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Abstract

Background: Postoperative new atrial fibrillation (POAF) is a commonly observed complication after off-pump coronary artery bypass
surgery (OPCABG), and models based on radiomics features of epicardial adipose tissue (EAT) on non-enhanced computer tomography
(CT) to predict the occurrence of POAF after OPCABG remains unclear. This study aims to establish and validate models based on ra-
diomics signature to predict POAF after OPCABG. Methods: Clinical characteristics, radiomics signature and features of non-enhanced
CT images of 96 patients who underwent OPCABG were collected. The participants were divided into a training and a validation cohort
randomly, with a ratio of 7:3. Clinical characteristics and EAT CT features with statistical significance in the multivariate logistic re-
gression analysis were utilized to build the clinical model. The least absolute shrinkage and selection operator (LASSO) algorithm was
used to identify significant radiomics features to establish the radiomics model. The combined model was constructed by integrating the
clinical and radiomics models. Results: The area under the curve (AUC) of the clinical model in the training and validation cohorts were
0.761 (95% CI: 0.634-0.888) and 0.797 (95% CI: 0.587-1.000), respectively. The radiomics model showed better discrimination ability
than the clinical model, with AUC of 0.884 (95% CI: 0.806-0.961) and 0.891 (95% CI: 0.772—1.000) respectively for the training and
the validation cohort. The combined model performed best and exhibited the best predictive ability among the three models, with AUC
0f0.922 (95% CI: 0.853—0.990) in the training cohort and 0.913 (95% CI: 0.798-1.000) in the validation cohort. The calibration curve
demonstrated strong concordance between the predicted and actual observations in both cohorts. Furthermore, the Hosmer-Lemeshow
test yielded p value of 0.241 and 0.277 for the training and validation cohorts, respectively, indicating satisfactory calibration. Con-
clusions: The superior performance of the combined model suggests that integrating of clinical characteristics, radiomics signature and
features on non-enhanced CT images of EAT may enhance the accuracy of predicting POAF after OPCABG.
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fore critical to understand the occurrence of POAF after OP-
CABG and screen risk factors in order to prevent POAF.

1. Introduction

Coronary artery disease (CAD) has become a global

health problem, and coronary artery bypass grafting
(CABG) remains an important treatment [1]. Postopera-
tive new atrial fibrillation (POAF) is a commonly observed
complication after CABG, and the incidence ranges be-
tween 28%—-33% [2]. Although off-pump coronary artery
bypass surgery (OPCABG) has shown potential in reducing
complications by avoiding cardiac intubation and minimiz-
ing the release of cytokines and inflammatory mediators as-
sociated with cardiopulmonary bypass, its impact on POAF
rates has not demonstrated a significant decrease [3]. POAF
may lead to prolonged use of ventilator, decreased blood
pressure, heart failure, myocardial ischemia, and stroke, re-
sulting in multiple complications, including an increased
risk of short-term and long-term mortality [4,5]. It is there-

Epicardial adipose tissue (EAT) is a unique adipose
depot that gets its blood supply from small branches of the
coronary artery and is directly adjacent to coronary arter-
ies and myocardium [6]. EAT refers to the adipose tissue
found between the surface of the myocardium and the vis-
ceral pericardium, which is mostly located in the atrioven-
tricular sulcus and interventricular sulcus, but can also be
observed on the surface of the coronary artery or even in-
side the myocardial tissue. Previous studies have revealed
that the epicardial adipose volume measured by computer
tomography (CT) is an independent risk factor for atrial fib-
rillation (AF) [7]. Several studies have reported an associ-
ation between EAT and the incidence, severity, and recur-
rence of atrial fibrillation [8,9]. In addition, the increase in
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fat thickness near the left atrium was found to be signifi-
cantly correlated with atrial fibrillation burden [7]. Yet the
mechanism behind atrial fibrillation caused by pathological
changes of epicardial adipose tissue remains unknown.

Recently, radiomics has attracted extensive attention
for its ability to extract high-throughput data from medical
images. Machine learning and other methods can then be
used to evaluate the features of the images to find novel
applications [10,11]. Models based on radiomic signatures
can provide guidance for doctors and improve the accu-
racy of diagnosis and prognosis. It has been demonstrated
that radiomics has a unique value in the identification of
coronary artery plaques and in discriminating between hy-
pertensive heart disease and hypertrophic cardiomyopathy
[12,13]. Yang et al. [8] reported that radiomics signatures
of EAT around the left atrium have a promising value in
differentiating atrial fibrillation subtypes and predicting the
recurrence of atrial fibrillation. On the basis of these pre-
vious findings, we suggest that radiomics features of EAT
may provide accurate prediction of POAF.

Coronary artery computer tomography angiography
(CCTA) is extensively employed for the diagnosis of CAD,
but some patients received coronary angiography to diag-
nose CAD rather than CCTA, so as to perform percutaneous
transluminal coronary intervention (PCI) at the same time
if necessary [14]. Moreover, iodine contrast agents can in-
crease the attenuation of fat around the coronary artery in in-
flammatory conditions, and non-contrast CT images might
reflect more reliably radiological features [15]. In our insti-
tution, non-contrast CT scans were performed commonly as
part of preoperative evaluation for CABG. Thus, we aims to
establish and validate models based on radiomics features
of EAT on non-enhanced CT images to predict the occur-
rence of POAF after OPCABG, which might contribute to
the identification of high-risk individuals and improve the
prognosis of patients through active intervention.

2. Materials and Methods
2.1 Patient Selection

The ethics board of the China-Japan Friendship Hos-
pital granted approval for this retrospective study, and in-
formed consent was waived accordingly. Totally, 96 pa-
tients who underwent OPCABG between September 2017
and May 2022 were included. The patients were randomly
allocated into a training cohort (n = 67) and a validation
cohort (n = 29) at a ratio of 7:3.

2.2 Clinical Features

We retrieved preoperative demographics data, electro-
cardiogram, hematologic examination, and echocardiogra-
phy from the medical information system. All patients un-
derwent continuous electrocardiographic monitoring dur-
ing the postoperative period, every identified arrhythmia
event was then confirmed by a cardiologist. Continuous
electrocardiographic monitoring was performed on all pa-

tients during the postoperative period, and any identified ar-
rhythmia event was subsequently verified by a cardiologist.
The criteria used to define POAF were any recorded AF
episode that lasted for more than 30 seconds, documented
either by continuous telemetry throughout the patient’s hos-
pital stay or by a 12-lead electrocardiogram conducted on a
daily basis [16].

2.3 Computer Tomography Scan

All the patients received a CT examination within
7 days before OPCABG. CT scans were performed by
a multi-detector CT system (GE Revolution CT/256, GE
Healthcare, Milwaukee, WI, USA), using scanning param-
eters of low dose CT in chest: tube ball voltage 120 kV,
current 300 mAs, slice thickness 5 mm. The scanning re-
gion ranged from the tip of the lung to the lower edge of the
second lumbar vertebra (L2). The patients were instructed
to lie on their backs, raise their hands, and hold their breath
for a single scan at the end of inspiration.

2.4 EAT Segmentation

We performed EAT segmentation for radiomics anal-
ysis through the three dimensions (3D) slicer software (ver-
sion 4.13.0, Harvard, Boston, MA, USA). Two experienced
radiologists independently delineated the volumes of inter-
est (VOIs) along the borders of the fibrous pericardium on
cardiac axial slices, from the bifurcation of the pulmonary
trunk to the lowest slice of pericardium. Radiologists were
blinded to the patients’ clinical features. EAT was identified
using a segmentation algorithm that applied a densitomet-
ric threshold (density range between —190 HU (Hounsfield
unit) and —30 HU). Once the delineation was completed, the
3D slicer software automatically calculated the EAT vol-
ume and radiodensity. One month after the initial delin-
eation, another reader repeated the process of outlining the
regions of interest (ROIs) in all patients. The mean values
of EAT volume and radiodensity were recorded based on
three separate measurements.

2.5 Feature Extraction

The VOI image normalization and resampling were
performed using the Pyradiomics package of Python Soft-
ware (version 3.7, Python Software Foundation, DE, USA)
as mentioned in our prior study [17]. In order to ad-
dress the curse of dimensionality, which is particularly evi-
dent in high-dimensional data, we employed feature extrac-
tion techniques such as laplacian of gaussian (LoG) filters
(sigma value 0f 1.0, 2.0, 3.0, 4.0, and 5.0) and wavelet trans-
formation [18]. These techniques allowed us to mitigate the
issue by reducing unnecessary features and extracting more
relevant and informative features for our radiomics model.
We subsequently extracted 1218 quantitative radiomics fea-
tures from the VOI in original image and from its corre-
sponding filtered image, including shape features (14), first
order statistics (18), gray-level co-occurrence matrix fea-
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tures (22), gray-level run-length matrix features (16), gray-
level size-zone matrix features (16), gray-level dependence
matrix features (14), wavelet features (688), and Laplacian
of Gaussian filters features (430).

2.6 Feature Selection

We conducted feature selection in the training cohort.
The radiomics features extracted from the training cohort
were normalized to eliminate differences caused by vary-
ing value scales. The features of the validation cohort were
standardized using the mean and standard deviation values
calculated from the training cohort. The reproducibility of
the radiomics features was evaluated through both intra-
class and inter-class correlation coefficients (ICC). Features
with an ICC >0.9 were regarded as reproducible and were
selected for further analysis. We calculated the Spearman
or Pearson correlation coefficients for each pair of features,
and excluded those with a correlation coefficient >0.9. We
then employed the least absolute shrinkage and selection
operator (LASSO) algorithm to identify relevant radiomics
features that had non-zero coefficients.

2.7 Development and Validation of Prediction Model

Univariate logistic regression analyses were per-
formed to analyze the clinical characteristics and EAT CT
features, including EAT volume and radiodensity, in the
training cohort. The features with statistical significance in
the univariate analysis will be further analyzed using mul-
tivariate logistic analysis. Features with statistical signifi-
cance in the multivariate analysis were utilized to build clin-
ical model. Selected radiomics features with non-zero coef-
ficients were used to develop a radiomics signature through
a linear regression model, where each feature was weighted
by its respective coefficient. The combined model was es-
tablished by integrating the radiomics signature, the clini-
cal characteristics and features of CT images. A nomogram
was generated to visualize the combined model.

2.8 Model Performance Assessment

The performance of the models was evaluated using
the area under curve (AUC) in the receiver operating char-
acteristic (ROC) curves. The AUCs of the three models
were compared through DeLong’s test. Calibration of the
prediction model was evaluated by calibration curves and
Hosmer-Lemeshow test. Bootstrap validation with 1000 re-
samples was performed to assess the accuracy of the cal-
ibration curve and ideal curve overfit. Furthermore, we
conducted decision curve analysis (DCA) to evaluate the
clinical utility of the prediction model through calculating
the net benefit at various threshold probabilities. The three
models were subsequently validated in the validation co-
hort. The flow diagrams of this study and the process of
specific radiomics signature analysis are shown in Figs. 1,2,
respectively.
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2.9 Statistics Analysis

In this study, statistical analyses were performed us-
ing R software (version 3.5.1, R Foundation for Statistical
Computing, Vienna, Austria) and SPSS (version 26.0, IBM
Corp., Armonk, NY, USA). Continuous variables were ex-
pressed as mean =+ standard deviation (SD), while categor-
ical variables were presented as numbers (percentage). The
clinical characteristics and features of CT images in training
and validation cohorts were compared with #-test (for con-
tinuous variables) and chi-square test (for categorical vari-
ables). Probability values were 2-sided, and p < 0.05 was
considered statistically significant.

3. Results
3.1 Clinical Characteristics

This study retrospectively included a total of 96 pa-
tients with CAD, among whom 30 patients had POAF
(31.3%) and 66 patients did not have POAF (68.7%). There
were 67 patients (POAF: 24, non-POAF: 43) in the training
cohort and 29 patients (POAF: 6, non-POAF: 23) in the val-
idation cohort. There were no significant differences in the
clinical features between two cohorts (Table 1).

3.2 Feature Selection and Radiomic Signature
Construction

We extracted 1218 radiomics features from each VOI
by Pyradiomics. The radiomics features that demonstrated
good reproducibility (ICC >0.9) were selected for further
analysis. To reduce redundancy, we eliminated features
with a high correlation coefficient (>0.9) as determined by
either Spearman or Pearson correlation analysis. The ra-
diomics signature in this study was constructed using six ra-
diomics features, which were selected through the LASSO
algorithm. By analyzing the coefficient profiles, we ob-
served the changes in coefficients as the regularization pa-
rameter (lambda ) varied (Fig. 3A). These six features
were likely chosen based on an optimal value of the regular-
ization parameter, which aimed to minimize the prediction
error or maximize the performance of the model (Fig. 3B).
The radiomics signature was calculated as follows:

Radiomics signature = —0.63954826 + 0.37460986
x original shape LeastAxisLength + 0.24917852 x
original shape Maximum3DDiameter + 0.01537095
x log.sigma.1.0.mm.3D_glem Idmn + 0.02363012 X
log.sigma.2.0.mm.3D_gldm_ DependenceVariance +
0.05315544 x wavelet. LLH glszm LargeAreaHighGrayL
evelEmphasis + 0.20322590 X
wavelet. LLL glszm GrayLevelNonUniformity

The radiomics signature was found to be significantly
higher in patients with POAF compared to those without
POAF in the training cohort (—0.02 4 0.63 vs —0.98 £ 0.57,
p < 0.001). Similar trend was observed in the validation
cohort (0.06 + 0.73 vs —0.93 £ 0.56, p = 0.001).
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Fig. 1. Flow diagrams of patient selection and study design. CABG, coronary artery bypass surgery; CT, computer tomography;

POAF, postoperative new atrial fibrillation; LASSO, the least absolute shrinkage and selection operator; LR, logistic regression.

3.3 Development and Validation of Prediction Models

In the training cohort, univariate and multivariate
analyses suggested that left atrial end-diastolic dimension
(LAEDD) and EAT volume might be independent predic-
tors of POAF (p < 0.05, Tables 2,3). We therefore con-
structed the clinical model using these two independent pre-
dictors. The AUC of the clinical model was 0.761 (95%
CI: 0.634-0.888) and 0.797 (95% CI: 0.587—1.000) in the
training and validation cohort, respectively (Fig. 4). The
radiomics model exhibited superior discrimination ability,
with an AUC 0f 0.884 (95% CI: 0.806—0.961) in the training
cohort and 0.891 (95% CI: 0.772-1.000) in the validation
cohort (Fig. 4).

The combined model was developed using LAEDD,
EAT volume, and radiomics signature. The discrimina-
tion ability of this model was strong, as evidenced by the

AUC of 0.922 (95% CI: 0.853-0.990) in the training co-
hort and 0.913 (95% CI: 0.798-1.000) in the validation co-
hort (Fig. 4). The DeLong’s test indicated that the AUCs
of the combined model were significantly superior to that
of the clinical model in both the training cohort (p = 0.003)
and validation cohort (p = 0.046). The AUCs of the com-
bined model were higher than that of the radiomics model,
but the DeLong’s test did not exhibit significant difference
in the training cohort (p = 0.177) or validation cohort (p =
0.530). Nevertheless, the DCA curves showed that in most
circumstances using the combined model to identify clini-
cal symptoms would be more clinically beneficial than us-
ing the two other separate models (Fig. 5). The calibration
curve of the combined model showed good agreement in
both the training and validation cohort (Fig. 6). Addition-
ally, the Hosmer-Lemeshow test yielded p value of 0.241 in
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(LASSO). (A) Coefficient profiles of radiomics features. (B) Six features with non-zero coefficients obtained using optimal lambda .

the training cohort and 0.277 in the validation cohort, indi-
cating good calibration of the model. Finally, a nomogram
was performed to visualize the combined model (Fig. 7).

4. Discussion

Advanced image analysis techniques are used in ra-
diomics to extract high-throughput data from invisible digi-
tal images and create datasets that can be mined to reveal as-
sociations between different indicators and diseases in order
to provide guidance for clinical decisions [19-21]. Shahzad
et al. [22] describes a method for automatically measuring
the volume of EAT in non-enhanced cardiac CT scans using
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a multi-atlas segmentation approach. Automated segmen-
tation for measuring EAT offers several advantages, such
as reducing the workload on human operators and the asso-
ciated costs of physicians and technicians. Furthermore, it
can provide more precise and consistent results compared
to manual segmentation methods [23,24]. This can aid in
early detection, risk stratification, and monitoring of pa-
tients, ultimately improving cardiovascular disease man-
agement [25]. The ability to predict POAF has implications
for risk stratification, implementation of prophylactic mea-
sures, perioperative management, tailored treatment strate-
gies, and long-term follow-up. By identifying high-risk pa-
tients and intervening appropriately, clinicians can poten-
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Table 1. Clinical characteristics of patients in the training cohort and validation cohort.

Training cohort

Validation cohort

Characteristics p value
(n=067) (n=29)
Gender, n (%) 0.096
Male 50 (74.6) 26 (89.7)
Female 17 (25.4) 3(10.3)
Age (years) 64.13 +10.08 64.38 +11.83 0.918
BMI (Kg/m?) 25.31+3.97 25.11 +£4.27 0.827
Smoking history, n (%) 28 (41.8) 11 (37.9) 0.724
Alcohol abuse, n (%) 11 (16.4) 7(24.1) 0.374
High blood pressure, n (%) 53(79.1) 21(72.4) 0.474
Diabetes, n (%) 39(58.2) 15 (51.7) 0.556
Hyperlipidemia, n (%) 37 (55.2) 17 (58.6) 0.758
Acute MI, n (%) 16 (23.9) 9(31.0) 0.463
Bypass number 1.91 £045 2.10 £ 0.62 0.090
Operation time (h) 4.40 £0.82 4.56 £1.16 0.454
LAEDD (mm) 38.54 £ 4.75 39.72 £ 4.71 0.262
LVEF (%) 58.66 + 12.88 57.70 £9.14 0.744
CRP (mg/L) 13.50 £ 29.11 14.14 £+ 30.92 0.944
WBC (10°/L) 6.99 £ 1.92 6.92 £+ 1.64 0.871
Neutrophils (10°/L) 4.54 +1.56 4.59 £ 1.69 0.899
Hgb (g/L) 126.18 £ 21.52 128.66 + 24.04 0.619
CK-MB (U/L) 2.13+2.14 0.82+1.23 0.222
BNP (pg/mL) 379.84 £ 669.05  391.00 + 533.96 0.961
EAT volume (cm?) 136.50 & 50.50 138.51 +41.84 0.851
EAT radiodensity (HU) —74.81 £5.74 —73.71 £ 5.49 0.384
POAF, n (%) 24 (35.8) 6(20.7) 0.142

BMI, body mass index; MI, myocardial infarction; LAEDD, left atrial end-diastolic
dimension; LVEEF, left ventricular ejection fraction; CRP, C-reactive protein; WBC,
white blood cell; Hgb, hemoglobin; CK-MB, creatine kinase-MB; BNP, brain na-
triuretic peptide; EAT, epicardial adipose tissue; POAF, postoperative new atrial

fibrillation; HU, Hounsfield unit.

tially reduce the incidence and severity of POAF, leading
to improved patient outcomes and a reduction in associ-
ated complications. In this study, we collected radiomics
features, clinical characteristics and features of CT images
from patients undergoing OPCABG, we then established
and evaluated three models for predicting POAF: a clinical
model, a radiomics signature model and a combined model.
The radiomics signature model, which was based on the ra-
diomics features extracted from CT images, exhibited supe-
rior discrimination ability compared to the clinical model.
The combined model had the most convincing predictive
ability among the three models, suggesting it has great po-
tential in predicting POAF after OPCABG.

Various perioperative conditions may lead to POAF,
yet the exact mechanisms behind it remain unknown. Left
atrial enlargement is currently recognized as an independent
risk factor for POAF. A number of studies have confirmed
that patients with left atrial diameter larger than 40mm have
a significantly higher risk of POAF [26]. Likewise, we
found that LAEDD could act as an independent predictor
for POAF. Tsang et al. [27] have reported that every 30%

increase in left atrial diameter increases the risk of atrial fib-
rillation by 43% after adjusting for potential confounders
such as age, gender, valve diseases and hypertension. The
reasons might be that, with the increase of age, cardiac di-
astolic dysfunctions may occur, which decrease the capa-
bility of passive left atrial emptying. The subsequent in-
crease in left atrial filling pressure may lead to progressive
enlargement and structural remodeling of the atrium. The
changes in physiological characteristics and electrical envi-
ronment in the left atrium in turns lead to atrial fibrillation
[27]. The radiomics signatures capture detailed informa-
tion about tissue characteristics and spatial patterns within
the heart. The interaction between these structural param-
eters and radiomics signatures may reveal how specific al-
terations in tissue properties contribute to atrial remodel-
ing, electrical disturbances, and subsequent POAF. Inflam-
mation that leads to structural changes in the left atrium
plays a significant role in the occurrence of atrial fibrilla-
tion [28,29], and EAT is one of the sources of inflammatory
mediators, which affect the development of CAD [30-33].
Radiomics signatures may provide insights into localized
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Table 2. Univariate analysis of clinical characteristics for predicting POAF in training cohort.

With POAF

Without POAF

Characteristics p value
(n=24) (n=43)
Gender, n (%) 0.523
Male 19 (79.2) 31(72.1)
Female 5(20.8) 12 (27.9)
Age (years) 61.63 + 11.64 65.53 +8.93 0.129
BMI (Kg/m?) 25.79 +4.28 25.05 +£3.52 0.480
Smoking history, n (%) 11 (45.8) 17 (39.5) 0.616
Alcohol abuse, n (%) 5(20.8) 6 (14.0) 0.700
High blood pressure, n (%) 17 (70.8) 36 (83.7) 0.213
Diabetes, n (%) 15 (62.5) 24 (55.8) 0.595
Hyperlipidemia, n (%) 13 (54.2) 24 (55.8) 0.897
Acute MI, n (%) 6(25.0) 10 (23.3) 0.872
Bypass number 1.96 £+ 0.46 1.88 £0.45 0.521
Operation time (h) 4.43 £0.79 4.38 £0.85 0.815
LAEDD (mm) 40.54 +4.05 37.42 +4.78 0.009
LVEF (%) 60.50 + 13.71 57.62 £ 12.45 0.405
CRP (mg/L) 8.86 £9.44 17.61 £+ 39.09 0.390
WBC (10°/L) 6.98 £ 1.82 7.00 £+ 2.00 0.977
Neutrophils (10°/L) 442 +1.28 4.61 £1.70 0.629
Hgb (g/L) 12525 £23.70  126.70 & 20.49 0.794
CK-MB (U/L) 2.16 +2.45 2.11 +£1.97 0.941
BNP (pg/mL) 96.81 +£126.30  521.36 + 782.58 0.102
EAT volume (cm?) 159.53 £ 61.93  123.64 +37.88 0.014
EAT radiodensity (HU) —73.56 + 6.24 —75.50 £ 5.38 0.186

BMI, body mass index; MI, myocardial infarction; LAEDD, left atrial end-diastolic
dimension; LVEEF, left ventricular ejection fraction; CRP, C-reactive protein; WBC,
white blood cell; Hgb, hemoglobin, CK-MB, creatine kinase-MB; BNP, brain na-
triuretic peptide; EAT, epicardial adipose tissue; POAF, postoperative new atrial

fibrillation; HU, Hounsfield unit.

Table 3. Multivariate analysis of clinical characteristics for
predicting POAF in training cohort.

Characteristics OR 95% CI p value
LAEDD 1.183  1.035-1.353 0.014
EAT volume 1.017  1.004-1.030 0.010

LAEDD, left atrial end-diastolic dimension; OR, odds
Ratio; CI, credibility interval; EAT, epicardial adipose
tissue; POAF, postoperative new atrial fibrillation.

inflammation within the atrial tissue, highlighting areas of
increased inflammatory activity that can further contribute
to atrial fibrillation development. Potential atrial fibrilla-
tion matrix, intraoperative stimulation and increased secre-
tion of inflammatory factors after operation are all involved
in the occurrence of POAF [34]. In addition, inflamma-
tory cells in the atrial tissue have been found in biopsies
of patients with AF [8]. Local inflammation may lead to
myocardial fibrosis in the atrium, which in turn leads to
atrial fibrillation [35]. It was observed that the EAT value in
fluorodeoxyglucose positron emission tomography (FDG-
PET) images are significantly associated with AF, some-
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thing that was not observed in subcutaneous adipose tis-
sue [36]. The presence of an inflammatory burden in peri-
coronary fat is associated with worse outcomes in predia-
betic patients undergoing CABG. This inflammatory bur-
den, characterized by altered levels of adipokines and in-
flammatory markers, contributes to the development and
destabilization of atherosclerotic plaques in coronary arter-
ies, thereby increasing the risk of cardiovascular events. In
this context, drugs with anti-inflammatory and oxidative ef-
fects, such as metformin, play a modulatory role in attenuat-
ing the inflammatory burden and improving prognosis [37].
These effects could pass towards the over-expression of
inflammatory/oxidative stress molecules, via the sodium-
glucose cotransporter 2 (SGLT2)-mediated pathways. The
modulation of SGLT?2 activity can help mitigate the inflam-
matory burden, stabilize atherosclerotic plaques, and po-
tentially improve clinical outcomes in prediabetic patients
undergoing CABG [38]. By reducing systemic inflamma-
tion, modulating adipose tissue inflammation, improving
endothelial function, and activating protective pathways,
SGLT2 inhibitors offer a multifaceted approach to mitigat-
ing inflammation and improving cardiovascular health [39].


https://www.imrpress.com

e
©
|
o \
2 <7
=
=
g ‘
C
[0
(%]
<
3
~ Clinical model (AUC=0.761,95% Cl: 0.634-0.888)
g
— Radiomics model(AUC=0.884, 95% CI: 0.806-0.961)
— Combined model (AUC=0.922, 95%ClI: 0.853 - 0.990)
o
=
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

B
e |
@
@
©
2 o7
=
B
C
[
(7]
<
h
o | Clinical model (AUC=0.797, 95% CI: 0.587 - 1.000)
o
— Radiomics model(AUC=0.891, 95% CI: 0.772 - 1.000)
—— Combined model (AUC=0.913, 95%Cl: 0.798 -1.000)
o
=N
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Fig. 4. Comparison of ROCs between clinical model, radiomics model and combined model for predicting AF in the training (A)

and validation (B) cohorts. AUC, the area under the curve; ROC, receiver operating characteristic; AF, atrial fibrillation.

g _ Clinical model
— Radiomics signature
—— Combined model
All
—— None
@
S A
-
&
2 o
o <7
m
—
(0]
z
b
S A
=
S -

T T
0.0 0.2 04 0.6 0.8 1.0
Threshold probability

B

Clinical model
—— Radiomics signature
—— Combined model

All
—— None

0.20

0.10 0.15

Net Benefit

0.05

[\

I

0.00

-0.05

T T
0.0 0.2 0.4 0.6 0.8 1.0
Threshold probability

Fig. 5. DCA curves of clinical model, radiomics model and combined model for predicting AF in the training (A) and in the
validation (B) cohort. DCA, decision curve analysis; AF, atrial fibrillation.

We found that EAT volume is an independent predic-
tor for POAF. EAT has been reported to be an independent
risk factor for cardiovascular disease and plays a critical
role in maintenaning cardiac physiological functions [40].
When EAT increases and infiltrates into the myocardial tis-
sue, myocardial electrical signal conduction is delayed, ulti-
mately promoting the formation of atrial fibrillation matrix
[41]. This also leads to dysfunction of cardiomyocytes and
promotes myocardial fibrosis, causing structural changes

and eventually the occurrence of AF [42]. Higher propor-
tions of fat infiltration were found in patients with POAF,
and there was no significant difference in the degree of fat
infiltration between left and right atrium [43]. In a study by
Yorgun et al. [44], the thickness of epicardial adipose tis-
sue (EAT) at various sites in CT scans was measured in 426
patients with atrial fibrillation (AF). The findings revealed
a correlation between EAT thickness and AF, with the most
significant correlation observed in the left atrium and ante-
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rior wall of the right ventricle (r =0.268, 0.372, p < 0.001).
It has been observed that the volume model had a signifi-
cant impact on determining AF [45]. The EAT volume in
patients with AF was found to be higher compared to those
with normal sinus rhythm (NSR), both in contrast-enhanced
CT scans and non-enhanced scans. These findings are in
line with the results of a meta-analysis, which demonstrated
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a higher EAT volume in patients with AF compared to those
without AF [46]. In addition to volume, the attenuation of
EAT on CT has also gained interest, as the EAT density on
CT is partly a reflection of the increased concentration of
blood vessels and mitochondria in adipose tissue [47]. Ele-
vated CT attenuation has been identified as a potential indi-
cator of increased cardiac mortality risk and poor progno-
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sis [48]. However, the CT attenuation model derived from
contrast-enhanced CT scans did not show significance in
determining AF. This could potentially be attributed to the
influence of contrast-media enhancement in the EAT, which
can interfere with the CT values and make it challenging
to differentiate between the AF and NSR groups [45]. We
did not observe a significant difference in EAT density be-
tween the with POAF group and without POAF group in
our study. This finding might be attributed to the limited
number of cases included in our study. In general, EAT
can exert a proarrhythmogenic effect on the atria through
several mechanisms, including the infiltration of adipocytes
into the myocardium which contributes to structural remod-
eling of the left atrium (LA), the release of proinflammatory
cytokines that induce inflammation and fibrosis in the my-
ocardium, and the increased adrenergic activation of gan-
glionic plexuses caused by elevated catecholamine levels or
changes in Ca" currents [49]. The interaction between the
identified parameters and significant radiomics signatures
may involve a complex interplay of structural, inflamma-
tory, and functional factors, which collectively contribute
to the development of POAF. By combining these different
aspects, the predictive model captures a broader range of
information and provides a more accurate assessment of an
individual’s risk for POAF.

A few medical both at the time and after surgery may
also lead to the occurrence of postoperative complications,
such as myocardial injury and movement of the heart dur-
ing surgery, or postoperative hypokalemia, which in turn
causes increased excitability, decreased conductivity, and
increased automaticity of cardiomyocytes. Timely moni-
toring of blood electrolytes after surgery may make it pos-
sible to judge the occurrence of POAF. The incidence of
POAF decreased significantly after pericardiectomy of the
left atrial posterior wall, which may be related to the com-
plete removal of epicardial adipose tissue in the posterior
wall of the left atrium [50,51]. It was reported that (-
blocker and potassium channel blocker amiodarone can sig-
nificantly reduce the incidence of POAF, while no signifi-
cant improvements were seen in stroke risk and long-term
mortality [52,53]. The incidence of POAF decreased by
58% after injection of calcium chloride into EAT, but the
length of hospitalization of the patients did not improve
[54]. Surgical removal of epicardial ganglia can reduce
the vagus nerve-related negative frequency or negative con-
duction to some extent, which provides a theoretical basis
for physical intervention in POAF [55]. It was suggested
that over-activation of calcium currents and increased lev-
els of sarcoplasmic endoplasmic reticulum calcium ATPase
(SERCA) play a significant role in patients who responded
to epicardial ablation for persistent atrial fibrillation AF. By
targeting SERCA and improving calcium handling, it may
be possible to enhance the effectiveness of epicardial abla-
tion and improve outcomes for patients with persistent AF
[56].
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Radiomics plays a valuable role in monitoring the de-
velopment and progression of coronary artery atheroscle-
rosis [57]. Studies have shown that the automated system
for segmenting the coronary artery, detecting and classify-
ing plaque, and assessing stenosis achieves high levels of
accuracy and computational efficiency [25,58]. Predictive
models derived from automated segmentation systems are
expected to have a crucial role in future clinical settings.
We should recognize that there is a growing demand for
the explainability of predictive models in clinical scenarios.
While techniques like the LASSO algorithm can effectively
identify important features, they may not provide explicit
explanations for why those features are relevant. However,
there are techniques available that aim to enhance explain-
ability. Techniques such as decision trees, rule-based mod-
els, and linear models with explainable coefficients can be
explored to make the machine learning model more explain-
able. Overall, by utilizing machine learning algorithms and
incorporating interpretable clinical and radiomic features,
it has become possible to gain insights into the models and
enable the physician team to provide clinical justifications
for the findings [59].

Our study had several limitations. First of all, it is
a single center retrospective study with sample size. Al-
though efforts were made to ensure data quality and accu-
racy, the inherent limitations of retrospective studies, such
as potential selection bias, incomplete data, and confound-
ing variables, should be acknowledged. Thus, prospective
studies with carefully designed protocols are needed to val-
idate the findings of this study. Secondly, different CT
scanners and different image reconstruction algorithms im-
pact the stability of radiomic features. In the future, explor-
ing the correlation between genomic characteristics and ra-
diomics of EAT may reveal a promising direction to study
the mechanism behind POAF.

5. Conclusions

In conclusion, the combined model, which includes
clinical characteristics, radiomics signature, and features on
non-enhanced CT images of EAT, demonstrated superior
performance in predicting POAF risk after OPCABG. This
suggests that the combination of these factors could be a
valuable tool for improving POAF risk prediction.
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