq diff,

V02, peak oxygen consumption; CO, cardiac output; EDV,
end-diastolic volume; LVEF, left ventricular ejection frac-
tion; AVO-, arteriovenous oxygen difference; SV, stroke
volume; HR, heart rate.

Mechanisms that alter any of the variables of the equa-
tions may affect aerobic performance. Peak VO2 is mea-
sured by cardiopulmonary exercise testing (CPET) to eval-
uate functional capacity. The examination is usually per-
formed with a cycle ergometer or a treadmill. The patient’s
heart rate and blood pressure and electrocardiogram (ECG)
are continuously recorded while expired gasses (i.e., oxy-
gen and carbon dioxide) are analyzed. Measurements are
obtained at rest, throughout exercise, and during recovery.
The VO2 is plotted as a function of time and correlates with
the patient’s work [5]. Fig. 1 demonstrates a sample plot of
V02 and other exercise variables versus time. Both central
and peripheral determinants are responsible for a blunted
peak VO2 with exercise in the elderly HF population by af-
fecting one or more of the parameters in the equations. The
processes involving each variable are described below.

2.1 Effects of Age and Gender on Peak VO2

Peak VO2 (i.e., exercise capacity) is inversely corre-
lated with age in both cross-sectional and longitudinal stud-
ies [6,7]. Fleg and colleagues [7] evaluated the longitudinal
change in peak VO2 of healthy volunteers from the Bal-
timore Longitudinal Study of Aging (BLSA) cohort over
eight years. This study demonstrated a steep reduction in
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Fig. 1. Example of a cardiopulmonary exercise test (CPET) report. Oxygen consumption (VO2) per kilogram of body weight (left)

and volume of expired air (VE) (right) are plotted over time in minutes. BTPS, body temperature; pressure; saturated water vapor;

FEO2%, Concentration of oxygen in exhaled gasses; FECO2%, Concentration of carbon dioxide in exhaled gasses; HR, heart rate; RER,

Respiratory exchange ratio; Tm Grd, treadmill grade; Tm Spd, treadmill speed.

peak VO2 as a function of increased age regardless of gen-
der. The rate of peak VO2 reduction was higher in later
decades (>70-years-old) and exceeded 20% per decade in
such individuals. Two additional studies have since con-
firmed these findings [8,9]. Although aerobically active
individuals maintain a higher peak exercise capacity than
their sedentary counterparts, they experience similar rela-
tive reductions in peak VO2 with increased age [7,8].

The age-related decline in peak VO2 is a result of sev-
eral factors. The decrease in maximal heart rate of approx-
imately one beat per minute per year is a major contribu-
tor to this reduction in peak VO2 by its effect on exercise
CO. This decline in maximal heart rate with age is likely
mediated by a reduction in beta-adrenergic responsiveness,
which has been demonstrated by blunted heart rate increase
from infused catecholamines [10]. Age-related decreases
in O2 pulse (i.e., the product of stroke volume and A-VO2
difference) also correlate well with peak VO2 changes and
suggest underlying peripheral factors also influence exer-
cise capacity [7]. These factors include loss of lean body
mass [7], reductions in blood flow to muscles [11], im-
paired muscular oxidative metabolism [12], increased ar-
terial wall stiffness [13], and reduced peripheral oxygen
extraction [14]. Table 1 (Ref. [6,15-29]) summarizes the
mechanisms responsible for reducing aerobic capacity with
aging.

There are also sex differences in peak VO2 across the
age span, with women demonstrating values approximately
20% lower than men. The sex difference is primarily re-
lated to the smaller muscle mass in women [30]. In healthy

Table 1. Aging and heart-failure related mechanisms for

changes in aerobic capacity.

Aging  Heart failure

Peak VO2 ! !
Central Mechanisms

Maximal SV = !

Peak HR l l

Peak CO/CI l l

Maximal LV EDV i 1

Maximal EF l l

Diastolic function l l

Peripheral Mechanisms
Maximal A- VO2 diff l l
Peak SVR/SVRI i i
Lean muscle mass l l
Mitochondrial volume/function l
Peripheral blood flow l

!
=/|

A summary of age and heart failure related mechanisms for

changes in aerobic capacity. Summarized from citations [6,15—
29]. A-VO2 diff, Arterio-venous oxygen concentration differ-
ence; CI, cardiac index; CO, cardiac output; EF, ejection frac-
tion; EDV, end diastolic volume; HR, heart rate; LV, left ven-
tricle; SV, stroke volume; SVR, systemic vascular resistance,
SVRI, systemic vascular resistance index; SVR, systemic vas-
cular index; VO2, oxygen consumption.

BLSA volunteers, there was a mean 44% reduction in peak
VO2 in men and a 36% decline in women between ages 25
and 75 years [7].
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3. Heart Failure and Its Relation to Peak

VO2 in the Elderly

Heart failure with reduced ejection fraction (HFrEF)
is defined by a reduction in the LVEF below 40%, and HF-
pEF by an LVEF >45% or 50% in association with the clas-
sic HF symptoms of dyspnea, fatigue, and exercise intoler-
ance. The elderly are already at risk for an age-related re-
duction in maximal exercise capacity due to the processes
mentioned in the previous section. Heart failure (regardless
of LVEF) is an independent risk factor for further exercise
intolerance as measured by a reduction in peak VO2 com-
pared to healthy age peers [30].

In one study, older patients with HF (mean age: 70
years) demonstrated a blunted peak VO2 during upright
cycle ergometry: (HFrEF: 13.1 mL/kg/min, HFpEF: 14.2
mL/kg/min) compared to similarly aged healthy controls:
19.9 mL/kg/min [31]. A subgroup analysis of the par-
ticipants in Heart Failure: A Controlled Trial Investigat-
ing Outcomes of Exercise Training (HF-ACTION) study
demonstrated that age is the strongest predictor of peak
VO2 in HFrEF patients [32]. This study showed a reduc-
tion of peak VO2 by approximately 1 mL/kg/min for every
7-year increase in the age above 40 years.

Lower peak VO2 is a potent risk factor for adverse
outcomes in older HF patients similar to younger cohorts.
A 2015 large multi-center prospective study evaluating 990
elderly (>70 years old) patients with HFrEF determined
that higher peak VO2 was predictive of reduced risk of car-
diovascular death or urgent heart transplant (hazard ratio:
0.97, p = 0.0016) [33]. This study demonstrated a graded
reduction in median peak VO2 in mL/kg/min with each
decade of life: <50 years: 17.1 mL/kg/min, 50 to <60
years: 14.8 mL/kg/m, 60 to <70 years: 13.9 mL/kg/min,
and >70: 12.5 mL/kg/min. A peak VO2 less than 14
ml/kg/min in HFrEF patients is commonly used as a major
criterion for cardiac transplantation referral [34].

Compared to patients with HFTEF, patients with HF-
pEF tend to be older, more often female, and have more
comorbidities, such as obesity, diabetes mellitus, and hy-
pertension [35]. Blunted exercise tolerance and impaired
peak VO2 are also characteristic features of HFpEF pa-
tients. Haykowsky and colleagues [36] compared the peak
VO2 of 60 older HFpEF patients (mean age: 70 years) un-
dergoing CPET to age-matched healthy control subjects (N:
40, mean age: 69 years). They demonstrated a significantly
reduced peak VO?2 in the HFpEF patients compared to con-
trol subjects (cycle ergometer peak VO2: 14.6 vs. 22.9
mL/kg/min, respectively) [36]. Multiple studies have cor-
roborated these results [15—17,37]. Although studies relat-
ing mortality to exercise intolerance in elderly HFpEF pa-
tients are less common than in HFrEF, data in younger pa-
tients with HFpEF indicate that peak VO?2 is similarly pre-
dictive of mortality [38]. A study by Yan and colleagues
demonstrated that increased minute ventilation to carbon
dioxide production (VE/VCQO?2) slope, a marker of exces-
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sive ventilation for work performed, was more predictive
of mortality compared to peak VO2 alone in 224 older pa-
tients (mean age 69 years) with HFpEF [39]; however, more
studies are needed to validate these results.

Peak VO?2 is reduced with exercise in HF patients sec-
ondary to derangements in multiple central (i.e., heart rate,
contractility, ventricular relaxation) and peripheral (i.e.,
skeletal muscle volume/function, metabolism, vasodilator
reserve) parameters. The following sections will review
these mechanisms in detail. Table 1 delineates the mecha-
nisms for changes in aerobic capacity in older HF patients.
The similarity of these changes to those related to aging per
se is striking, providing a “double dose” via their superim-
position on the aging changes.

4. Central Mechanisms of Exercise
Intolerance in Elderly HF Patients

A reduction in peak CO between 27% and 58% is no-
table in patients with HF compared to healthy individuals of
similar age [40]. Understanding the mechanisms leading to
impaired CO, the product of heart rate and stroke volume, is
key in recognizing the central processes leading to blunted
peak VO2 response with exercise.

4.1 Heart Rate and Stroke Volume

Impaired peak CO in patients with HFrEF is com-
monly due to both heart rate and stroke volume reductions.
Chronotropic incompetence (CI) with exercise, as defined
by a reduced ability to augment heart rate response to ex-
ercise, is common in HF [41]. A 2006 study by Brubaker
and colleagues [42] compared the heart rate response to up-
right cycle ergometry in 102 older patients (>65 years) with
HFrEF and age-matched control subjects. Approximately
22% of the HF group demonstrated CI, as defined by fail-
ure to achieve at least 80% of age-predicted maximal heart
rate on the exercise test despite maximal effort. This pa-
rameter correlated with lower peak VO2 (12.4 mL/kg/min)
as compared to HFrEF patients without CI (peak VO2:
14.6 mL/kg/min) and healthy controls (peak VO2: 19.1
mL/kg/min). These data suggest that a blunted heart rate
response plays a major role in the impaired CO response
to exercise and is a key mechanism for exercise intolerance
in HF. It is well recognized that stroke volume augmenta-
tion is also blunted with exercise by approximately 50% in
patients with HFrEF [43-45].

Chronotropic incompetence and impaired stroke vol-
ume responses are also evident in elderly HFpEF patients.
A clinical trial by Borlaug and colleagues demonstrated a
significantly blunted heart rate response to upright cycle er-
gometry in elderly HFpEF patients (mean age: 65 years;
mean baseline heart rate: 70 bpm, mean peak heart rate:
87) as compared to control subjects (mean age: 65 years,
mean baseline heart rate: 68 bpm, mean peak heart rate:
115 bpm) [17]. The HFpEF patients also demonstrated a
slower heart rate recovery, although there was no differ-
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ence in atrioventricular nodal blockade agent use between
groups. A 2011 study by Haykowsky and colleagues [18]
evaluated 48 elderly HFpEF patients (mean age: 69 years)
and also demonstrated that a reduced peak VO2 resulted
from a lower CO, primarily due to a blunted response in
peak heart rate. In this study, stroke volume augmentation
was preserved, contrary to their previous study [46]. How-
ever, a recent study demonstrated an impaired stroke vol-
ume response to exercise in older HFpEF patients [47].

4.2 Impaired Cardiac Contractility

Impaired cardiac contractility is a hallmark feature of
HFrEF and is characterized by a reduction in LVEF. LVEF
may be further compromised due to excessive vasoconstric-
tion in an elevated afterload state. An impaired contrac-
tile reserve is also noted in elderly HFpEF patients. Bor-
laug and colleagues demonstrated a reduction in peak power
index, defined by the product of peak LVEF and systolic
blood pressure divided by end-diastolic LV volume, and
end-systolic elastance, defined by a ratio of end-systolic LV
pressure to end-systolic LV volume, in 17 HFpEF patients
(mean age: 65 years) compared to healthy controls [17].

4.3 Impaired Left Ventricular Relaxation and Increased
Filling Pressures

Regardless of LVEF, patients with HF have impaired
left ventricular relaxation and increased filling pressures at
a reduced workload compared to their healthy counterparts
[19,48-50]. Maeder and colleagues [19] demonstrated in-
creased pulmonary capillary wedge (PCWP) pressures in
elderly HFpEF patients at a lower workload when compared
to healthy controls. The rapid rise of PCWP with exer-
cise suggests decreased left atrial and ventricular compli-
ance from impaired lusitropy, contributing to poor aerobic
performance in these patients [19,49]. This finding is also
notable in patients with HFrEF. In 2012, Sandri and col-
leagues demonstrated that patients with HFrEF, including
those >65 years old, also show significant diastolic dys-
function [48]. The resultant effect is elevated left ventric-
ular and atrial filling pressures, and increased mitral regur-
gitation, contributing to exercise intolerance [50].

5. Peripheral Mechanisms of Exercise
Intolerance in Elderly Patients

Several significant peripheral structural, functional,
and metabolic abnormalities lead to exercise intolerance in
patients with HF [43,51]. The elderly are more susceptible
to these effects for the following reasons: reduced skele-
tal muscle mass, alterations in peripheral muscle composi-
tion and function, increased sedentary lifestyle, more co-
morbidities (i.e., arthritis, diabetes, hypertension), and im-
pairments to metabolism [30]. Several recent trials in the
elderly demonstrate significant peripheral alterations in pa-
tients with both HFrEF and HFpEF and are described be-
low.

5.1 Skeletal Architecture Variations

Exercise training improves exercise capacity despite
limited effects on CO, stroke volume, and left ventricular
stiffness in older patients with HF [52,53]. The likely ex-
planation is that peripheral maladaptations are crucial con-
tributors to exercise intolerance in HF via reduction in ar-
teriovenous (A-VO2) oxygen difference, an essential re-
flection of skeletal muscle architecture and function [54].
An increase in fat mass, seen both with aging and obesity,
is also a contributor to reduced peak VO2 in HFpEF [55].
Haykowsky and colleagues [56] performed magnetic reso-
nance imaging of the thigh in twenty-three older HFpEF pa-
tients (mean age 69 years) and 15 healthy age-matched con-
trols. This study demonstrated increased intramuscular adi-
pose tissue area and increased adipose-to-skeletal muscle
mass ratio in HFpEF patients compared to healthy controls.
Both parameters were independent predictors of lower peak
VO2. Furthermore, the natural aging process leads to skele-
tal muscle mass wasting, i.e., sarcopenia [57]. The com-
pounded effect of increased body fat and reduced muscle
mass is termed sarcopenic obesity [58]. As a result of these
changes, older HFpEF patients typically demonstrate skele-
tal muscle structural abnormalities and mitochondrial dys-
function, resulting in impaired ability to utilize oxygen, and
thereby contributing to exercise intolerance [57,59].

Similar to patients with HFpEF, skeletal muscle dys-
function in HFrEF is characterized by a reduction in skeletal
muscle volume/function, mitochondrial volume/function,
and reduction in blood flow, contributing to exercise in-
tolerance [53,60,61]. In a 1997 study, Schaufleberger and
colleagues [62] performed lateral vastus muscle biopsies in
43 patients with HFTEF (mean age: 62 years) and 20 con-
trols (mean age: 66 years). The biopsies demonstrated an
increase in type II B non-oxidative fibers and a reduction
in type I oxidative fibers in the HFrEF cohort. Patients
with HF also showed increased baseline levels of lactate
and lactate dehydrogenase activity which correlated with a
decrease in aerobic exercise capacity.

5.2 Impaired Oxidative Capacity

Skeletal muscles in patients with HFrEF have im-
paired oxidative capacity due to reduced mitochondrial vol-
ume in addition to the loss of muscle mass and impaired
enzymatic activity [61]. A 2015 study by Southern and
colleagues evaluated skeletal muscle oxidative capacity by
measuring wrist-flexor muscle oxygen consumption using
near-infrared spectroscopy in 16 HFrEF patients (average
age: 65 years) and 23 controls (average age: 61 years) fol-
lowing wrist flexor exercises. Muscle oxidative capacity
was lower in the HFrEF group (1.31 min~—!) than in the
control group (1.59 min—'). These data are consistent with
prior findings in younger HFrEF patients [63].

Impaired skeletal muscle oxidative capacity is also
demonstrated in elderly HFpEF patients. A 2014 study
by Bhella and colleagues evaluated 11 HFpEF patients
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(mean age: 73 years) with CPET [15]. This study demon-
strated a decreased peak VO2 and an increased CO/VO2
slope compared to healthy age-matched controls. Us-
ing 3!'phosphorous magnetic resonance spectroscopy in
healthy, HFpEF, and mitochondrial disease patients, they
demonstrated that the latter two groups demonstrated de-
pleted phosphocreatine stores suggestive of impaired ox-
idative capacity. The pattern of impaired peak VO2 and
increased CO/VO2 slopes was also similar in patients with
mitochondrial disease.

5.3 Reduced Peripheral Perfusion Due to Impaired
Vasodilation

Older HF patients also demonstrate an impaired va-
sodilatory response as measured by a higher systemic vas-
cular resistance index at peak exercise. This impaired va-
sodilatory response results in reduced blood flow to skele-
tal muscles, leading to blunted augmentation of oxygen uti-
lization during exercise [17]. A likely contributor to the
impaired vasodilatory response to exercise in elderly HF
patients is impaired peripheral arterial endothelial function.
Hundley and colleagues evaluated arterial dilatation follow-
ing upright cycle ergometry in 10 older patients with HFrEF
(mean age: 73 years), 9 with HFpEF, and 11 healthy control
patients by using cardiovascular magnetic resonance imag-
ing of the superficial femoral artery (SFA) [53]. The study
demonstrated a significant decrease in flow-mediated arte-
rial dilation (FMAD) as measured by a percent increase in
SFA area in the HFrEF (4%) group as compared to either
the HFpEF (12%) or control group (14%). Peak VO2 was
positively associated with FMAD in the HFTEF cohort (p =
0.02) but not in the HFpEF group (p = 0.58).

6. Limitations of Existing Data

Most studies in contemporary literature on exercise
intolerance in older HF populations are limited by their
small sample sizes. There is also a significant under-
representation of women and non-Whites in existing stud-
ies. As a result, it is difficult to generalize the conclu-
sions of these studies to many older subgroups. There is
also little homogeneity in the methodology and parame-
ters studied across different clinical studies. For exam-
ple, one study used near-infrared spectroscopy to study
mitochondrial oxidative capacity [15], while another em-
ployed 3'phosphorous magnetic resonance spectroscopy
[63]. These two parameters are surrogates of oxidative ca-
pacity but are not necessarily congruent. There are also
variations in exercise type, duration, and intensity across
studies that further limit the generalizability of data.

Another important limitation to the existing literature
is the effect of comorbidities common to older HF patients
on aerobic exercise capacity. Comorbidities such as chronic
renal disease, pulmonary disorders, diabetes, peripheral
vascular disease, atrial arrhythmias, endocrinopathies, neu-
rological disorders, and musculoskeletal disease affect ex-
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ercise tolerance via complex pathways. Thus, the mech-
anisms for exercise intolerance described in this review
likely vary in their importance based on a given patient’s
comorbidities. Patients should therefore be evaluated in the
context of their specific disease profiles.

This review does not discuss impairments in pul-
monary mechanics and biochemical processes seen with
both aging and HF. Both topics are also important for a
global understanding of exercise intolerance in the elderly
HF population but are outside the scope of the manuscript.
Combined cardiopulmonary studies are needed to assess the
degree to which these factors contribute to exercise intoler-
ance in older HF patients. Finally, the role of exercise train-
ing in ameliorating the contributors to exercise intolerance
in older HF patients is not addressed.

7. Conclusions

Heart failure is a common disorder in the elderly, lead-
ing to significant exercise intolerance. There are multi-
ple mechanisms leading to exercise intolerance in elderly
HF patients, including those due to age per se superim-
posed on those secondary to HF. Impairments in central
parameters leading to reduced CO, including blunted heart
rate, stroke volume, and blood flow distribution, are critical
pathways for exercise intolerance. The elderly HF patient
is also susceptible to peripheral contributors to exercise in-
tolerance, including skeletal muscle architecture changes
(i.e., increased fat mass and decreased muscle mass) as well
as impaired muscle metabolism, and peripheral hypoperfu-
sion. More clinical studies are needed in widely representa-
tive older HF populations to elucidate further these mecha-
nisms of exercise intolerance and the role of exercise train-
ing in their treatment.
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