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Abstract

Long COVID or post-acute Coronavirus disease 2019 (COVID-19), a malady defined by the persistence of COVID-19 symptoms for
weeks or even months, is expected to affect the lives of millions of individuals worldwide significantly. Cardiopulmonary symptoms such
as chest discomfort, shortness of breath, fatigue, and autonomic manifestations such as postural orthostatic tachycardia syndrome, and
arrhythmias are prevalent and widely recognized. A variety of cardiovascular problems, including myocardial inflammation, myocardial
infarction, ventricular dysfunction, and endothelial dysfunction, have been described in individuals following the initial acute phase. With
over 10,000 published publications on COVID-19 and the cardiovascular system, presenting an unbiased thorough analysis of how SARS-
CoV-2 affects the system is essentially challenging. This review will provide an overview of frequent cardiovascular manifestations,
emphasizing consequences, proposed pathophysiology, and clinical diagnostic manifestation strategy.
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1. Introduction
The year 2020 was a momentous occasion in both

history and global health. The Coronavirus disease 2019
(COVID-19) pandemic has emphasized the dangers of fatal
epidemic-prone illnesses wreaking havoc on the globalized
world. In Wuhan, China, pneumonia with anunknown ori-
gin became common in December 2019. RNAwas isolated
and sequenced from bronchoalveolar lavage fluid samples
from these individuals. The culprit responsible for COVID-
19 was discovered to be a new beta coronavirus, SARS-
CoV-2, which has caused morbidity and mortality on an un-
paralleled worldwide scale [1,2]. The COVID-19 pandemic
has been ongoing for more than two years, with no end in
sight in the near future. A significant number of organ dys-
functions have been discovered as a result of considerable
and ongoing studies on COVID-19.

While the pharmaceutical armamentarium for
COVID-19 is still being developed in order to minimize
morbidity and death in COVID-19 patients, health commu-
nities must contend with a unique condition experienced by
some COVID-19 survivors. This syndrome is associated
with persistent symptoms and/or delayed or long-term
complications beyond four weeks from the onset of symp-
toms, known as long haulers, long COVID, or post-acute
COVID-19 syndrome (PACS) [3].

Some of the symptoms and signs observed in long-

term COVID-19 patients relate to cardiovascular problems,
accounting for roughly 42% of PACS symptoms. Further-
more, laboratory data and imaging reveal cardiovascular
problems in long COVID patients [4]. To the best of our
knowledge, there is still a lack of information on cardiovas-
cular outcomes in PACS. Thus, this narrative review scru-
tinized the available evidence, underscored the pathomech-
anisms responsible for acute COVID-19 that may also par-
take in long COVID, and formulated plausible hypotheses
based on the existing evidence. Finally, we also aim to de-
velop a comprehensive strategy for early detection and di-
agnosis of long COVID cardiovascular sequelae.

2. Post-Acute COVID-19 Syndrome (PACS)

Long COVID refers to the presence of numerous
symptoms weeks or months after acquiring SARS-CoV-2
infection, regardless of viral state. It can be chronic or re-
lapsing and remitting in nature, with the continuation of
one or more acute COVID symptoms or the development of
contemporary symptoms. Most persons with PACS tested
negative for COVID-19, showing that the viral clearance
in the body has been completely resolved. In other words,
PACS is the period of time in which between microbiolog-
ical and clinical recovery (with reference to both subjec-
tive, laboratory, and radiological findings) [5]. To avoid
future ambiguity in describing this state across society, a
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uniform definition of long COVID has been established.
According to the Centers for Disease Control and Preven-
tion (CDC), PACS or long COVID is a condition in which
new, continuous, or recurring symptoms arise four weeks
or more after a COVID-19 infection. Moreover, PACS or
long COVID may be separated into two stages based on the
duration of symptoms: subacute/ongoing COVID, where
symptoms last longer than 4 weeks but less than 12 weeks,
and chronic COVID, where symptoms last longer than 12
weeks [6].

There are various difficulties in diagnosing long
COVID. The period required for clinical recovery varies
depending on the severity of the disease, and concomitant
comorbidities make recognizing the cut-off point for diag-
nosis challenging. A considerable number of SARS-CoV-
2 infected people are asymptomatic, and many people ex-
hibit a wide range of clinical symptoms. If these people
tend to develop several symptoms, later on, diagnosing long
COVID will be quite complicated [7]. As a result, it is criti-
cal to better understand long COVID through a pathophysi-
ologic concept in order to enhance understanding of a wide
variety of clinical manifestations of long COVID for a di-
agnostic purpose.

3. Proposed Pathomechanisms of Long
COVID in the Cardiovascular System

SARS-CoV-2 is already known to be responsible for
the global COVID-19 pandemic on March 11, 2020 [8].
This entity resembles SARS-CoV-1 in many ways since
both are positive-stranded RNA viruses with four struc-
tural proteins that anchor on the viral envelope [9]. Among
these structural proteins, the spike (S) glycoprotein is the
utmost important structure that is responsible for the host-
cell entrance mechanism. The SARS-CoV-2 entrance path-
way occurs when the S glycoprotein binds to the host
cell’s angiotensin-converting enzyme-2 (ACE2) receptor,
primarily in the type 2 pneumocytes, which results in viral
membrane and host cell fusion [10]. The process is facil-
itated by the type II transmembrane serine protease (TM-
PRSS2) by activating the S protein. ACE2 receptors are
ubiquitously expressed in various organs such as the lungs,
intestines, kidneys, and importantly, the heart and endothe-
lium [11]. Although both SARS-CoV-1 and 2 attach to the
same receptors (ACE), enhanced infectivity has been ob-
served in SARS-CoV-2. The reasons are twofold. To begin,
SARS-CoV-2 has two-unit S glycoprotein, S1 and S2 [12].
Then, changes in the virus’s receptor binding region dra-
matically boosted SARS-CoV-2 affinity to ACE-2 by 10 to
20-fold over SARS-CoV-1 [13]. The heightened virulency
of SARS-CoV-2 also translates to causing more harm as we
highlighted later in the review.

It has been generally known that the persistence of or-
gan damage following an acute COVID-19 infection is re-
lated to PACS. Although several organs are affected and
contribute to the persistence of symptoms in long COVID,

we only highlight the cardiovascular (CV) sequelae of long
COVID in this narrative review, primarily related to their
possible underlying pathophysiology and modes for early
detection. In general, five pathomechanisms contributed to
the cardiovascular sequelae of long COVID, including di-
rect SARS-CoV-2 invasion, aberrant immune and inflam-
matory response, ACE2 dysregulation, lung abnormalities,
and adverse effect related to COVID-19 treatment itself [3].
The proposed pathophysiology of cardiovascular disease
(CVD) in long COVID was depicted in Fig. 1.

3.1 Direct SARS-CoV-2 Invasion
Direct invasion by SARS-CoV-2 into the heart and

vessel-associated endothelial cells is possible due to the
ACE-2 expression in these cells [12]. Several autopsy stud-
ies have identified the presence of SARS-CoV-2 in the heart
and blood arteries, supporting this. According to a com-
prehensive assessment of 12 relevant studies that evaluated
105 post-mortem hearts, SARS-CoV-2 was found in nearly
half of them (n = 50) [14]. Myocarditis (characterized as
lymphocytic infiltration and necrosis of myocytes) is be-
lieved to be induced by the invasion of cardiomyocytes by
SARS-CoV-2, thereby triggering innate and adaptive im-
mune responses, resulting in cardiac inflammation through
macrophage cytokines production and cell-mediated cyto-
toxicity [15]. This, in turn, will decrease heart function and,
in the case of a chronic inflammatory state, may potentially
result in fibrosis [16].

Varga et al. [17] discovered endothelial cell involve-
ment in COVID-19 post-mortem cases. They discovered
direct viral infection and subsequent inflammation of the
endothelium. This inflammatory process induces immune
cell recruitment, which causes endothelial dysfunction and
vasoconstriction. This is followed by inadequate perfusion
to organs and edema [17]. Eventually, endothelial injury
also enhances the blood coagulation process by activating
the tissue factors [18].

In a prospective cohort study, three patients who re-
covered 2–3 months after COVID-19 infection with severe
myocarditis exhibited active lymphocytic inflammation and
no evidence of any viral genome based on the endomyocar-
dial biopsy [19]. Consistently, a cohort study by Zhan et al.
[20] showed that in post-COVID-19 patients who remained
positive by swab testing after various time points, viral
replication and cytopathy effects, as evaluated by quanti-
tative reverse transcription polymerase chain reaction (RT-
qPCR) and cytopathy measurement, respectively, revealed
no viral presence. Therefore, viral remnants were respon-
sible for the positive swab result. As a result of these find-
ings, we can fairly conclude that long-term negative effects
in cardiovascular sequelae of long COVID patients are as-
sociated with the persistent viral reservoirs in the heart fol-
lowing the acute infection [20].
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Fig. 1. Pathophysiology of cardiovascular diseases in post-acute COVID-19 syndrome. ACE, angiotensin-converting enzyme; LV,
left ventricle; POTS, postural orthostatic tachycardia syndrome; RV, right ventricle; SNS, sympathetic nervous system.

3.2 Aberrant Immune and Inflammatory Response
3.2.1 Innate Immune Response

Once within the human body, any pathogen, in-
cluding SARS-CoV-2, will elicit innate and adaptive im-
mune responses. Activation of toll-like receptors 7 and 8
(TLR7 & TLR8), as well as NOD-like receptors (NLRs)
on the surface of infected lung epithelial cells and alveolar
macrophages, increases the production of type I and type III
antiviral interferons (IFNs) and several distinct chemokines
in the early phase of infection. These IFNs boost the ex-
pression of major histocompatibility complex (MHC) class
I in additional infected cells, allowing CD8+ cytotoxic T
cells and natural killer cells to block virus replication and
restrict viral spread. Concurrently, other chemokines at-
tract additional antigen-presenting cells (APCs) to the site
of damage, such as dendritic cells, macrophages, and neu-
trophils, which then createmore chemokines to recruit more
CD4+ and CD8+ T cells. The virus will be presented to
these lymphocytes by the APCs via class II MHC, and the
APCs will also release pro-inflammatory cytokines such
as interleukin-6 (IL-6) and tumor necrosis factor (TNF)
[21,22].

Recent research suggests that the innate immune re-

sponse to SARS-CoV-2 differs from that of other viruses,
such as its predecessor, SARS-CoV-1. An in vitro investi-
gation conducted by Chu et al. [23] revealed that, whereas
SARS-CoV-2 has a larger replication potential than SARS-
CoV-1, it induces less IFN-I and IFN-III expression. How-
ever, it tends to dramatically stimulate several cytokines
related to the inflammatory process, including interleukin-
1β (IL-1β), interleukin-6 (IL-6), TNF, and interleukin-1 re-
ceptor antagonist (IL-1RA) based on an experimental study
conducted by Blanco-Melo et al. [24].

3.2.2 Adaptive Immune Response

APCs and infected host cells initiated the adaptive im-
mune response by presenting the antigen to naive CD4+
helper T cells and CD8+ cytotoxic T cells via MHC class I
and II, respectively. This entire process eventually resulted
in cytotoxic factors lysis of the infected cells; activation of
B cells, which produce specific antibodies to kill SARS-
CoV-2; and secretion of numerous pro-inflammatory cy-
tokines such as IFN-, IL-4, IL-5, and IL-13, which acti-
vate macrophages and create a vicious cycle resulting in the
pathological inflammatory process [21,22].

Several experimental investigations revealed that
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SARS-CoV-2 caused different adaptive immune responses
as compared to other viral infections, such as the capac-
ity to diminish lymphocyte numbers, resulting in a defec-
tive adaptive immune response and decreased viral clear-
ance. A retrospective cohort research from Wuhan found
that the major subsets of T lymphocytes, such as CD4+
and CD8+ T cells, are lowered in COVID-19 infection and
are much lower in severe COVID-19 cases, as predicted
[25]. Lymphopenia also significantly increased COVID-19
severity and mortality rate based on the meta-analysis con-
ducted by Huang et al. [26]. Reduced lymphocyte genera-
tion with concomitant enhanced lymphocyte elimination is
the primary pathomechanism causing lymphocyte decrease
in COVID-19 infection SARS-CoV-2 can directly activate
apoptosis in lymphocytes via the P-53 signaling pathway,
resulting in enhanced lymphocyte elimination [27]. SARS-
CoV-2 infects CD169+ macrophages in the spleen and
lymph nodes (LNs), according to another investigation. As
a result, splenic nodule atrophy and lymph follicle deple-
tion occur, resulting in lymphoid tissue injury and a de-
clension in lymphocyte production [28]. Commensurately,
alterations in innate and adaptive immune responses are as-
sociated with the progression of viral infection, which can
lead to uncontrolled inflammatory response, as indicated by
increased production of pro-inflammatory cytokines, such
as IL-6 [29,30]. Consistently, pro-inflammatory cytokine
such as IL-6 was elevated in critical-ill COVID-19 patients
[31]. Ultimately, the uncontrolled inflammatory response
can progress to a cytokine storm, which can cause myocar-
dial damage and endothelial cell apoptosis [15,32].

A significant inflammatory response to COVID-19 in-
fection can potentially be harmful to the coagulation pro-
cess. Animal research examining the relationship between
CD8+ T cells and thrombosis in 11 HIV-uninfected sub-
jects discovered that TNF-derived CD8+ T cells can in-
crease tissue factor (TF) expression in vascular endothelium
[33]. Furthermore, monocytes can express tissue factors
through interactions with platelets via CD40L/CD40 bind-
ing. Antithrombin III (AT-III) and the protein C system gen-
erally control the pro-coagulant process. Nonetheless, neu-
trophils may use the elastase enzyme to break down AT-III
and protein C. Proinflammatory cytokines such as IL-1 and
TNF may inhibit thrombomodulin (TM), lowering protein
C activation [34]. Taken together, these processes skewed
the hemostatic balance to a thrombotic state, manifested in
widespread microvascular thrombosis.

Persistent inflammation, as surrogated by the inflam-
mation biomarkers in the long COVID patients such as C-
reactive protein, procalcitonin, and IL-6 are seen in 8%, 4%,
and 3% of long COVID, respectively [4]. Likewise, the
local inflammation process in myocardial tissues caused,
by direct SARS-CoV-2 infection could persist up to 2–3
months after the onset of infection in 60 out of 100 patients
(60%). This persistent myocardial inflammation was de-
tected using cardiovascular magnetic resonance (CMR) and

confirmed in certain individuals by endomyocardial biop-
sies. To summarize, chronic inflammation is a possible un-
derlying mechanism that led to cardiovascular problems in
long COVID patients [19].

3.3 ACE2 Dysregulation

There are two primary converting enzymes in
the renin-angiotensin-aldosterone system (RAAS),
angiotensin-converting enzyme (ACE) and ACE2. Both
enzymes were important in the acute COVID-19 pathome-
chanism. ACE2 degrades angiotensin II to angiotensin
1–7, as opposed to ACE, which converts angiotensin I to
angiotensin II. Angiotensin I is also degraded by ACE2
into angiotensin 1–9 [35].

Angiotensin II will bind to angiotensin II receptor
1 (AT1R) and causes inflammation, fibrosis, increase ox-
idative stress, vasoconstriction, thrombosis, and reabsorp-
tion of sodium and water. Vascular leakage is the first
phase to promote inflammation event. Angiotensin II via
AT1R stimulates the production of prostaglandins (PGs)
and vascular endothelial growth factor (VEGF) which is
responsible for the increase in vascular permeability [36,
37]. Angiotensin II also promotes leukocyte recruitment
and the production of proinflammatory cytokines such as
interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necro-
sis factor-α (TNF-α) [37]. Angiotensin II can activate
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase in endothelial cells, resulting in an increase in re-
active oxidative stress generation. Increased reactive ox-
idative stress buildup in the vasculature can alter the sig-
naling cascade in cells, resulting in mitochondrial malfunc-
tion and, eventually, endothelial dysfunction [38]. Fur-
thermore, a high level of reactive oxidative stress increases
atherosclerosis and induces an inflammatory response [39].
Experimental animal studies showed that angiotensin II in-
dependently caused endothelial dysfunction by reducing the
bioavailability of nitric oxide, resulting in vasoconstriction
[40]. Angiotensin II can also upregulate collagen synthe-
sis in cardiac fibroblasts, which induced the fibrotic pro-
cess in the cardiac wall [41]. Several investigations have
shown that angiotensin II can boost sympathetic nervous
system activity by stimulating the brain, adrenal medulla,
sympathetic ganglia, and sympathetic nerve terminal [42–
44]. Angiotensin II also suppresses vagal activity by reset-
ting baroreceptor reflex regulation, resulting in increased
adrenergic activation [45]. Moreover, angiotensin II pro-
motes thrombosis via various mechanisms, including in-
creased tissue factor production via activation of nuclear
factor kappa-B (NF-kB) and direct stimulations from AT1R
binding, as well as coagulation activation via upregulation
of prothrombin in the plasma [46,47]. Furthermore, an-
giotensin II inhibits the fibrinolysis process via activation
of the plasminogen activator inhibitor 1 (PAI-1) which re-
duced plasma plasmin levels [48]. Lastly, angiotensin II via
AT1R promotes aldosterone release from kidneys, thus in-
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creasing the sodium and water reabsorption from proximal
tubules [49,50].

Angiotensin 1–7 and 1–9, on the other hand, induce
various beneficial cardiovascular actions related to cardiac
and vascular remodeling. In-vitro investigations on mice
revealed that angiotensin 1–7 can suppress collagen and
fibronectin deposition and proliferation, hence preventing
cardiac fibrosis [51,52]. Angiotensin 1–7 has also been
shown to reduce collagen proliferation by inhibiting car-
diac fibroblast collagen production via extracellular-signal-
regulated kinase (ERK) phosphorylation [53]. Further-
more, angiotensin 1–7 has a potential role to attenuate atrial
tachycardia events by (1) decreasing the potential action
duration via reduced expression of L-type calcium chan-
nel and outward potassium channel [54]; (2) preventing fi-
brotic process in the atrial wall, which predisposed to atrial
tachycardia [54]; and (3) decreasing the norepinephrine re-
lease from hypothalamus, which resulted in the attenuation
of sympathetic stimulation [55]. Angiotensin 1–7 can also
prevent myocardial hypertrophy, and left ventricular thin-
ning, and reduce myocardial infarct area in the post-MI set-
ting [56]. Few studies also support that angiotensin 1–7 can
prevent myocardial hypertrophy by inhibiting the growth
of myocardial cells [57–59]. Additionally, angiotensin 1–
7 may also have an anti-inflammatory effect by increas-
ing the level of anti-inflammatory cytokines, including in-
terleukin 10 (IL-10), and reducing the expression of pro-
inflammatory cytokines such as IL-6 and tumor necrosis
factor-α (TNF-α) [56]. Based on another experimental
study, angiotensin 1–7 tends to inhibit the production of car-
diac reactive oxygen species (ROS) and improve endothe-
lial function by increasing nitric oxide production, which
resulted in vasodilatation [60,61]. An increased level of ni-
tric oxide is achieved by activating the endothelial nitric
oxide synthase (eNOS) through direct stimulation of an-
giotensin 1–7 on the bradykinin kinase 2 receptor (BK2R)
and angiotensin 1–7 on the angiotensin 2 receptor (AT2R)
pathway [62]. Moreover, an in-vitro study revealed that
angiogenesis can be promoted by angiotensin 1–7 via in-
creased formation of vascular endothelial growth factor D
(VEGF-D) and matrix metalloproteinase-9 (MMP-9) [63].
Angiotensin 1–7 also plays a role in reducing atheroscle-
rotic lesion burden, acts as a plaque stabilization, and has
anti-thrombotic properties [64–66]. In a similar fashion to
angiotensin 1–7, angiotensin 1–9 can prevent myocardial
hypertrophy, attenuate the myocardial cell fibrotic process,
and promote vasodilatation via the AT2R signaling pathway
[67,68].

SARS-CoV-2 interaction with the ACE2 receptor re-
sults in ACE2 downregulation. As a result, the amount of
angiotensin II rises while the levels of angiotensin 1–7 and
angiotensin 1–9 fall. However, to the best of our knowl-
edge, there is no literature on ACE2 dysregulation and
its impact on long COVID patients. To summarize, ACE
downregulation causes a slew of negative downstream con-

sequences due to decreased protective effects of angiotensin
1–7 and 1–9 and unopposed angiotensin II functions, result-
ing in a deterioration of the patient’s state through a variety
of cardiovascular problems [24].

3.4 Lung Abnormalities
Acute SARS-CoV-2 infection can result in severe lung

damage, respiratory dysfunction, hypoxia, and hypoxemia
[69]. Respiratory dysfunction persists, recurs, or has re-
cently happened in numerous individuals with protracted
COVID-19. A meta-analysis also showed that 34% of long
COVID patients have abnormal chest X-rays/CT scans in
the lungs [4]. Hypoxia can result in type II myocardial in-
farction due to demand ischemia [70]. Moreover, hypoxia
can promote anaerobic metabolism, which induces intracel-
lular acidosis, resulting in lactic acid accumulation [71].
Mediated by the hypoxia-inducible factor-1 (HIF-1) site,
this acidotic state activates the protein of death-promoting
BCL2 adenovirus E1B 19 kDa protein-interacting protein 3
(BNIP3) gene resulting in myocardial cell death [72].

SARS-CoV-2 infection can induce ACE2 downregu-
lation in the lungs, increasing the angiotensin II and di-
minishing the protective effects of angiotensin 1–7 and
angiotensin 1–9. Consequently, this cascade causes pro-
inflammatory cytokines upregulation and increases vascu-
lar permeability, promoting endothelial dysfunction, en-
dothelial cell proliferation, and vasoconstriction in the
lungs [73]. These processes also affect the pulmonary arter-
ies and lead to pulmonary vascular remodeling and hyper-
tension [73,74]. Finally, pulmonary hypertension-induced
vascular wall stiffness can increase the right ventricular
(RV) afterload and precipitates RV wall stress [75].

3.5 Acute COVID-19 Treatment
Invasive Mechanical Ventilation

A substantial number of severe and critical COVID-
19 patients need mechanical ventilation to support venti-
lation and gas exchange in the alveoli [76]. Nonetheless,
there are cardiac complications associated with mechani-
cal ventilation use, primarily to the right ventricle (RV) and
the left ventricle (LV). Generally, mechanical ventilation
could decrease the RV preload and concurrently increase
the RV afterload [77]. The mechanisms are described as
follows. During regular inspiration, there is a decrease in
intrathoracic pressure (ITP). This pressure is transmitted to
the right atrium through the pericardium and decreases the
right atrial pressure (RAP), thus decreasing venous return
[78]. In contrast, when a patient is on mechanical ventila-
tion with high positive end-expiratory pressure (PEEP), the
ITP increases and decreases the venous return [77]. In addi-
tion, PEEP can also increase the RV afterload and decrease
the LV preload by increasing pulmonary vascular resistance
[79].

An experimental study by Ross et al. [80] showed
that the stroke volume and cardiac index were signifi-
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Fig. 2. Weighted prevalence of CVD-related comorbid (95% CI) reported in post-acute COVID-19 syndrome patients. CAD,
coronary artery disease; CI, confidence interval; CVD, cardiovascular disease.

cantly lower at a PEEP of 15 cmH2O compared to a PEEP
of 5 cmH2O. Another cohort study by Hill et al. [81]
showed the long-term outcomes after prolonged invasive
mechanical ventilation in critically ill patients. Compared
to patients who underwent invasive mechanical ventilation
shorter than 21 days, those who needed invasive mechani-
cal ventilation (IMV) for more than 21 days are at increased
risk of readmission to the intensive care unit (ICU) (ad-
justed OR: 1.20; 95% CI: 1.14–1.26) and rehospitalization
(adjusted OR: 1.49; 95% CI: 1.39–1.60) [81].

In a retrospective cohort study, a large variation of
PEEP levels and duration of IMV support in acute COVID-
19 patients is seen in those who survived the disease [82].
The PEEP levels ranged from 5 cmH2O to 28 cmH2O, with
an average PEEP level of 12 cmH2O. The duration of me-
chanical support ranged from 1 to 59 days, with an average
of 14.6 days (±12 SD). Thus, considering the detrimental
effect of IMV on cardiovascular physiology, a subset of pa-
tients is expected to experience cardiovascular complica-
tions. Consistently, a retrospective cohort study revealed
that those who received IMV are at an increased risk to
suffer long COVID compared to those who did not receive
supplemental oxygen (OR: 2.42, 95% CI: 1.15–5.08) [83].
Thus, COVID-19 patients who needed IMV and experienc-
ing PACS will almost certainly require further cardiovascu-
lar examination.

4. Possible Role of Cardiovascular Disease
Related Comorbidities in the Genesis of
Long-COVID 19 Syndrome

The significant morbidity, mortality, and poor out-
comes associated with PACS connected to cardiovascular
disease have piqued the attention of the medical commu-
nity in characterizing CVD consequences in long COVID.
As a result, findings from prospective observational stud-
ies will continue to impact our knowledge of the long-term
implications outlined above. In this review, we included

17 prospective observational studies with a total of 8450
COVID-19 participants who were followed up on for about
9.3 months. Table 1 (Ref. [20,83–98]) shows the baseline
characteristics of the included studies.

Research is emerging on predictors for long COVID.
We postulate that the presence of PACS in some but not
all patients is due to a combination of characteristics that
contribute to chronic inflammation in long COVID, such
as the severity of acute COVID-19, obesity, hypertension,
diabetes mellitus, and age.

Because of the hyperinflammatory condition and sub-
stantial tissue damage, severe acute COVID-19 is a risk
factor for long COVID, as seen in Table 1, with 23.3 per-
cent of individuals experiencing long COVID coming from
the severe disease group. A retrospective cohort research
also found that individuals who required non-invasive ven-
tilation (NIV) and IMV were more likely to have long
COVID than those who did not (OR: 2.42, 95% CI: 1.15–
5.08) [83]. Furthermore, a retrospective study conducted
by Sonaglioni et al. [99] showed that Charlson Comor-
bidity Index (CCI) ≥7, neutrophil-to-lymphocyte (NLR)
ratio ≥9, and undertreatment with angiotensin-converting
enzyme inhibitors (ACEIs) or angiotensin receptor block-
ers (ARBs), were independently associated with a higher
risk of in-hospital mortality in hospitalized COVID-19 pa-
tients. It denotes that COVID-19 patients with a higher
number of comorbidities, prominent inflammatory state,
and RAAS activation were more likely to present with the
severe course which subsequently resulted in a higher risk
of long COVID-19 [99].

Obesity is the most prevalent cardiovascular-related
comorbidity reported within the long COVID group, ac-
cording to our research (Fig. 2). Obese people have
greater levels of pro-inflammatory cytokines (tumor necro-
sis factor- (TNF-), IL-6, and so on) due to adipocyte over-
expression [31,100].
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Table 1. General characteristics of the included prospective observational studies.

No. Author (year) Country Study population Age (years) Male (%)
Cardiovascular
comorbid(s) (%)

Cardiovascular-related
symptoms (%)

Pathologic cardiovascular-related
diagnosis/laboratory/
imaging findings

Follow-up time
(month(s))

1 Catalán et al. (2021) [84] Spain
76 hospitalized COVID-19;

22.8% severe illness
65 ± 9.7 63.7

Hypertension: 53.9 Chest pain: 11.4

N/A 12

Diabetes: 10.5 Dyspnea: 25
Dyslipidemia: 39.5

Fatigue: 51.3
Obesity: 61.8

Atrial fibrillation: 3.9
Smoking: 5.2

2 Fernández‑de‑las‑Peñas et al. (2021) [85] Spain
2100 hospitalized COVID-19;

6.6% severe illness
61 ± 16 53.1

Hypertension: 26.4 Chest pain: 6.5

N/A 11.2
Diabetes: 12.1 Dyspnea: 23.4
Obesity: 45.1

Fatigue: 61.4
CVD (unspecified): 12

3 Gamberini et al. (2021) [86] Italy
470 hospitalized COVID-19;

100% severe illness
64 ± 7.8 72.5

Hypertension: 49.4 Dyspnea: 58.4
N/A 12Diabetes: 15.7 Fatigue: 74.6

CVD (unspecified): 7.3 Palpitations: 6.7

4 Huang et al. (2021) [83] China
1276 hospitalized COVID-19;

4% severe illness
59 ± 9.1 53

Hypertension: 36 Chest pain: 7

N/A 12
Diabetes: 15 Dyspnea: 49
CAD: 8 Fatigue: 52

Smoking: 7 Palpitations: 10

5 Liu et al. (2022) [87] China
594 hospitalized COVID-19;

14% severe illness
63 ± 5 46.3

Hypertension: 37.4 Chest pain: 1 Laboratory:

12
Diabetes: 17.3 Dyspnea: 2.7 - Increased cardiac troponin: 0.05%

CVD (unspecified): 6.2 Fatigue: 3.7 - Increased NT-pro BNP: 14.2%
Smoking: 5.9 Palpitations: 1.6 - Increased D-dimer: 2.7%

6 Maestre-Muñiz et al. (2021) [88] Spain 445 hospitalized COVID-19 71.5 ± 14.3 45.2

Hypertension: 67.4 Chest pain: 53.3

N/A 12
Diabetes: 33.7 Dyspnea: 49.6
Obesity: 68.1 Fatigue: 65.9
CAD: 13.3 Palpitations: 60.9

7 Maestrini et al. (2021) [89] Italy
152 hospitalized COVID-19;

29% severe illness
69 ± 11.2 52.6

Hypertension: 33.9 Chest pain: 1.7 New-onset hypertension: 6.5%

12
Diabetes: 15.8 Dyspnea: 10.8 Echocardiography:
Obesity: 27 Fatigue: 14.2 - LV dysfunction: 47.6%
CAD: 13.1

Palpitations: 4.2
- RV dysfunction: 14.3%

HF: 7.9 - PH: 3.2%

8 Méndez et al. (2022) [90] Spain
171 hospitalized COVID-19;

18.7% severe illness
58 ± 8.6 57.9

Hypertension: 32.2 Chest pain: 7.6

N/A 12
Diabetes: 14.6 Dyspnea: 25.7

CVD (unspecified): 4.7
Fatigue: 48.5

Smoking: 5.8
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Table 1. Continued.

No. Author (year) Country Study population Age (years) Male (%)
Cardiovascular
comorbid(s) (%)

Cardiovascular-related
symptoms (%)

Pathologic cardiovascular-related
diagnosis/laboratory/
imaging findings

Follow-up time
(month(s))

9 Myhre et al. (2021) [91] Norway
58 hospitalized COVID-19;

19% severe illness
56 ± 11.3 58.6

Hypertension: 21.1 Chest pain: 4 Laboratory:

6
Diabetes: 10.3 Dyspnea: 55 - Increased cardiac troponin: 10%
Obesity: 24.1

Fatigue: 64
- Increased NT-pro BNP: 12%

CVD (unspecified): 8.6 CMR:
Smoking: 1.8 - LGE: 17%

10 Puntmann et al. (2020) [92] Germany
100 hospitalized COVID-19;

2% severe illness
49 ± 14 53

Hypertension: 22 Chest pain: 17 Laboratory:

2.3
Diabetes: 18 Dyspnea: 36 - Increased cardiac troponin: 5%

Dyslipidemia: 22
Palpitations: 20

CMR:
CAD: 13

- LGE: 10%
Smoking: 22

11 Raman et al. (2021) [93] United Kingdom
58 hospitalized COVID-19;

36.2% severe illness
55.4 ± 13.2 58.6

Hypertension: 37.9 Chest pain: 27.6 CMR:

3
Diabetes: 13.8

Dyspnea: 87.9 - Myocarditis: 11.5%
Obesity: 81
CAD: 3.4

Smoking: 34.5

12 Seeßle et al. (2022) [94] Germany
96 hospitalized COVID-19;

4% severe illness
57 ± 6.8 44.8

Hypertension: 35.1 Dyspnea: 27.1

N/A 12
Diabetes: 7.3

Fatigue: 41.7Obesity: 34
CVD (unspecified): 4.2

13 Sonnweber et al. (2021) [95] Austria
109 hospitalized COVID-19;

27% severe illness
57 ± 14 57

Hypertension: 30

Dyspnea: 36

Laboratory:

3.3

Diabetes: 17 - Increased NT-pro BNP: 11%
Dyslipidemia: 19 Echocardiography:

CVD (unspecified): 40 - LV dysfunction: 3%

Smoking: 3
- Myocarditis: 6%

- PH: 10%

14 Zhan et al. (2021) [20] China
121 hospitalized COVID-19;

16% severe illness
50 ± 10.2 41.3

Hypertension: 25.6 Dyspnea: 18.2 New-onset hypertension: 31.6%

12

Diabetes: 6.6

Fatigue: 11.6

Laboratory:

CVD (unspecified): 2.5

- Increased NT-pro BNP: 5.3%
ECG:

- Arrhythmia (unspecified): 15.8%
Echocardiography:

- LV dysfunction: 31.6%
- RV dysfunction: 16.7%

CMR:
- LGE: 33%
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Table 1. Continued.

No. Author (year) Country Study population Age (years) Male (%)
Cardiovascular
comorbid(s) (%)

Cardiovascular-related
symptoms (%)

Pathologic cardiovascular-related
diagnosis/laboratory/
imaging findings

Follow-up time
(month(s))

15 Zhang et al. (2021) [96] China
2433 hospitalized COVID-19;

28% severe illness
60 ± 9.7 49.5

Hypertension: 29.3 Chest pain: 13

N/A 12
Diabetes: 13.9 Dyspnea: 2.7

CVD (unspecified): 9.2 Fatigue: 27.7
Smoking: 6.4 Palpitations: 4.2

16 Zhao et al. (2021) [97] China
94 hospitalized COVID-19;

46% severe illness
48.1 57.5

Hypertension: 17 Chest pain: 13.8
N/A 12Diabetes: 9.6 Fatigue: 39.4

CVD (unspecified): 4.3 Palpitations: 11.7

17 Zhou et al. (2021) [98] China
97 hospitalized COVID-19;

0% severe illness
46.5 ± 18.6 53.6

Hypertension: 24.7

Dyspnea: 8.2

Laboratory:

1

Diabetes: 11.3 - Increased cardiac troponin: 6.2%

CAD: 6.2

- Increased NT-pro BNP: 0.9%
ECG:

- Atrial fibrillation 1%
Echocardiography:

- LV dysfunction: 1%
CAD, coronary artery disease; CMR, cardiac magnetic resonance; CVD, cardiovascular disease; ECG, electrocardiography; HF, heart failure; LGE, late gadolinium enhancement; LV, left ventricle; MV,
mechanical ventilation; N/A, not available; NT-pro BNP, N-terminal pro-B type natriuretic peptide; RV, right ventricle.
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Obesity also influenced the innate immune system, as
seen by the increased inflammatory response [101]. Con-
sistently, Tenforde et al. [102] also demonstrated that acute
COVID-19 patients with obesity are more likely to have
persistent symptoms 14–21 days following the COVID-
19 diagnosis (p-value: 0.002; adjusted OR: 2.31, 95% CI:
1.21–4.42). SARS-CoV-2 might enter the cell via ACE2-
Spike binding and Spike priming by host cell TMPRSS2.
TMPRSS2 involves proteolytical protein breakdown and
folding to a post-fusion conformation, as well as host cell-
virus membrane fusion and cytosolic viral RNA release. In-
terestingly, there is an increase in glycated ACE2 and TM-
PRSS2 expression in obese individuals. As a result, vulner-
ability to SARS-CoV-2 infection and its link to poor prog-
nosis appears to be increased in this group [103,104]. More-
over, a systematic review conducted by Boroumand et al.
[105] showed that higher BMI was associated with a lower
antibody response after COVID-19 vaccination. Given the
significant link between obesity and long COVID, weight-
loss interventions such as calorie restriction, diet, exercise,
and stress reduction may be effective in reducing an over-
expression of ACE2 in cardiomyocytes, increasing immune
response after administration of COVID-19 vaccines, and
lowering the risk of CVD-related illness in long COVID
[106].

Weighted prevalence data from 17 prospective ob-
servational studies showed that hypertension was the sec-
ond most common comorbid in long COVID patients. In
the acute setting, a meta-analysis by Du et al. [107] re-
vealed that hypertension independently and significantly
increased the risk of severe course and in-hospital mor-
tality in COVID-19 patients. In a molecular perspective,
because of hypertension, there is a systemic inflamma-
tory response, characterized by the activation of comple-
ment, myeloid cells, inflammasome, and changes to the
vascular cells. Consequently, these conditions lead to re-
nal and vascular dysfunction, which worsens blood pres-
sure elevation and leads to end organ damage. Hence,
theoretically, hypertension could enhance the chronic in-
flammatory response in acute COVID-19 patients, result-
ing in long COVID [108]. Consistently, this hypothesis
was supported by a case-control study by Fernández-de-las-
Peñas et al. [109] that revealed preexisting hypertension
was linked with a more significant number of long COVID
symptoms compared to those without hypertension. Re-
garding the use of anti-hypertensive drugs, a meta-analysis
conducted by Ren et al. [110] demonstrated that prior
utilization of antihypertensive drugs (e.g., ACEIs/ARBs,
calcium channel blockers, beta-blockers, or diuretics) was
not substantially correlated with the risk and severity of
COVID-19. Additionally, in sub-group analysis, the risk
of severe COVID-19 and mortality were significantly de-
creased in hypertensive patients who taking ACEIs/ARBs
[110]. However, a prospective longitudinal study by Sardu
et al. [111] revealed that there were no significant differ-

ences in detrimental outcomes (ICU admission, MIV, and
mortality) in COVID-19 patients with hypertension who re-
ceive ACEIs, ARBs, and calcium channel blockers (CCB).
Furthermore, a longitudinal study by Soegiarto et al. [112]
showed that hypertension patients presented with lower an-
tibody response and recurrent COVID-19 infection after
COVID-19 vaccination. Fascinatingly, patients with non-
O blood group showed greater prothrombotic index values
and a higher incidence of cardiac injury andmortality [113].
Hence, these occurrences may explain why individuals with
hypertension and COVID-19 have a poor prognosis. Re-
gardless of the class of anti-hypertensive drugs, optimal
blood pressure control was recommended as it can reduce
the probability of hypertensive patients suffering recurrent
COVID-19, severe COVID-19, and long COVID.

Diabetes mellitus (DM) also contributed to the de-
velopment of long COVID, which accounts for 13% long
COVID patients had DM. Two meta-analyses found that
patients with a history of DM or acute hyperglycemia at ad-
mission significantly increased the risk of severe COVID-
19 and mortality [114,115]. In diabetic patients, there
are dysregulation of glucose hemostasis, reduced immune
modulation, hyperinflammatory response, and RAAS ac-
tivation. Hence, when COVID-19 infection occurs, it
can lead to endothelial damage, increased oxidative stress
and pro-inflammatory cytokines, and glucotoxicity, result-
ing in multi-organ dysfunction, increased of thromboem-
bolic risk, lung fibrosis, and acute respiratory distress syn-
drome, which consequently ended in severe COVID-19 and
increases the risk of long COVID [116–118]. Herman-
Edelstein et al. [103] study performed the biopsy of the
right atrial appendage in 76 patients (57 diabetic patients
and 22 non-diabetic patients). This study revealed that di-
abetic patients had an up-regulation of ACE2 receptors in
heart tissue compared to non-diabetic patients, and higher
HbA1c levels were correlatedwith overexpression of ACE2
receptors in cardiomyocytes [103]. It underscores that di-
abetic patient had a higher possibility of CVD induced
by COVID-19 infection distinctive to nondiabetic patients.
Furthermore, like hypertension, diabetes can also alter the
immunogenicity of COVID-19 vaccines. A prospective ob-
servational study conducted by Marfella et al. [116,117]
suggested that hyperglycemia at the time of vaccination
worsens the immunological response and achieving appro-
priate glycemic control during the post-vaccination period
improves the immunological response. Therefore, adequate
glycemic control in diabetic patients is warranted as it in-
creased the antibody response after COVID-19 vaccination,
decreased the overexpression of ACE2 in cardiomyocytes,
and reduced the risk of severe COVID-19 as well as long
COVID.

Another hypothesis for persistent inflammation in
long COVID patients is that they are older, which is sub-
stantiated by the fact that the majority of long COVID pa-
tients in our review were elderly (Table 1) (mean age: 60.2
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Fig. 3. Weighted prevalence of CVD-related symptoms (95% CI) reported in post-acute COVID-19 syndrome patients. CI,
confidence interval; CVD, cardiovascular disease; PACS, post-acute COVID-19 syndrome.

years old). According to an animal investigation, agedmice
had refractory interferon activity in alveolar macrophages
and elevated pro-inflammatory cytokine output [119]. They
also have reduced B cell response, lower plasma cell syn-
thesis in the bone marrow, and lower naive T cell out-
put due to age-related thymus atrophy [120]. In addition,
like the obese and diabetic population, older age patient
also presented with lower antibody response after COVID-
19 infection [105]. Taken together, these mechanisms are
likely represented in older COVID-19 patients, preventing
full viral clearance, and resulting in viral progression and
enhanced inflammatory response. A cohort study also re-
vealed that elderly patients with acute COVID-19 are at a
higher risk of persistent symptoms up to 14–21 days af-
ter the COVID-19 diagnosis (p-value: 0.010; adjusted OR:
2.29, 95% CI: 1.14–4.58) [102].

5. Symptoms and Pathologic Findings of
Cardiovascular Disease in Post-Acute
COVID-19 Syndrome
5.1 Symptoms

According to our findings, four major symptoms
would arise in long COVID individuals who had a cardio-
vascular sequela. Fatigue is the most prevalent symptom,
followed by dyspnea, chest pain, and palpitations (Fig. 3).
According to twelve cohort studies, the prevalence of chest
pain in long COVID ranges from 8% to 20%. There are no
cohort studies that have thoroughly examined the features
of chest discomfort in COVID-19 patients who have been
on the drug for a long time. Thus, long COVID chest dis-
comfort can be caused by a variety of conditions, including
cardiovascular diseases such as pulmonary embolism, coro-
nary artery disease, and myocarditis. In these CVDs, chest

discomfort may be caused by nerve-ending activation (C7-
T4) caused by lactate and adenosine buildup in ischemic
myocardial cells [84,85,87–93,96,97,121].

Regarding palpitations, based on our findings, it oc-
curs in 13% (8%–17%) of long COVID patients. Palpita-
tions can arise as a result of increased sympathetic tone in
heart failure patients or as a result of another tachyarrhyth-
mia. Patients with long COVID mostly experience fatigue
ranging from 27 percent to 57 percent. Fatigue can arise
as a result of skeletal muscle oxygen perfusion loss, which
happens in nearly all CVD patients, including heart failure,
coronary artery disease, pulmonary embolism, myocarditis,
arrhythmia, and postural orthostatic tachycardia syndrome
(POTS) [85].

Related to dyspnea, it occurs in 21%–37% of patients
with long COVID. Lung edema caused by heart failure
or pulmonary arteries occlusion caused by pulmonary em-
bolism, present with dyspnea. Other non-specific symp-
toms that could occur in long COVID are limb edema,
cough, nausea, vomiting, depression, and sweating. Based
on a meta-analysis, increased D-dimer and NT-pro BNP
levels were also found in 20% and 11%, respectively, in
longCOVID patients. These two biomarkers are commonly
elevated in venous thromboembolism and heart failure pa-
tients, respectively [4].

5.2 Pathologic Findings
5.2.1 Coronary Artery Disease (CAD)

The incidence of coronary artery disease in long
COVID is unclear, in contrast to the acute situation. Two
case series studies revealed that there were 20.4 to 38% of
COVID-19 patients with ST-elevation myocardial infarc-
tion (STEMI) who had coronary artery obstruction con-

11

https://www.imrpress.com


firmed by coronary angiography and presented with no
chest pain at admission [122,123]. Moreover, Bangalore
et al. [123] study showed that there were 46% of COVID-
19 patients develop STEMI during hospitalization. Thus,
it underscores that COVID-19 can lead to systemic inflam-
matory response syndrome and eventually increases the risk
of plaque rupture, thrombus formation, and endothelial dys-
function, resulting in acute coronary syndrome [124].

Nonetheless, up to 20 percent of long COVID patients
experience chest discomfort. Several cardiovascular inves-
tigations, including electrocardiography, laboratory test-
ing (such as troponin and creatine kinase-myocardial band
(CK-MB)), a treadmill test, cardiac CT, and angiography,
can aid in the diagnosis of CAD [125–127]. In theory,
long COVID has two pathogenic mechanisms: direct in-
vasion and ACE2 downregulation, both of which can lead
to coronary artery disease. SARS-CoV-2 invasion into
the vasculature induced direct endothelial damage, result-
ing in endothelial dysfunction, inflammation, and vasocon-
striction. Furthermore, angiotensin II can activate platelets
and disrupt the anticoagulant process [46–48]. Simultane-
ously, lower levels of angiotensin 1–7 and angiotensin 1–
9 lowered their anti-thrombotic, plaque stabilization, and
vasodilatory activities [64–67]. These mechanisms, when
combined, might aggravate the underlying atherosclerotic
lesions in the coronary artery. In addition, macrophage ac-
tivation by an immunological response can release collage-
nases, which can destroy the interstitial collagen of a fibrous
cap. Finally, the vasoconstriction that raises blood velocity
through the weaker fibrous cap might produce a plaque rup-
ture and lead to acute coronary syndrome [128]. Alterna-
tively, demand ischemia caused by hypoxia in long COVID
patients is also plausible pathophysiology that leads to type
II myocardial infarction [70].

5.2.2 Venous Thromboembolism (VTE)

To the best of our knowledge, no studies have inves-
tigated the performance of ultrasonography or computed
tomography of the pulmonary artery (CTPA) as a diag-
nostic tool for venous thromboembolism in patients with
long COVID. According to a meta-analysis of observa-
tional studies, increased D-dimer levels were seen in 134
of 359 (20%) long COVID patients. While it has a high
sensitivity for excluding deep venous thrombosis (DVT)
and pulmonary embolism (PE) (84 and 99.5 percent, re-
spectively) [129], the D-dimer specificity to diagnose DVT
and PE are much lower (50% and 41%, respectively) [130].
Thus, increased D-dimer level raises the suspicion of ve-
nous thromboembolism. The diagnosis of PE is established
by a laboratory test, chest X-ray, echocardiography, and
CTPA [131]. Whereas the diagnosis of DVT is established
through laboratory tests and doppler ultrasonography [132].
Venous thromboembolism could occur in long COVID be-
cause of a thrombogenic, hypercoagulable state, and en-
dothelial dysfunction, due to the direct invasion of endothe-

lial cells by SARS-CoV-2 and ACE2 dysregulation.

5.2.3 Heart Failure
Although the incidence of heart failure in long COVID

patients is unclear, our data revealed that high NT-pro BNP
levels were found in 6% of long COVID patients. Long
COVID patientsmay experience heart failure-related symp-
toms such as dyspnea, palpitations, tiredness, and limb
edema [4]. Electrocardiography, laboratory tests (such
as NT-pro BNP), chest x-rays, and echocardiography are
all useful diagnostic methods for determining heart failure
[133]. Heart failure has complicated pathophysiology that
includes problems in preload, contractility, and afterload.
In critical acute COVID-19, invasive mechanical ventila-
tion can limit venous return and increase intrathoracic pres-
sure, leading to RV preload reduction and RV afterload el-
evation [77]. Elevated RV afterload can potentially result
in pulmonary hypertension through pulmonary vascular re-
modeling [75]. Direct SARS-CoV-2 myocardial cell inva-
sion leads to myocarditis, which impairs heart contractility.
In addition, type II myocardial infarction induced by hy-
poxia and type I myocardial infarction caused by coronary
artery occlusion also reduce myocardial contractility [15].

5.2.4 Postural Orthostatic Tachycardia Syndrome (POTS)
The available data on POTS in long COVID is still

sparse. According to four case reports regarding POTS,
it develops in young adults with previously mild-moderate
COVID-19. Generally, the symptoms, including palpi-
tations, chest pain, dyspnea, and fatigue, are provoked
by standing. Additionally, based on two case reports,
adrenaline surge-related symptoms occur in patients such
as dry mouth, diarrhea, and tremor. Tachycardia on stand-
ing without orthostatic hypotension is also seen in all case
reports. The diagnosis of POTS was established through
variable autonomic function tests, including head-up tilt ta-
ble test (HUTT), quantitative sudomotor axon reflex testing
(QSART), heart rate variability with standing, deep breath-
ing, and Valsalva maneuver [134–137].

Hypothetically, POTS is caused by autonomic dys-
function in long COVID patients [138]. Autonomic dys-
function in long COVID is provoked by the hyperadrener-
gic state and the resetting of baroreceptor control, which
is stimulated by angiotensin II upregulation. This hypoth-
esis is supported by a case reported by Umapathi et al.
[134]. In the case report, increased urinary catecholamine
was seen in a long COVID patient with POTS [134]. Con-
versely, another case by Miglis et al. [137] did not find
elevated plasma norepinephrine levels in a long COVID pa-
tient with POTS. Thus, the exact pathophysiology of POTS
in long COVID is still undetermined, and further research
is needed.

12

https://www.imrpress.com


5.2.5 Hypertension
Our findings found that the prevalence of new-onset

hypertension in long COVID is 19.1%. Hypertension could
be explained due to ACE2 downregulation. Increased an-
giotensin II levels can also cause endothelial dysfunction
via several pathways, resulting in reduced nitric oxide (NO)
bioavailability and leading to vasoconstriction [38]. Ad-
ditionally, angiotensin II can also cause reactive oxida-
tive stress accumulation and inflammation in the vascu-
lature, which accelerates atherosclerosis. Simultaneously,
decreased angiotensin 1–7 levels exaggerate the pathologi-
cal processes due to diminishing counter-regulatory effects.
The culmination of vasoconstriction and atherosclerosis is
new-onset hypertension [37,39].

5.2.6 Myocarditis
Our study revealed that 7% of long COVID diagnosed

with myocarditis. Of note, a cohort study by Puntmann
et al. [19] showed that myocarditis could persist until 2–
3 months after the onset of infection in 60 out of 100 pa-
tients. Alarmingly, this chronic inflammation process also
caused pericardial effusion in 10 out of 100 long COVID
patients. Furthermore, high-sensitivity troponin T values
were increased (≥3 pg/mL) in 71 patients (71%) and sig-
nificantly elevated (≥13.9 pg/mL) in 5 patients (5%) [19].

The gold standard for myocarditis diagnosis is the en-
domyocardial biopsy, but CMR can be a valuable alter-
native to evaluate abnormalities in the cardiac wall due
to myocarditis because it is a non-invasive diagnostic tool
[139,140]. Additionally, cardiac troponin T or CK-MBwill
give information regarding the extent of myocyte damage
and aid the myocarditis diagnosis [141].

The plausible pathomechanisms attributed to my-
ocarditis in long COVID patients is direct SARS-CoV-2 in-
vasion of myocardial cells via ACE2 receptor, which re-
sulted in local and systemic inflammation and led to my-
ocardial damage, edema, and fibrosis. In parallel, ACE2
downregulation also increases the pro-inflammatory cy-
tokines and inhibits anti-inflammatory cytokines, amplify-
ing the inflammation process [14,16].

5.2.7 Arrhythmias
An observational study conducted by Zhou et al. [98]

showed that the prevalence of specific arrhythmias, such as
atrial fibrillation in long COVID is 1%. Nonetheless, no
other research reported any other sort of arrhythmia. The
low incidence of arrhythmia in the study is probably un-
derreported due to transient arrhythmia cases. In contrast,
an observational study showed that long COVID patients
experienced palpitations ranging from 9% to 10.9% of pa-
tients [83,142]. Thus, Holter monitoring is mandatory to
diagnose transient arrhythmia [143].

Based on COVID-19 pathomechanisms, many types
of arrhythmias could arise in long COVID. Firstly, the
downregulation of ACE2 can lead to myocardial fibrosis,

increased sympathetic stimulation, and atrial and ventricu-
lar potential action prolongation [54,55]. Myocarditis due
to direct SARS-CoV-2 infection can also disrupt the heart’s
conduction system through the fibrosis process [15]. Taken
together, all of the pathomechanisms converge to precipi-
tate atrial tachycardia, atrial fibrillation, atrial flutter, ven-
tricular tachycardia, or ventricular fibrillation.

6. Conclusions
The COVID-19 pandemic is an ongoing catastrophic

public health event with dire long-term consequences, as
many COVID-19 survivors experience a novel syndrome
designated as longCOVID syndrome. This novel syndrome
also involved the CV system and manifests in coronary
artery disease, hypertension, arrhythmia, heart failure, ve-
nous thromboembolism, and POTS. Thus, an approach is
needed to achieve an early diagnosis, which enables the
prevention of a severe disease’s course and improves the
survivors’ quality of life as a whole. Nevertheless, further
research on this novel syndrome, especially regarding its
impact on CV, is warranted to fill in the research gaps.
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