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Abstract

A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of
cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing
cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by
identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective
of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural
networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for
the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for
cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary
teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.
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1. Introduction
In recent years, advances in cancer diagnosis and treat-

ment have significantly improved the survival and quality
of cancer patients. However, this has been accompanied by
a significant increase in the incidence of cardiotoxicity as-
sociated with cancer therapies [1–3]. A population-based
study conducted on the causes of cardiovascular disease
(CVD) death in the US has found that among 3.2 million
cancer survivors, 38.0% eventually died from cancer and
11.3% died from CVDs, with 76.3% of CVD deaths were
caused by heart disease [4]. CVD has become a signifi-
cant cause of mortality and morbidity among cancer sur-
vivors [4]. CVD and malignancy share common risk fac-
tors, including age, obesity, and diabetes mellitus, and bio-
logical mechanisms such as increased oxidative stress and a
pro-inflammatory milieu [5,6]. Their clinical convergence

led to the emerging discipline of cardio-oncology, which
mainly focuses on the detection, monitoring, and treatment
of cardiovascular disease occurring in the context of cancer
treatment, encompassing both chemotherapy and radiother-
apy.

Over the past decade, artificial intelligence (AI), par-
ticularlymachine learning (ML), has changedmedical prac-
tice and research to some degree [7]. By leveragingmassive
amounts of data, AI provides personalized opportunities
for disease diagnosis, classification, risk stratification, and
management [8]. Unlike human-coded time-to-event anal-
ysis, which relies on the expertise of the researcher to de-
velop accurate and reliable coding criteria, ML algorithms
use complex mathematical models to automatically identify
patterns in the data. Statistical methods used in ML include
regression analysis, clustering, and classification. Regres-
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sion analysis enables the modeling of the relationship be-
tween a dependent variable and one or more independent
variables. Clustering, on the other hand, is utilized to group
similar data points into clusters, whereas classification is a
technique for categorizing data points into distinct classes
based on their features or characteristics [9]. ML algorithms
often require large datasets to train and test themodels. This
is because the accuracy and effectiveness of MLmodels of-
ten increase with the amount of data used by them. Using
data-trained learning algorithms, ML can make judgments
about new situations, including but not limited to evaluating
radiographic images, electronicmedical records and pathol-
ogy slides [10].

There are many branches of ML, including random
forest (RF), artificial neural networks (ANN), convolu-
tional neural networks and deep learning (DL) [11,12], each
having unique properties useful in cardio-oncology. ANN
can simulate human neurons and process electrocardiogram
(ECG) and echocardiographic data. In the cardiovascular
field, the application of ANN mainly focuses on the multi-
layer ANN used to simulate the human brain to operate in
DL. It is also widely used in the analysis of imaging data,
drug dosing and patient survival [12–15]. Moreover, RF
is commonly used in coronary computed tomography (CT)
image processing, readmission of patients with heart fail-
ure, and the development of prediction models [16–18].

In this article, we systematically review the appli-
cation of ML approaches in cardio-oncology, comprehen-
sively describe the cardiotoxicities identified by ML, and
outline the role of ML in the prediction, diagnosis and treat-
ment of cardiotoxicities in cancer patients. In addition, we
discuss the role of ML in better understanding the gender
and racial disparities for cardiac outcomes among cancer
patients. Given the current application of ML in clinical
practice, we provide a perspective on the future develop-
ment direction and challenges in cardio-oncology (Fig. 1).

2. ML Approaches in Cardio-Oncology
Iatrogenic treatment harm refers to the harm caused

by medical treatments or procedures [19]. In the context
of cancer treatment, iatrogenic harm refers specifically to
the harm caused by cancer treatments, such as chemother-
apy, radiation therapy, and surgery. These treatments can
result in both direct and indirect damage to the heart and
cardiovascular system, and leading to a range of compli-
cations [20]. ML has the potential to significantly reduce
the iatrogenic treatment harm. By analyzing large and com-
plex datasets of patient information, ML algorithms can de-
tect patterns and correlations that may not be easily dis-
cernible by humans [21]. This analytical capability can
help predict which patients are at a higher risk of experi-
encing cardiotoxicity from cancer treatments, thus enabling
healthcare providers to implement targeted interventions
and personalized care. Different ML approaches in cardio-
oncology are discussed as follows.

2.1 Deep Learning

DL is a type of ML that combines statistics, computer
science, and decision theory [22]. It is useful for analyz-
ing hemodynamic and electrophysiological metrics which
are increasingly obtained throughwearable devices and car-
diac imaging segmentation [22–26]. DL has shown excit-
ing potential in automating complex image analysis [27],
with broad applications in ultrasound, computed tomogra-
phy, and magnetic resonance imaging [28]. The application
of ML approaches in cardio-oncology is summarized in Ta-
ble 1 (Ref. [29–40]).

2.1.1 Application of DL in Low-Dose Computed
Tomography (LDCT)

To date, the application of DL in the field of cardio-
oncology has focused mainly on LDCT [29,30]. LDCT is
effective in lung cancer screening in clinical trials [41,42],
and screening for CVD comorbidities in high-risk popula-
tions undergoing LDCT is vital for reducing overall mor-
tality. In high-risk patients, LDCT based on DL can screen
for lung cancer and estimate CVD risk simultaneously [29].
In addition, DL can be applied to conventional chest CT
imaging to quantify left atrial volume and predict adverse
outcomes: a study [30] found that DL-measured left atrial
volume index was significantly related to the higher risks
of new-onset atrial fibrillation (AF), heart failure, and ma-
jor adverse cardiovascular events within five years. The
predicted values showed high agreeability with manual
quantification, reinforcing its potential clinical applicabil-
ity. Furthermore, inputting the risk of plaque and coronary
artery calcification (CAC) in chest LDCT images as scores
into a hybrid neural network algorithm, which is a subtype
of DL, can predict all-cause mortality in lung cancer pa-
tients. Compared with other neural networks that input im-
ages alone and conventional semi-automatic scoring meth-
ods, the hybrid neural network achieved better performance
[31].

2.1.2 Segmentation of Cardiac Substructures and
Quantification of Radiation Therapy Dose

Radiation therapy for patients with thoracic malignant
tumors can significantly reduce the local recurrence rate of
patients. However, for patients whose tumors are in close
proximity to the heart, the heart will be irradiated inevitably,
potentially resulting in cardiac damage. Emerging evidence
has shown that cardiotoxicity from radiotherapy may be as-
sociated with specific cardiac substructures, but manual de-
lineation of these substructures can be challenging. Harms
et al. [32] proposed a DL-based algorithm for automatic
delineation of cardiac substructures, including ventricles,
great vessels, coronary arteries, heart valves, and the whole
heart, all of which could be segmented within five seconds.
This provided a tool for investigating associations between
the radiation dose on cardiac substructures and resultant
toxicity. Additionally, Haq et al. [33] established and val-
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Fig. 1. Machine learning in cardio-oncology and a multidisciplinary team. Anticancer therapies may cause cardiotoxicities to the
ventricle, electrical system, autonomic nervous system, myocardium and vessel. Machine learning approaches, including deep learning,
artificial neural network and random forest, have an exciting application in the prediction, diagnosis and treatment of cardiotoxicities.
Comprehensive management of cancer patients with cardiovascular diseases requires an equitable approach and the development of
multidisciplinary teams. These teams should include experts such as cardiologists, oncologists, pharmacists, radiologists, psychologists,
and specialized nurses.

idated a similar model for twelve cardio-pulmonary sub-
structures, reducing the segmentation time from one hour
to ten seconds per patient; importantly, evaluation by ra-
diation oncologists determined its clinical acceptability for
use in treatment planning and clinical outcomes analysis.
Recently, several studies have confirmed the reliability of
DL models for automatic contouring of cardiovascular sub-
structures on CT images of radiotherapy planning [34–36].
DL models can accurately and rapidly outline the heart and
vessels in large datasets of chest CT images, and are ex-
pected to be time-saving in future clinical practice.

Analysis of confounding behavior of dosimetric vari-
ables predicts overall survival in cancer patients. Cardiac
dosimetry of cardiac subvolumes is associated with de-
creased overall survival in patients with early-stage non-
small cell carcinoma undergoing stereotactic ablative radio-
therapy [43]. Using ML to optimize radiotherapy treatment
plans for non-small cell cancer patients can reduce mean
cardiac dose without increasing pulmonary dose [44]. It is
thus feasible and desirable to apply these tools during ra-
diotherapy to optimize dosimetric tradeoffs and minimize
irradiation of the heart.

2.2 Artificial Neural Networks
ANNs are highly distributed and interconnected net-

works of computer elements modeled after biological ner-

vous systems. ANNs simulate human neurons and combine
neurons to form neural networks, use complex neural net-
works to make predictions, and perform regression analysis
[45].

In patients with cancer, surgery can minimize tumor
burden and is the most crucial treatment for solid tumors.
However, postoperative inflammation may contribute to
the development of adverse postoperative cardiovascular
events, which are not rare and should be monitored closely.
Studies have shown that tumor resection may be associ-
ated with cardiovascular complications such as arrhythmia,
myocardial ischemia, and heart failure [46–48]. A limited
number of neural networks trained for the same target can
be assembled into a neural network ensemble, which can
be used to predict morbidity. A recently proposed ANN
ensemble predicted the occurrence of postoperative cardio-
vascular complications in non-small cell carcinoma patients
undergoing pneumonectomy with satisfactory performance
[37]. Before tumor surgery, attention should be paid to
cardiovascular preparation and perioperative management.
Such tools may aid pre-operative stratification of cardio-
vascular risk and optimization, which will likely reduce the
risk of cardiovascular complications.
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Table 1. ML approaches in cardio-oncology.
ML types Sample Cancer types Conclusions Reference

DL 273 Lung cancer •The ML-left atrial volume index was significantly associated with a higher risk of new-onset atrial fibrillation, heart failure hospitalization, and
major adverse cardiovascular events within five years in patients who underwent LDCT.

[29]

DL 2085 Lung cancer •Application of DL to LDCT could be a dual assessment tool for the risk of lung cancer and CVDs. [30]
DL 180 Lung cancer •It was feasible to use DL techniques to predict all-cause mortality from chest LDCT images in lung cancer patients. [31]
DL 55 NSCLC •DL can delineate cardiac substructures automatically and study the relationship between substructure dose and treatment toxicities. [32]
DL 217 NSCLC •DL segmentation model automatically segments cardiac substructures in cancer patients and can be used for cardiac radiation dose and

radiation-induced mortality analysis.
[33]

DL 129 Breast cancer •DL provides an accurate and rapid segmentation of cardiac substructures in non-contrast CT images. [34]
DL 127 NSCLC •DL models can outline the heart, ventricles, and great vessels in large datasets of chest CT images quickly, accurately, and consistently. [35]
DL 49 Breast cancer •DL algorithms can obtain accurate estimates of radiation dose and dosimetry parameters for cardiac cavities, aortas, and coronary arteries

automatically.
[36]

ANN 489 NSCLC •ANN was proposed to predict the incidence of CVDs after tumor resection and the ANN ensemble provided high performance. [37]
RF 49,864 Prostate cancer •RF models outperformed multinomial logistic regression in predicting six-category COD including CVDs among prostate cancer patients. [38]
RF 45,000 Breast cancer •RF had an accuracy of 70.23% in classifying five-category COD including CVDs in breast cancer patients. [39]
RF 42,257 Lung cancer •RF models outperformed multinomial logistic regression in predicting five-category COD including CVDs among lung cancer patients. [40]

ANN, artificial neural network; COD, causes of death; CVDs, cardiovascular diseases; DL, deep learning; ML, machine learning; LDCT, low-dose computed tomography; NSCLC, non-small cell lung cancer;
RF, random forest; CT, computed tomography.

Table 2. ML in cardiotoxicity.
CVDs Sample Cancer types ML types Conclusions Reference

CTRCD 136 Breast cancer Conditional inference tree models •A combination of echocardiographic 3D left ventricular ejection
fraction with 2D global circumferential strain and 2D global longitudinal

strain can provide a quick diagnosis of CTRCD during routine
surveillance.

[58]

CTRCD 42 Breast cancer DeepLabV3 + deep CNN •Atrous deep CNN was validated for automated left ventricular chamber
quantification and analysis of strain in cardiotoxicity detection.

[65]

CTRCD 237 Breast cancer RF •Segmental strain measures identified by RF were applicable for
CTRCD risk prediction in breast cancer patients receiving doxorubicin.

[66]

Arrhythmias 472 Colorectal cancer Support vector machine •The support vector machine could model and count the major adverse
cardiovascular events after a colorectal cancer operation.

[48]

Arrhythmias 1149 Chronic lymphocytic leukemia AI-ECG algorithm using CNN •The AI-ECG algorithm using CNN could predict the occurrence of
atrial fibrillation in chronic lymphocytic leukemia patients.

[67]

Arrhythmias 210,414 Prostate cancer AI-ECG algorithm using CNN •Androgen deprivation therapy for prostate cancer was associated with
changes in AI-ECG algorithm parameters.

[68]
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Table 2. Continued.
CVDs Sample Cancer types ML types Conclusions Reference

Heart rate vari-
ability

77 Breast cancer, prostate cancer,
colorectal cancer, lung cancer, and

pancreatic cancer

RF, linear discriminant analysis, and naive
bayes

•ML algorithm heart rate variability parameters could be used as a
reliable input to distinguish cancer patients from healthy controls.

[69]

ICIs related im-
munotoxicities

4960 Non-small cell lung cancer,
melanoma, and renal cell carcinoma

Decision tree •ML could predict cardiac events in cancer patients receiving ICIs
therapy.

[71]

ICIs related im-
munotoxicities

1152 Various cancers Natural language processing •Natural language processing could identify ICIs treatment-related
cardiotoxicity events.

[70]

Cardiomyopathy 1217 NA AI-ECG •AI-ECG helps identify cancer survivors at increased risk of developing
cardiomyopathy in the future.

[72]

Cardiomyopathy 471,9591 Lung cancer and breast cancer ML algorithm •The ML analysis suggested that primary cancer types impacted the
likelihood of stress cardiomyopathy, concomitant breast cancer and

stress cardiomyopathy could significantly reduce mortality.

[73]

Coronary
atherosclero-
sis

480 Lung cancer, prostate cancer, breast
cancer, and hematological

malignancies

Neural network ML •The innovative ML and statistical analysis suggested that specific
cancer types could impact lesion severity in particular coronary vessels.

[74]

Coronary
atherosclero-
sis

480 Various cancers Neural network ML •Cancer patients had a lower burden of coronary atherosclerosis
detected by coronary angiography.

[75]

CAC 15,915 Breast cancer DL algorithm •Automated CAC scoring on DL was a powerful tool to identify breast
cancer patients at increased risk of CVDs, especially coronary artery

diseases.

[76]

CAC 12,332 Lung cancer ML algorithm •Application of ML algorithm to LDCT scans to assess coronary
calcium scores predicts CVD risk in cancer patients.

[77]

CAC 1825 NA ML-based ECG •A ML-based ECG risk score can improve CVD risk stratification when
added to CAC in cancer patients.

[78]

CAC 16,000 Breast cancer DL algorithm •DL automatic algorithms have a good application in evaluating CAC
scores and can be used to predict CVD morbidity and mortality in cancer

patients.

[79]

CAC 428 Lung cancer DL algorithm •Elevated CAC quantified by a DL model predicts mortality in cancer
patients.

[80]

CAC 2289 Breast cancer DL algorithm •DL was a reliable method to measure CAC in breast cancer patients
undergoing CT scans.

[81]

CAC 1700 Breast cancer DU-Net model •The DU-Net model was effective in breast arterial calcifications
detection and could provide breast cancer patients with a low-cost risk

assessment tool for CVDs.

[82]

CAC 840 Breast cancer CNN •DL can effectively detect breast arterial calcification and assess cancer
patients at high cardiovascular risks.

[83]

AI, artificial intelligence; CAC, coronary artery calcification; CNN, convolutional neural network; CTRCD, cancer treatment-related cardiac dysfunction; CVDs, cardiovascular diseases; DL, deep
learning; ECG, electrocardiogram; ICIs, immune checkpoint inhibitors; ML, machine learning; RF, random forest; 2D, two dimensional; 3D, three dimensional; LDCT, low-dose computed tomography;
CT, computed tomography. NA means that the article didn’t specify the cancer type of included patients.

5

https://www.imrpress.com


2.3 Random Forest
RF is a classifier that uses multiple trees to train and

predict samples. The current application of RF in cardio-
oncology mainly focuses on predicting the cause of car-
diovascular death in cancer patients, and it has shown ad-
vantages in classification capabilities and accuracy com-
pared with other ML and regression models [38]. Causes
of death in cancer patients include cancer, non-cancer, in-
fection, CVD, endocrine and blood diseases, and specific
deaths because of other factors [38–40,49]. A population-
based study showed that CVD was the most common cause
of death within the first year of cancer diagnosis [4]. It is
thus essential to understand and prevent CVD in cancer pa-
tients. Three studies [38–40] used RF to predict causes of
death, including CVD in breast cancer, lung cancer, and
prostate cancer patients respectively, all of which found that
RF was superior to multinomial logistic regression in pre-
dicting causes of death. RF allows systematic prediction of
the cause of death in cancer patients and comprehensively
analyzes the inter-relationships between risk factors, facili-
tating prevention of CVD amongst cancer patients.

3. ML in Cardiotoxicity
3.1 Ventricle—Cancer Treatment-Related Cardiac
Dysfunction (CTRCD)

As the most common adverse drug events, drug-
induced cardiovascular complications are the leading cause
of discontinuation for many post-marketing drugs or of re-
strictions of their use [50]. A recent study [50] developed
a combined classifier framework using several ML algo-
rithms, including RF, support vector machine, k-nearest
neighbors, and neural network. This classifier was val-
idated for 63 anticancer agents using human pluripotent
stem cell-derived cardiomyocytes, providing a powerful
tool for systemic risk evaluation of drug-induced cardiovas-
cular complications that can be applied to anticancer drug
clinical trials and post-marketing surveillance [50].

CTRCD is defined as asymptomatic cardiac insuffi-
ciency or symptomatic heart failure manifested by adverse
effects of cancer treatment on cardiac structure and function
[51]. Cancer therapies, including conventional chemother-
apeutics such as anthracyclines, as well as targeted ther-
apies comprising small-molecule kinase inhibitors, agents
targeting human epidermal growth factor receptor 2 (HER-
2), and specific proteasome inhibitors, have been demon-
strated to be associated with CTRCD [52–55]. The pre-
vention, detection and treatment of cardiac dysfunction pa-
tients before, during and after cancer therapy play signifi-
cant roles in precision cardio-oncology.

Clinically, the diagnosis of CTRCD usually relies
on standard echocardiographic monitoring, most often left
ventricular ejection fraction (LVEF) and global longitu-
dinal strain (GLS) [56]. However, inter-reader variabil-
ity in reporting of LVEF with its implications in defin-
ing cancer therapy-related cardiotoxicity, and variability

for GLS measurement among various ultrasound system
vendors limit their application. Comfortingly, AI plays
an important role in improving LVEF and GLS assess-
ment and inter-vendor agreement. Studies have shown that
automated magnetic resonance imaging (MRI)-based left
ventricular contractility analysis tools can provide accu-
rate estimates of cardiotoxic impairment associated with
chemotherapy for cancer [57]. Troponin, natriuretic pep-
tides, systolic global longitudinal and circumferential strain
have been used to assess CTRCD risk. A recent prospective
cohort study [58] identified an integrated approach combin-
ing three-dimensional echocardiographic LVEF, GLS, and
global circumferential strain to diagnose CTRCD using a
conditional inference tree model. Deep convolutional neu-
ral networks can provide important information on ventric-
ular function, detection, and pathologies related to myocar-
dial dysfunction, which can be used for routine monitor-
ing to identify cardiotoxicity in cardiac image analysis [59–
64]. The DeepLabV3+ deep convolutional neural network
and ResNet-50 backbone network can measure parameters
such as left ventricular end-diastolic diameter and LVEF in
cancer patients, suitable for automatic left ventricular quan-
tification of cardiotoxicity [65]. A supervised ML model
using RF regression can identify left ventricular segmen-
tal strain from acquired echocardiograms of patients under-
going cancer treatment and estimate the nadir of LVEF af-
ter treatment completion, thereby predicting CTRCD [66].
The cardiotoxicities identified by ML are summarized in
Table 2 (Ref. [48,58,65–83]).

3.2 Electrical System—Arrhythmias

Palpitation is a common complaint in cancer patients.
Conventional cytotoxic chemotherapy, targeted drugs, and
immunotherapies alike can lead to cancer therapy-related
arrhythmias. Themost common arrhythmia is AF, followed
by ventricular arrhythmias, bradycardia and atrioventricu-
lar block [3,54,84–88].

The development of a rapid and inexpensive point-of-
care method for AF screening using AI-enabled ECG has
the potential to improve patient outcomes by enabling ear-
lier detection and treatment of AF. Attia et al. [89] de-
scribed the development of an AI-enabled ECG to identify
patients with AF using standard 10-second, 12-lead ECGs.
The AI algorithmwas developed using a convolutional neu-
ral network and trained on a dataset of over 649,931 normal
sinus rhythm ECGs from over 180,000 patients. The AI-
enabled ECG was able to identify AF with an accuracy of
79.4% using a single ECG, and 83.3% when all ECGs ac-
quired during the first month of each patient’s window of
interest were included. Therefore, with high accuracy, AI-
ECG could be used for AF screening in clinical practice. To
evaluate the effectiveness ofML algorithms trained on ECG
signals to predict patient outcomes after AF ablation, Tang
et al. [90] used a convolutional neural network and a multi-
modal fusion framework to analyze data from 156 patients
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who underwent catheter ablation. The study highlights the
importance of multimodal data analysis, which combines
electrogram, ECG, and clinical features to improve the ac-
curacy of prediction.

For cancer patients, AI-ECG is also a cost-effective
and readily available tool for predicting cardiac arrhyth-
mias. Christopoulos et al. [67] evaluated the role of AI-
ECG in predicting AF in patients with ibrutinib-induced
chronic lymphocytic leukemia and ibrutinib-independent
AF. The AI-ECG algorithm, developed from a convolu-
tional neural network, was used tomonitor the rhythm of the
two groups during the follow-up period, and the ECG char-
acteristics of AF were used to predict the future risk of AF
in the two groups of patients. The study demonstrated the
feasibility and potential value of using AI-ECG in the man-
agement of patients with cancer. The role of AI algorithms
in identifying androgen deprivation therapy (ADT)-induced
changes in ECGs in prostate cancer patients has also been
reported. A study [68] used a convolutional neural network
to develop predictive signatures for cardiac pathologies, in-
cluding the ability to predict the “estimated sex” of the pa-
tient. The results showed that patients who received ADT
had a lower estimated male sex value in ECG compared
to those who did not receive ADT, which was associated
with decreased serum testosterone. This study highlights
the potential of AI algorithms to detect changes in ECG pa-
rameters associated with ADT treatment for prostate can-
cer. The ability to monitor treatment effects and physio-
logical changes non-invasively using ECGs has significant
clinical implications, particularly for patients with cardiac
morbidity and mortality associated with ADT. The findings
also suggest the importance of considering the potential im-
pact of ADT on serum testosterone levels and its association
with ECG changes.

Drug-induced QT interval prolongation is a preva-
lent issue in various therapeutic interventions and can re-
sult in severe clinical consequences [91]. A relevant study
[92] discussed the use of ML algorithms to predict the risk
of drug-induced QT prolongation in inpatients. The re-
searchers used harmonized data from the UCHealth elec-
tronic health record to compare multiple ML methods and
found that a deep neural network demonstrated superior
classification accuracy, which provided a reasonable pre-
dictive performance for identifying individuals with a high
susceptibility to drug-induced QT prolongation. The fur-
ther study compared the deep learning model, which had
high accuracy but low interpretability, and the interpretable
model based on cluster analysis, which was less accurate
but more clinically applicable [93]. Both types of mod-
els have their own advantages and limitations, and that the
choice of model should depend on the specific clinical con-
text and the intended use of the prediction tool.

3.3 Autonomic Nervous System—Heart Rate Variability
It is common for cancer patients to exhibit autonomic

dysfunction with reduced heart rate variability, which has
prompted investigations into the potential value of heart
rate variability (HRV) in cancer detection. Based on five-
minute ECG recordings, Vigier et al. [69] showed that ML-
analyzed algorithm heart rate variability parameters could
be used to distinguish cancer patients from healthy individ-
uals with an accuracy of 79%–85%. However, circadian
rhythms may increase heart rate variability measurement
variance due to differences in timing and equipment of the
subjects’ ECG recordings, and sleep alterations may also
cause changes in heart rate variability signatures. Uniform
standardization of ECG recording time and equipment as
well as questionnaires on sleep patterns are required. Fu-
ture studies should be conducted in more diverse and more
extensive samples of cancer patients to explore the robust-
ness of heart rate variability-based cancer detection.

3.4 Myocardial Disorders
3.4.1 Immune checkpoint inhibitors (ICIs)-Associated
Myocarditis

ICIs have been one of the most promising types of
anticancer drugs in recent years. ICIs therapy such as
programmed death receptor-1(PD-1) or programmed death
ligand-1(PD-L1) inhibitors can significantly improve the
prognosis of cancer patients [94]. However, ICIs can in-
duce a series of immune-related adverse events (irAEs)
[95], including myocarditis, pericarditis, pericardial effu-
sion, and acute vascular events [88,96–99], with myocardi-
tis being the most frequently reported cardiac irAE [88,
100–103]. Though uncommon, cardiac irAE may be fatal
in up to 30% of cases [95], and the incidence of cardiac irAE
associated with ICIs may be under-reported [96,98,104–
106]. Therefore, it is important to identify risk factors for
adverse cardiac events in patients receiving ICI therapy.

AI in the forms ofML and natural language processing
(NLP) provides great analytical aptitude. The foundation
of high-quality AI lies in data. As a considerable propor-
tion of clinically relevant information is present in unstruc-
tured data, NLP assumes a critical role in extracting and
analyzing information to inform decision-making, facili-
tate administrative reporting, and advance research efforts.
This may be valuable when assessing complications or rare
treatment-related events. Lu et al. [70] used NLP software
to identify patients with various cancers treated with ICIs,
and showed NLP could identify ICIs treatment-related car-
diotoxicity events. NLP software can also be used to iden-
tify ICI-associated myocarditis in cancer patients and de-
scribe their clinical course and outcomes. Given the in-
creasing popularity of ICIs treatment among various can-
cers, there is an unmet clinical need for identifying prog-
nostic factors for myocarditis to facilitate clinical risk strat-
ification, early diagnosis, and management.
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Using a sizeable cross-sectional database of cancer pa-
tients, Heilbroner et al. [71] created a ML model for pre-
dicting cardiac events in PD-1/PD-L1-treated patients. The
model comprehensively analyzed 356 potential risk fac-
tors and identified immunological, oncological, and cardiac
risk factors associated with cardiac events. Although PD-1
treatment significantly increased the risk of cardiac events,
PD-1 was not among the 40 most important predictors.

3.4.2 Cardiomyopathy
Cardiomyopathy is a heterogeneous entity that in-

cludes numerous subtypes, such as dilated, hypertrophic,
and restrictive cardiomyopathy [107]. Early identification
of cancer patients at high risk of treatment-related car-
diomyopathy may improve outcomes by intervening before
heart failure development.

Güntürkün et al. [72] conducted a prospective study of
1217 childhood cancer survivors reaching adult age in the
St Jude Lifetime Cohort, in which seven AI methods and
an extreme gradient boosting approach were applied to 12-
lead ECG to predict cardiomyopathy during a mean follow-
up duration of 5.2 years. A resultant model based on ECG
and clinical characteristics achieved a cross-validation area
under curve (AUC) of 0.89, with a specificity of 81% and
a sensitivity of 78%. AI-ECG may therefore help identify
cancer survivors at increased risk of developing cardiomy-
opathy.

Stress cardiomyopathy is characterized by transient,
reversible, local, or global myocardial dysfunction with-
out ischemic perfusion defects [108,109]. Catecholamine
surge, epicardial coronary artery spasm and/or diffuse coro-
nary vasoconstriction, and microvascular dysfunction are
considered to be crucial mediating processes in the patho-
physiology of stress cardiomyopathy [110]. Stress car-
diomyopathy can be activated by various stressors, includ-
ing infection, surgery, emotional or psychological stress,
worsening chronic diseases, and medication [111]. Studies
have shown that cancer patients with stress cardiomyopathy
have a higher in-hospital mortality rate than those with only
stress cardiomyopathy [112,113]. However, a ML analy-
sis by primary tumor types showed that stress cardiomy-
opathy was not associated with the in-hospital mortality of
active cancer patients, with lung cancer and breast cancer
both being associated with an increased likelihood of stress
cardiomyopathy, and breast cancer patients with stress car-
diomyopathy having a significantly reduced mortality [73].
Further prospective researches are needed to confirm these
findings and reveal possible protective factors in breast can-
cer patients with stress cardiomyopathy.

3.5 Vessel Disorders
3.5.1 Coronary Atherosclerosis

Cancer causes a hypercoagulable and pro-
inflammatory state, sometimes accompanied by systemic
infection which can lead to changes in inflammatory

cytokines and massive release of chromatin. Meanwhile,
cancer can increase the levels of peripheral blood neu-
trophils, predisposing to the formation of extracellular traps
which are procoagulant and prothrombotic. The released
chromatin and extracellular traps promote endothelial
injury, followed by platelet aggregation, vasospasm, and
possibly accelerated atherosclerosis [114–118]. ML can
be used to assess whether specific malignancies can alter
the natural progression and location of coronary artery
diseases. A study [74] of both cancer patients and non-
cancer patients undergoing coronary angiography showed
that ML analysis was useful for identifying the locations
of significant coronary stenoses. The study showed that
lung cancer patients had higher odds of significant left
anterior descending and right coronary artery stenoses
than patients without lung cancer. However, the results
remain controversial. Another ML-based analysis [75]
showed that when compared to patients without cancer,
patients with cancer had significantly fewer left anterior
descending and left circumflex lesions, but were less likely
to have multiple coronary arteries and acute left circumflex
artery diseases. However, these findings were limited
by potential bias by indication. More prospective studies
should be conducted to reveal the longitudinal relationship
between cancer and the development of coronary lesions.

3.5.2 Coronary Artery Calcification
Measured from computed tomography scans, CAC is

an independent risk factor for CVD [119–121]. Traditional
CAC scoring is often manual, which is tedious and time-
consuming [76]. Recently, several studies have shown that
ML-based automated algorithms may be used for evaluat-
ing CAC scores, which, in turn, can be used to predict CVD
morbidity and mortality in cancer patients [76–81]. A DL-
based CAC scoring algorithm was developed for automatic
CAC scoring [122,123], providing a rapid and low-cost tool
for cancer patients at increased risks of CVD. Gernaat et al.
[81] used a DL algorithm to score CAC automatically, and
found that the prevalence of CAC in cancer patients was
relatively high and increased with age. Comparisons with
manual scoring confirmed the reliability of DL in measur-
ing CAC. Similarly, Gal et al. [76] used a DL algorithm
to automatically extract CAC scores, demonstrating a di-
rect correlation between CAC scores and CVD risks among
cancer patients.

Breast arterial calcification as detected by mammog-
raphy may be evidence of general atherosclerosis, and may
be a valuable marker of CVD [124]. Studies have shown
that DL can be used to detect breast arterial calcification
effectively and assess patients at high cardiovascular risks
[82,83], with performance similar or better than manual de-
tection. Further large-scale studies are needed to test and
improve thesemodels across different experimental settings
[125].
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4. Prediction, Diagnosis, and Treatment of
ML in Cardio-Oncology
4.1 Predicting the Risk of Cardiotoxicity

During chemotherapy and targeted therapy, cancer pa-
tients will develop adverse reactions of various tissues and
organs in the body, among which cardiotoxicity is one of
the most severe complications. Related studies have shown
that ML can be used to predict the risk of cardiotoxicity in
cancer patients after anticancer therapy. Li et al. [126] en-
rolled colorectal cancer patients treated with fluoropyrimi-
dine and developed ML models including extreme gradient
boosting, RF, and logistic regression to predict the subjects’
risk of cardiotoxicity. The study showed that among 36,030
colorectal cancer patients, 18.74% developed cardiotoxic-
ity within 30 days after the first dose of fluoropyrimidine.
All three ML models demonstrated high prediction accu-
racy with extreme gradient boosting having the best predic-
tion performance. Thus, the ML model can accurately pre-
dict the occurrence of cardiotoxicity within a certain period
after cancer patients start chemotherapy. Application of
ML to positron emission tomography (PET) scans in cardio-
oncology patients is also an emerging avenue. It has been
demonstrated that risk prediction using ML applied to PET
is more effective at predicting patients at high risk of ma-
jor adverse cardiovascular events than logistic regression
[127]. Additionally, PET scans in another study showed
that coronary flow reserve was inversely related to radia-
tion dose to specific coronary regions, which suggested that
PET could identify coronary arteries damage after radiation
therapy [128].

4.2 Screening Candidates for Specific Cancer Treatments
ML-based algorithms may be emerging diagnostic

tools in cardio-oncology. For example, systolic dysfunction
remains one of the significant side effects in patients with
HER-2-positive breast cancer treated with trastuzumab.
Therefore, current guidelines recommend that patients un-
dergo echocardiography every three months during treat-
ment. However, AI-augmented ECG using ML algorithms
has good diagnostic performance in predicting abnormal
ejection fraction while on trastuzumab therapy: a study
[129] showed that the AI 12-lead ECG algorithm could re-
duce echocardiography by 15% when screening HER-2-
positive breast cancer patients without missing a single pa-
tient with an LVEF of <40%, a degree of systolic dysfunc-
tion which usually warrants discontinuation of trastuzumab
therapy.

Sometimes the lack of baseline LVEF can be a chal-
lenge when assessing the likelihood of CTRCD. ML al-
gorithms can predict CTRCD in cancer patients based on
clinically relevant variables, effectively circumventing the
lack of LVEF. A classification model was trained to evalu-
ate six cardiovascular outcomes, showing that clinical vari-
ables such as age, hypertension, blood glucose levels, cre-
atinine and aspartate aminotransferase levels were all sig-

nificantly associated with CTRCD [130]. Compared with
traditional cardiac function monitoring methods, ML pro-
vides powerful tools for cardiac risk stratification in cancer
patients by leveraging longitudinal, large-scale patient data
from healthcare systems.

4.3 Potential Treatments of Cardiotoxicity Discovered by
ML

Some cardio-protective agents can prevent or reduce
cardiotoxicity during anticancer therapy. A recent meta-
analysis [131] showed that angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, and beta-blockers
could preserve LVEF and protect against cardiotoxicity dur-
ing trastuzumab and anthracycline treatment, with statisti-
cally significant outcomes with beta-blockers. Various an-
ticancer drugs can produce off-targeted effects that nega-
tively affect cardiac function and reduce LVEF. Heart fail-
ure with reduced ejection fraction should be concomitant
with specific anticancer therapy to prevent cardiotoxicity.
The American and European Cardio-Oncology Guidelines
state that in patients with LVEF <40%, the use of HER-2
inhibitors is contraindicated except when there are no alter-
native cancer treatments available. For patients with LVEF
<50% but ≥40%, the use of HER-2 inhibitors may be
considered with a cardioprotective approach that includes
angiotensin-converting enzyme inhibitors (or angiotensin
receptor blockers) and/or beta-blockers [56]. In addition
to the above three drugs, studies have shown that sacubi-
tril/valsartan could also be used to protect against cardiotox-
icity caused by anticancer drugs [132,133].

An RF-based study [134] that performed exome se-
quencing of 289 childhood cancer survivors exposed to an-
thracyclines for at least three years, showed that almost
90% of patients without cardiotoxicity harbored rare/low-
frequency variants in cardiac injury pathways that likely
protected them from the damaging effects of anthracycline.
In contrast, less than 50% of patients with cardiotoxicity
harbored these variants. Compared with models using only
clinical variables, cardiotoxicity risk prediction models in-
corporating clinical and genetic risk factors were more pre-
cise and had lower misclassification rates. The study using
RF [134] found that in vitro gene inhibition of related path-
ways such as phosphoinositide-3-kinase regulatory subunit
2 (PI3KR2) and zinc finger protein 827 (ZNF827) pro-
tected cardiomyocytes from cardiotoxicity. The discovery
of variant genes that protect against cardiotoxicity in car-
diac injury pathways provides information for establish-
ing predictive models for late-onset cardiotoxicity of an-
thracyclines, and autophagy gene targets to exploit cardio-
protective drugs.

9

https://www.imrpress.com


5. ML Revealed Inequalities and Disparities
in Cardio-Oncology
5.1 Sex Disparities

Sex is an independent risk factor that increases the risk
of adverse cardiovascular events in cancer patients. A re-
cent systematic review and meta-analysis [135] found that
among 13,975 patients with Hodgkin’s Lymphoma who re-
ceived radiation therapy, cardiovascular events mortality
was significantly higher in women than in menwith an odds
ratio of 3.74. Propensity scores use existing data to make
statistically significant inferences and are of great value for
real-world data analysis. However, the level of evidence in
evidence-based medicine is still insufficient. As the accu-
racy and operational advantages of ML in large-scale med-
ical data analysis are increasingly recognized, ML can be
used to improve propensity scores, so that the two can be
deeply combined to improve the selection accuracy of co-
variates in propensity scores [136].

One multicenter case-control study [137] used ML-
augmented propensity score to analyze the outcomes of
30,195,722 hospitalized patients, revealing that percuta-
neous coronary intervention significantly reduced overall
mortality, especially for cancer patients. Furthermore, per-
cutaneous coronary intervention considerably reduced to-
tal hospitalization costs of cancer patients. However, a
nationally representative case-control analysis using ML-
generated propensity scores showed that women were less
likely to undergo percutaneous coronary intervention and
survive than men in cancer patients [138]. The above find-
ings underscore the need for enhanced surveillance, andML
is expected to be better applied to monitor the incidence of
adverse cardiovascular events in female cancer patients.

The inadequate representation of women in clinical
trials, the higher dose of radiation required by female pa-
tients for specific types of cancer, and women’s higher
degree of microvascular coronary artery diseases may ac-
count for the gender disparities [135,139]. Further studies
should focus on the age of the patients, treatment dose, du-
ration, andmethods of diagnosis for CVD to arrive at defini-
tive conclusions about gender risks. The related guidelines
also suggest optimizing gender equality in therapy access
and outcomes. Future investigations on gender disparities
should be expanded to other gender-discriminated groups,
including gays, lesbians, bisexuals, asexuals, transgender,
and intersex patients.

5.2 Racial Disparities
Though only early reports have been published, racial

disparities may have adverse effects on the cardiovascular
outcome of patients who receive cancer therapy. Limited
data have shown that compared with non-Hispanic White,
the incidence of cardiovascular adverse outcomes increases
in black cancer patients. African Americanmen patients are
2.5 times more likely to die from prostate cancer than white
men [140], and black women patients with breast cancer

had a 25% higher risk of cardiovascular death than non-
Hispanic White [141]. A large case-control study [142]
conducted a ML-optimized and propensity score-adjusted
study about the mortality of cancer patients who received
percutaneous coronary intervention treatment in the United
States in 2016, revealing that although mortality was com-
parable, racial disparities in outcomes remained in cancer
patients with percutaneous coronary intervention treatment.
A case-control study [143] using propensity score analysis
and neural network ML-augmented multivariable regres-
sion in cancer patients with CVDs showed a significant in-
crease in mortality among Hispanics and Asians as com-
pared with Caucasians. The current coronavirus disease-
2019 pandemic has further enlarged the gap on the influ-
ence of the marginal population in history, strengthening
the importance of determining and resolving this inequality
[144].

The root causes of racial disparities are multifactorial,
complex and interleaved. The previously described factors
include racism, prejudice, limited health care, distrust of the
medical profession due to historical experience, related ge-
netic and molecular basis, and underrepresentation in clin-
ical trials [145–148]. One clinical trial study found that al-
though African Americans constitute 22% of all US cancer
patients, they only account for 3.1% of the trial participants
[149].

Using ML approaches to identify racial disparities in
patients with cardio-oncology diseases and improve the rep-
resentation of different ethnic groups in clinical trials may
therefore be critical for improving outcomes and reduc-
ing adverse CVD events. A multidisciplinary approach is
needed to eliminate the racial disparities in cardio-oncology
patients, including joint efforts of critical stakeholders,
healthcare policymakers, clinicians, patients, and scientists
[144].

6. Prospects and Challenges
6.1 The Trend of Revolution: Will ML Replace Clinicians?

At present, ML has a wide range of applications in the
cardiovascular field, especially in many aspects of cardiac
imaging, including but not limited to detection, characteri-
zation, and segmentation [150]. ML can take the place of
many regular detection, characterization, and quantification
work performed by clinicians using the cognitive ability and
complete the integration of electronic medical records data
mining [151–153]. It has been shown to outperform hu-
man experts in specific situations [31,82]. This may raise a
question amongst clinicians: is ML a threat or opportunity?
Currently, most experts are of the opinion that althoughML
has dramatically improved its capabilities and applications,
it will not replace clinicians at least in the near future [154–
156]. Intelligent medical technology exists to improve pa-
tient management and support physician decision-making.
ML has limitations, such as the need for large datasets for
training and validation, and difficulty in identifying initial
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clustering patterns. As with any technology, ML is not in-
fallible and there is a risk that it could fail. Some of the po-
tential causes of ML failure include poor data quality, lack
of domain knowledge, inappropriate modeling techniques,
and overfitting of models to training data [157]. If we rely
solely on advanced statistics, there is a risk of over-reliance
on the models developed byML algorithms, which can lead
to poor decision-making. Human domain knowledge and
expertise are also critical in interpreting the results of ML
models and making informed decisions. In addition, the
dehumanization of medicine is one of the most significant
barriers to the application of intelligent medical technology
[158]. Cancer not only brings physical pain to patients, but
also many psychological and social challenges. Clinicians
need to use appropriate information communication meth-
ods and content to provide psychological support and hu-
manistic care. To this end, ML should assist clinicians as
an adjunct, rather than being a replacement. Using AI is
an iterative learning process, and the important thing is to
harness and use this technique correctly and avoid misuse.

6.2 The Importance of Multidisciplinary Teams
Cardio-oncology is still in its infancy in many coun-

tries and its development has been lagging. The increas-
ingly active research field of cardio-oncology warrants
wider dissemination and integration into routine clinical
practice. To this end, the formation of cardio-oncology
teams with multidisciplinary input from cardiologists, on-
cologists, pharmacists, radiologists, psychologists, and
nurse specialists is imperative. Besides, the opening ofmul-
tidisciplinary joint diagnosis and treatment clinics in cardio-
oncology is expected. Recently, the view of educating aug-
mented doctors has been raised, and some universities have
begun to innovate educational models to meet the need to
train future doctors for the challenges of AI in medicine
[158]. Although the risk of clinicians being replaced byML
in the near future is remote, clinicians are recommended to
learn more about ML to rely on digital expertise and clin-
ical experience to solve medical practice problems better.
Researchers and clinicians can employ statistical software
packages such as R or Python to construct and train ML
models. The quantity of data necessary to build an ML
model is contingent upon several factors, including the in-
tricacy of the problem, the data quality, and the selected al-
gorithm. Typically, larger datasets are preferred since they
yield more informative content for the model to learn from
and enhance the accuracy of predictions [159].

7. Conclusions
In conclusion, cardiotoxicities of cancer therapies can-

not be ignored. ML plays a certain role in predicting, di-
agnosing and treating cardiotoxicities in cancer patients.
As essential parts of ML, DL, RF, and ANN have tremen-
dous applications in cardio-oncology. Inequalities exist in
cardio-oncology, and ML is expected to optimize equality
in treatment opportunities and outcomes. Medical educa-

tion should cultivate interdisciplinary talents proficient in
oncology, cardiovascular medicine and ML to meet future
challenges.
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