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Abstract

Background: Accurate detection of atrial fibrillation (AF) recurrence after catheter ablation is crucial. In this study, we aimed to conduct
a systematic review of machine-learning-based recurrence detection in the relevant literature. Methods: We conducted a comprehensive
search of PubMed, Embase, Cochrane, and Web of Science databases from 1980 to December 31, 2022 to identify studies on prediction
models for AF recurrence risk after catheter ablation. We used the prediction model risk of bias assessment tool (PROBAST) to assess the
risk of bias, and R4.2.0 for meta-analysis, with subgroup analysis based on model type. Results: After screening, 40 papers were eligible
for synthesis. The pooled concordance index (C-index) in the training set was 0.760 (95% confidence interval [CI] 0.739 to 0.781), the
sensitivity was 0.74 (95% CI 0.69 to 0.77), and the specificity was 0.76 (95% CI 0.72 to 0.80). The combined C-index in the validation
set was 0.787 (95% CI 0.752 to 0.821), the sensitivity was 0.78 (95% CI 0.73 to 0.83), and the specificity was 0.75 (95% CI 0.65 to
0.82). The subgroup analysis revealed no significant difference in the pooled C-index between models constructed based on radiomics
features and those based on clinical characteristics. However, radiomics based showed a slightly higher sensitivity (training set: 0.82 vs.
0.71, validation set: 0.83 vs. 0.73). Logistic regression, one of the most common machine learning (ML) methods, exhibited an overall
pooled C-index of 0.785 and 0.804 in the training and validation sets, respectively. The Convolutional Neural Networks (CNN) models
outperformed these results with an overall pooled C-index of 0.862 and 0.861. Age, radiomics features, left atrial diameter, AF type, and
AF duration were identified as the key modeling variables. Conclusions: ML has demonstrated excellent performance in predicting AF
recurrence after catheter ablation. Logistic regression (LR) being the most widely used ML algorithm for predicting AF recurrence, also
showed high accuracy. The development of risk prediction nomograms for wide application is warranted.
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1. Introduction

As the global population ages at an accelerated rate,
atrial fibrillation (AF) has emerged as one of the cardio-
vascular diseases with the highest incidence in the 21st
Century [1]. In the United States alone, at least 3 to 6
million individuals are currently suffering from AF. Early
rhythm control can significantly reduce the risk of cardio-
vascular adverse events among AF patients [2]. Two com-
mon rhythm control methods used in clinical practice in-
clude (1) catheter ablation treatment and (2) antiarrhythmic
drug therapy [3,4]. The catheter ablation treatment has been
shown to outperform drug therapy, as it aids patients in re-
covering from sinus rhythm [3,5] and improves their quality
of life during early disease progression [6]. However, it’s
important to note that AF reoccurs in approximately a third
of patients undergoing catheter ablation [7]. Therefore, it is
important to assess AF recurrence following ablation to de-
velop primary prevention strategies. Although CHADS2,

CHA2DS2-VASc, and R2CHADS2 scores can be used to
predict AF recurrence after catheter ablation, their predic-
tive accuracy remains unsatisfactory [8]. Consequently, it
remains to be proven if the prediction models can truly im-
prove patient prognosis.

Recent advances in artificial intelligence, statistics,
and machine learning (ML) have gradually found new ap-
plications in clinical settings, including disease diagnosis
and prognosis [9–11]. In this context, some investigators
have utilized ML to identify risk factors related to the early
recurrence of AF following catheter ablation, and to con-
struct prognostic models to maximize clinical outcomes
[12,13]. However, prediction accuracy remains controver-
sial since ML covers many mathematical methods, vari-
ables, and models. Therefore, this study aimed to explore
the predictive performance of ML for AF recurrence fol-
lowing catheter ablation, and comprehensively summarize
modeling variables, thus promoting the development of risk
stratification tools in the field.
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2. Methods
2.1 Study Registration

This systematic review was conducted following
the requirements of the preferred reporting items for
systematic reviews and meta-analyses (PRISMA2020)
(Supplementary Table 1) [14], and registered via PROS-
PERO (ID: CRD42023401497).

2.2 Inclusion and Exclusion Criteria
2.2.1 Inclusion Criteria

(1) Studies occurred in patients diagnosed with AF
who underwent catheter ablation.

(2) The observed outcome event was AF recurrence,
and a ML prediction model was constructed.

(3) Different studies may apply the same data set to
different ML models, and these models may have different
variables. Therefore, different studies on ML algorithms
published based on the same data set were included in this
systematic review.

(4) Studies without an independent validation set were
included in this systematic review.

(5) Original study type includes cohort studies, ran-
domized controlled trials (RCTs), case-control studies,
cross-sectional studies, case-cohort studies, and nested
case-control studies.

(6) Literature reported in English.

2.2.2 Exclusion Criteria
(1) Studies with significant flaws in diagnosing AF or

recurrence of AF.
(2) Only the risk factors were analyzed, and no com-

plete ML model was constructed.
(3) Studies lacking the following outcome measures

in assessing the accuracy of ML models: Roc, C-statistics,
concordance index (C-index), sensitivity, specificity, accu-
racy, recovery rate, accuracy rate, confusion matrix, diag-
nostic fourfold table, F1 score, and calibration curve.

(4) Studies only on the validation of a maturity scale.
(5) Studies on the accuracy of single-factor prediction.
(6) Meta-analyses, reviews, guidance, expert opin-

ions, or articles of similar nature.

2.3 Data Sources and Search Strategy
PubMed, Embase, Web of Science, and Cochrane

databases were searched from 1980 to December 31, 2022,
by combining the subject terms and subheadings of “atrial
fibrillation”, “recurrence” and “machine learning”. The
complete search strategy is shown in Supplementary Ta-
ble 2.

2.4 Study Selection and Data Extraction
All retrieved literature was imported into Endnote.

After removing duplications, titles and abstracts were re-
viewed to exclude irrelevant studies. Subsequently, the full

texts of the studies selected in the initial screening were
downloaded and read to select eligible original studies. A
data extraction table was prepared in advance to record
the following data: study types (e.g., cohort studies, cross-
sectional studies), study characteristics (e.g., author, year,
title, and author’s country), study groups (e.g., total sam-
ple size, number of relapsed cases, total number of cases in
the training set, number of recurrent cases in the training
set, number of recurrent cases in the validation set, and the
total number of cases in the validation set), ablation type,
follow-up time, definition of blank period, definition of AF
recurrence, method of generating the validation set, over-
fitting method, missing value treatment method, variable
screening method, model type, and modeling variables.

The literature screening and data extraction were in-
dependently conducted by two investigators (XF and XL),
with a cross-check conducted following completion. In the
event of any disagreements or uncertainties regarding the
eligibility of a particular study, another reviewer (YL) was
consulted for resolution.

2.5 Risk of Bias in the Included Studies
The prediction model risk of bias assessment tool

(PROBAST) [15] was used to assess the risk of bias in the
original studies included. This tool included a total of 20
questions organized across four domains (participators, pre-
dictors, outcomes, and statistical analysis). Each question
can be answered as Yes/Probably Yes, No/Probably No, or
No Information. If a domain included at least one question
answeredwithNo or ProbablyNo, it was considered to have
a high bias risk. A domain was considered low risk if the
answers to all questions were Yes or Probably Yes. The
overall bias risk was considered low if all domains were
classified as low risk. Conversely, if at least one domain is
considered high risk, the overall risk of bias is regarded as
high.

To ensure accuracy, two investigators (XF and XL) in-
dependently conducted the risk of bias assessment based on
PROBAST and cross-checked their results. In case of any
disagreements, a third investigator (YL) would be asked for
assistance in reaching a judgment.

2.6 Outcomes
The C-index was utilized as the outcome measure to

reflect the overall accuracy of the model. However, in case
of severe imbalance between relapsed and non-relapsed
cases, the C-index may not reflect the true prediction accu-
racy of models for the recurrence risk. Therefore, our main
outcome measures also included sensitivity and specificity,
and the secondary outcome measure was the frequency of
occurrence of pooled modeling variables.

2.7 Statistical Analysis
If C-index lacked a 95% confidence interval (CI) and

standard error in the original study, the standard error was
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estimated through the by Debray et al. [16] calculation
method. Given the differences in the variables included in
eachMLmodel and the inconsistency in the parameters, we
utilized a random-effects model for the meta-analysis of the
C-index.

In addition, a bivariate mixed-effects model was em-
ployed to assess the sensitivity and specificity of the meta-
analysis. Functioning as a random effects model, it ac-
counts for the correlation between sensitivity and speci-
ficity. During the meta-analysis process, sensitivity and
specificity were analyzed based on the diagnostic fourfold
table, which unfortunately were not reported in most of the
original studies. To address this, we utilized the follow-
ing two methods to calculate the diagnostic fourfold table:
(1) Calculate the fourfold table using sensitivity, specificity,
and precision in combination with the number of cases; (2)
Extract the sensitivity and specificity according to the best
Youden’s index, and then calculate the fourfold table us-
ing the number of cases. The meta-analysis of the study
was conducted using R4.2.0 (R development Core Team,
Vienna, Austria, http://www.R-project.org).

3. Results
3.1 Study Selection

In total, 770 articles were identified from multiple
databases. Out of these, 220 articles were duplicates and
removed. After reviewing the titles and abstracts of the re-
maining 550 articles, 48 were selected for full-text assess-
ment and downloaded.

Among them, one article was unavailable in full text, 6
articles were excluded for other reasons, and one article was
deleted due to duplication of an identical cohort. Finally, 40
studies were included in this systematic review and meta-
analysis [12,17–55]. Fig. 1 displays the PRISMA flow chart
outlining the study selection process.

3.2 Study Characteristics
This meta-analysis included 40 studies with a total

of 16,251 AF patients receiving ablation treatment. From
this total, 4930 (30.3%) patients experienced a recurrence
of AF. The primary method used to record AF recur-
rence was body surface electrocardiogram (92.5%). Ad-
ditionally, insertable loop recorders were used in 8 stud-
ies [12,18,26,27,29,36,49,53], intracardiac electrogramwas
used in one study [52], and smart wearable devices were
used in one study [27] (see attachment materials— Supple-
mentary Table 3 in detail). The 40 articles were published
between 2015 to 2022, with 19 articles (45.2%) published
in 2022 (see Supplementary Fig. 1). Among these, 31
were retrospective cohort studies. The majority of catheter
ablation procedures were performed using radiofrequency
ablation or cryoablation, and the average follow-up time
ranged from 4 months to 120 months. Patients from the
United States were represented in 6 studies [12,17–21], Eu-
rope in 11 studies [22–32], and the Asia-Pacific region in

23 studies [33–55]. Regarding the ML algorithms, logis-
tic regression was the most commonly used method for
predicting AF recurrence after catheter ablation, account-
ing for 24 out of 40 studies (60%). The remaining stud-
ies utilized other ML methods, including K-nearest neigh-
bor (KNN), logistic regression (LR), Cox proportional haz-
ard model (COX), Cox proportional-hazards deep neural
networks (DeepSurv), Adaptive boosting (Adaboost), sup-
port vector machine (SVM), convolutional neural networks
(CNN), artificial neural network (ANN), extreme gradi-
ent boosting (XGBoost), random forest (RF), decision tree
(DT), linear discriminant analysis (LDA). The characteris-
tics of the included studies are detailed in Supplementary
Table 3.

3.3 Modeling Variables
This study involved 93 predictors, with the top 5 are

being age, radiomics features, left atrial diameter, type
of AF, and AF duration. The remaining predictors in-
clude body mass index (BMI), sex, left ventricular ejec-
tion fraction (LVEF), hypertension, diabetes, and esti-
mated glomerular filtration rate (eGFR) (see attachment
materials—Supplementary Table 3 for modeling variables
in detail).

3.4 Risk of Bias in the Included Studies
The risk of bias and the overall applicability was as-

sessed using the PROBAST checklist, which is provided in
Supplementary Table 1. Details of the risk of bias and
applicability for each model included in the study can be
found in online Supplementary Table 4, and a summary
of the bias risk is presented in Fig. 2.

Out of the 54 models identified of the 40 eligible stud-
ies, two models (3.7%) had high and moderate risks of bias
in terms of participants and predictors, possibly because
their study type, namely case-control design, makes it im-
possible to determine whether the source of participants is
appropriate or whether the predictors were evaluated with-
out knowing outcome data. The risk of bias in outcome
was moderate in 42 models (77.8%). Regarding the statis-
tical analysis, the underfitting process resulting from insuf-
ficient sample size or failure to overfit the prediction model
led to a high risk of bias in 43 models.

3.5 Meta-Analysis
3.5.1 Synthesized Results

The C-index of prediction modes for recurrent AF fol-
lowing catheter ablation treatment are shown in Table 1.
Among the 40 included studies, the training set comprised a
total of 48 models, with a pooled C-index of 0.760 (95% CI
0.739 to 0.781) calculated using the random effects model.
The validation set consisted of 19 models, with a pooled C-
index of 0.787 (95% CI 0.752 to 0.821). In the training set,
the pooled fourfold tables of 40 models were either directly
or indirectly reported, and the bivariable mixed model was
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Fig. 1. PRISMA (preferred reporting items for systematic reviews and meta-analyses) flow diagram for study selection.

utilized for the meta-analysis of sensitivity and specificity.
The pooled sensitivity and specificity were 0.74 (95% CI
0.69 to 0.77) and 0.76 (95% CI 0.72 to 0.80), respectively.
In the validation set, 15 models reported fourfold tables,
and the bivariable mixed model was utilized for the meta-
analysis of sensitivity and specificity. The pooled sensitiv-
ity and specificity were 0.78 (95%CI 0.73 to 0.83) and 0.75
(95% CI 0.65 to 0.82), respectively (Table 2).

3.5.2 Modeling Variables

The modeling variables were categorized into clinical
characteristics or radiomics features for subgroup analysis.
The results indicated there was no significant difference in
the pooled C-index for either the training set or the vali-
dation set (training set: 0.751 vs. 0.793; validation set:

0.794 vs. 0.779). However, the prediction models con-
structed based on the radiomics features showed a higher
sensitivity (training set: 0.82 [95% CI 0.75 to 0.87]; vali-
dation set: 0.83 [95% CI 0.77 to 0.88]) compared to those
constructed from clinical characteristics (training set: 0.71
[95% CI 0.67 to 0.76]; validation set: 0.73 [95% CI 0.66 to
0.79]) in both the training and validation sets.

3.5.3 Model Integrity

In the study, LR was the most commonly used ML al-
gorithm, with 22 LR models and 7 LR models included in
the training set and validation set, respectively. The pooled
C-index for LR models was 0.785 (95% CI 0.737 to 0.833)
in the training set and 0.804 (95% CI 0.735 to 0.872) in
the validation set. Among non-LR models, the prediction
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Table 1. Meta-analysis result of the C-index of machine learning in predicting the atrial fibrillation recurrence.

Modeling variables Model type
Training set Validation set

n C-index (95% CI) n C-index (95% CI)

Clinical characteristics
KNN 1 0.600 (0.549–0.651)
LR 19 0.775 (0.725–0.824) 5 0.777 (0.711–0.843)
COX 9 0.735 (0.697–0.773) 3 0.820 (0.764–0.876)
DeepSurv 1 0.730 (0.710–0.750)
Adaboost 1 0.711 (0.665–0.757)
SVM 1 0.638 (0.535–0.741)
CNN 2 0.864 (0.640–1.00) 1 0.861 (0.816–0.906)
ANN 1 0.766 (0.678–0.854)
XGBoost 1 0.608 (0.503–0.713)
RF 1 0.718 (0.674–0.762) 1 0.721 (0.679–0.763)
DT 1 0.599 (0.547–0.651)
Overall 38 0.751 (0.729–0.773) 10 0.794 (0.745–0.842)

Radiomics features
RF 2 0.717 (0.521–0.913) 1 0.870 (0.815–0.925)
KNN 1 0.660 (0.554–0.766) 1 0.700 (0.589–0.811)
LR 3 0.848 (0.729–0.967) 2 0.863 (0.777–0.948)
XGBoost 2 0.766 (0.705–0.827)
SVM 1 0.850 (0.774–0.926) 3 0.713 (0.650–0.775)
CNN 1 0.859 (0.796–0.922)
DT 1 0.630 (0.512–0.748)
LDA 1 0.700 (0.572–0.827)
Overall 10 0.793 (0.734–0.853) 9 0.779 (0.728–0.829)

All models
COX 9 0.735 (0.697–0.773) 3 0.820 (0.764–0.876)
DeepSurv 1 0.730 (0.710–0.750)
CNN 3 0.862 (0.688–1.000) 1 0.861 (0.816–0.906)
LR 22 0.785 (0.737–0.833) 7 0.804 (0.735–0.872)
XGBoost 3 0.718 (0.621–0.816)
DT 1 0.599 (0.547–0.651) 1 0.630 (0.512–0.748)
KNN 2 0.611 (0.565–0.657) 1 0.700 (0.589–0.811)
AdaBoost 1 0.711 (0.665–0.757)
RF 3 0.725 (0.632–0.818) 2 0.794 (0.648–0.940)
SVM 2 0.747 (0.539–0.955) 3 0.713 (0.650–0.775)
ANN 1 0.766 (0.678–0.854)
LDA 1 0.700 (0.572–0.827)
Overall 48 0.760 (0.739–0.781) 19 0.787 (0.752–0.821)

Abbreviations: 95% CI, 95% confidence interval; KNN, K-nearest neighbor; LR, logistic regression;
COX, Cox proportional hazard model; DeepSurv, Cox proportional-hazards deep neural networks;
Adaboost, adaptive boosting; SVM, support vector machine; CNN, convolutional neural network;
ANN, artificial neural network; XGBoost, extreme gradient boosting; RF, random forest; DT, decision
tree; LDA, linear discriminant analysis.

models constructed based on the CNN algorithm showed
the highest C-index, specificity, and sensitivity in both the
training set and the validation set. Additionally, in the sub-
group analysis by model type, two survival models (Cox
and DeepSurv) were also reported. The training set C-index
of Cox and DeepSurv were 0.735 (95% CI 0.697 to 0.773)
and 0.730 (95% CI 0.710 to 0.750), respectively (Table 2).

4. Discussion
4.1 Summary of the Main Results/Findings

This meta-analysis aimed to assess the performance
of ML models in predicting AF recurrence following ab-
lation. The pooled C-index results of 54 models demon-
strated the high accuracy of ML in predicting and recogniz-
ing AF recurrence. As a digital-driven method, ML allows
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Fig. 2. Risk of Bias Assessment Result Included in the Machine Learning Model.

continuous learning from data to refine the model using
various statistical probability and optimization techniques.
This feature presents significant opportunities for develop-
ing risk prediction models in cardiovascular research sim-
ilar to the well-known Framingham Heart Study [56]. By
developing risk models using ML, it becomes possible to
classifying ablation-treated AF patients into different risk
groups, which in turn, allows the formulation of personal-
ized follow-up protocols based on the specific timing and
populations. This approach can minimize overtreatment in
low-risk populations and strike a better balance between the
risk-benefit and cost-benefit in the screening of AF recur-
rence. Overall, ML holds promising potential in advancing
the field of cardiovascular risk prediction and improving pa-
tient care.

We tested many methods of subgroup analysis to pre-
dict AF recurrence in patients after catheter ablation treat-
ment. The traditional methods included logistic regression
and Cox regression. Additionally, we explored the appli-
cation of support vector machines, ensemble learning, arti-
ficial neural networks, deep learning, and other ML meth-
ods. Deep learning proved to be advantageous in image
recognition and data processing, as it can convert low-level
characteristic data into more abstract high-level character-
istic data through layer-by-layer conversion. Based on the
subgroup analysis results, the model constructed using the
CNN algorithm by Yi-Ting Hwang et al. [52] demonstrated
the highest C-index, specificity, and sensitivity. However,

due to the limited number of models, it is essential to in-
crease the sample size and conduct external validation to
gather more robust risk assessment evidence. After consid-
ering the models constructed based on clinical characteris-
tics and radiomics features, logistic regression emerged as
the most commonly used method for predicting AF recur-
rence in patients after ablation treatment. It had the second-
highest testing power compared to the CNN model in the
training set and displayed the best specificity and sensitiv-
ity in the validation set. Given these advantages, logistic re-
gression is expected to be effectively applied in developing
nomograms based on clinical characteristics for predicting
AF recurrence after ablation treatment.

The selection of variables in prediction models plays
a critical role in their performance. Among the 54 mod-
els, 29 models included the age of AF patients receiving
ablation treatment as a modeling variable. Age has been
identified as the most likely risk factor for AF, more so
than with sex, BMI, hypertension, and cardiac failure [57].
However, for AF patients receiving ablation treatment at
different ages, there were no statistical differences in the AF
recurrence rate [58,59]. Another important modeling vari-
able is radiomics features, formally proposed by Lambin in
2012 [60]. These high-dimensional features that not visi-
ble to the naked eye in medical digital images such as ultra-
sound, computed tomography (CT) andmagnetic resonance
imaging (MRI). However, they can be analyzed using high
throughput programs. By transforming the image data of
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Table 2. Meta-analysis result of the sensitivity and specificity of machine learning in predicting the atrial fibrillation recurrence.

Modeling variables Model type
Training set Validation set

n Sen (95% CI) Spe (95% CI) n Sen (95% CI) Spe (95% CI)

Clinical characteristics
KNN 1 0.58 0.57
LR 17 0.72 (0.66–0.77) 0.78 (0.71–0.83) 5 0.72 (0.63–0.80) 0.89 (0.73–0.96)
COX 7 0.71 (0.60–0.80) 0.78 (0.71–0.83) 2 0.66–0.80 0.74–0.83
Adaboost 1 0.64 0.70
SVM 1 0.62 0.66
CNN 1 0.92 0.94 1 0.80 0.79
ANN 1 0.75 0.78
XGBoost 1 0.62 0.60
RF 1 0.73 0.64
DT 1 0.62 0.60
Overall 32 0.71 (0.67–0.76) 0.76 (0.72–0.80) 8 0.73 (0.66–0.79) 0.85 (0.75–0.92)

Radiomics features
KNN 1 0.79 0.54
LR 4 0.89 (0.73–0.89) 0.76 (0.62–0.86) 2 0.80–0.82 0.60–0.85
XGBoost 2 0.663–0.875 0.68–0.775
SVM 1 0.80 0.74 3 0.76–0.88 0.4–0.63
CNN 1 0.87 0.87
DT 1 0.71 0.53
Overall 8 0.82 (0.75–0.87) 0.76 (0.68–0.83) 7 0.83 (0.77–0.88) 0.64 (0.54–0.73)

All models
COX 7 0.71 (0.60–0.80) 0.78 (0.71–0.83) 2 0.66–0.80 0.74–0.83
CNN 2 0.87–0.923 0.867–0.936 1 0.80 0.79
LR 21 0.74 (0.68–0.79) 0.77 (0.72 –0.82) 7 0.73 (0.66–0.79) 0.85 (0.71–0.93)
XGBoost 3 0.617–0.875 0.6–0.775
DT 1 0.62 0.60 1 0.71 0.53
KNN 1 0.58 0.57 1 0.79 0.54
AdaBoost 1 0.64 0.70
RF 1 0.73 0.64
SVM 2 0.617–0.8 0.662–0.74 3 0.76–0.88 0.4–0.63
ANN 1 0.75 0.78
Overall 40 0.74 (0.69–0.77) 0.76 (0.72–0.80) 15 0.78 (0.73–0.83) 0.75 (0.65–0.82)

Abbreviations: 95% CI, 95% confidence interval; KNN, K-nearest neighbor; LR, logistic regression; COX, Cox proportional
hazard model; Adaboost, adaptive boosting; SVM, support vector machine; CNN, convolutional neural network; ANN, artificial
neural network; XGBoost, extreme gradient boosting; RF, random forest; DT, decision tree; Spe, specificity; Sen, sensitivity.

the region of interest (ROI) into high-resolution, exploitable
spatial data using full-automatic or semi-automatic analysis
methods, the accuracy of disease prediction, diagnosis, and
prognosis estimation can be improved.

The subgroup analysis results showed no significant
differences in the pooled C-index between the models con-
structed based on clinical characteristics and those based on
radiomics features in either the training set or the validation
set. This lack of difference may be due to data overfitting
caused by excessive data extraction and decreased predic-
tion performance resulting from inaccurate image segmen-
tation [17,30]. Nonetheless, prediction models constructed
based on radiomics features exhibited higher sensitivity,
which is clinically significant for predicting AF recurrence
after ablation.

While several studies have highlighted the signifi-
cance of genetic variation in AF within the context of ge-
nomics [61,62], none of the studies included in this review
used alleles related to AF recurrence after ablation as pre-
dictors for model development.

Moreover, most of the predictors in these models were
came from the baseline data of AF patients before admis-
sion, such as BMI, eGFR and left atrial diameter. However,
it’s important to note that these short-term risk factors are
subject to change, and AF recurrence may be influenced
by healthy habits after discharge. Unfortunately, these fac-
tors are rarely considered in the analysis of prediction mod-
els. A recent single-center, randomized controlled trial of
symptomatic AF in obesity [63] demonstrated that weight
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control and enhanced management of risk factors in AF pa-
tients after discharge improved the long-term success rate
of AF ablation.

4.2 Clinical Feasibility
As cross-disciplinary research in AI-medicine pro-

gresses, there is a growing focus on developing and vali-
dating prediction models based on ML algorithms for car-
diovascular diseases [64,65]. In this systematic review and
meta-analysis, we combined the training set and the vali-
dation set (including both randomly acquired internal sam-
pling results and a small number of external validation re-
sults) to assess the performance of ML in predicting AF
recurrence in patients after ablation. The C-index results
demonstrated high accuracy in both the training set (0.760
[0.739–0.781]) and the validation set (0.787 [0.752–0.821])
with similar prediction performance, and without overfit-
ting. Among the top 5 risk predictors for AF recurrence
after ablation, age, type of AF, and duration of AF are rel-
atively easy to obtain, show small population differences,
and high reproducibility, making them suitable for clinical
use and popularization to a certain degree.

4.3 Strengths and Limitations
This systematic review represents the first attempt to

assess the predictive accuracy of ML for AF recurrence af-
ter ablation, providing evidence for the promising predic-
tion capacity of ML models in these patients. However,
our study does have some limitations.

First, the ML models included in the review suffered
from high bias due to the rigid assessment using PROBAST
for bias risk. In terms of statistical methods, a model is
considered low bias only if the events per variable (EPV)
is larger than 20 and it has an independent validation set
with more than 100 cases. However, this rule ignores cer-
tain rare diseases or particular research fields (radiomics).
Therefore, we focused on prediction factors and results for
studies with high bias.

Second, an essential aspect of ML is selecting effec-
tive modeling variables. To minimize the discrepancy in
modeling variables, we conducted subgroup analysis based
on clinical characteristics and radiomics features, which re-
duced the number of models in the analysis process.

Third, radiomics lacks a standardized operating pro-
cedure, resulting in multiple approaches for dividing new
areas, extracting texture features, screening modeling fea-
tures, and constructing models. Despite this variability, it
is important to acknowledge and recognize its clinical ap-
plication value.

Finally, it is worth noting that some models in the
included studies lacked valid independent validation sets
[25,38–40]. Overcoming this limitation in systematic re-
views of ML can be challenging. To address this issue, we
combined the results of both the training set and the val-
idation set to assess the value of ML by comparing their
accuracy levels.

5. Conclusions
In conclusion, the ML method has shown high per-

formance in predicting AF recurrence, making it a compet-
itive and cost-effective approach to screening the AF re-
currence after ablation. In the future, multi-center, large-
sample clinical data sets can be established to develop the
correlation nomogram for predicting AF recurrence after
ablation based on LR. Additionally, to enhance the effi-
ciency and feasibility of the model, future predictors should
not only focus on the baseline data indicators of AF patients
after ablation but also include radiomics features and post-
discharge health habits of AF patients.
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